File size: 570 Bytes
9fd0422
 
 
80b26db
4ca77dc
a439774
 
 
 
 
 
 
80b26db
dc9df02
 
9fd0422
 
6fc805b
dc9df02
5c2f8ce
6fc805b
9fd0422
 
dc9df02
 
9fd0422
6fc805b
dc9df02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import gradio as gr
from transformers import pipeline
import numpy as np

transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-medium")

transcriber.model.config.forced_decoder_ids = (
  transcriber.tokenizer.get_decoder_prompt_ids(
    language="pt", 
    task="transcribe"
  )
)

def transcribe(audio):
    sr, y = audio
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))

    return transcriber({"sampling_rate": sr, "raw": y})["text"]


demo = gr.Interface(
    transcribe,
    gr.Audio(source="microphone"),
    "text",
)

demo.launch()