import space import gradio as gr import numpy as np import PIL.Image from PIL import Image import random from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler import torch import os import uuid device = torch.device("cuda" if torch.cuda.is_available() else "cpu") pipe = StableDiffusionXLPipeline.from_single_file( "https://huggingface.co/Laxhar/noob_sdxl_beta/noob_hercules3/checkpoint/checkpoint-e2_s109089.safetensors/checkpoint-e2_s109089.safetensors", use_safetensors=True, torch_dtype=torch.float16, ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1216 @spaces.GPU def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) output_image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] # PNGに変換する output_image = output_image.convert("RGBA") return output_image # 画像オブジェクトを直接返す css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" Text-to-Image Demo using [Noob SDXL beta model](https://huggingface.co/Laxhar) """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) # show_download_button=True でPNG形式でダウンロードできるようにする result = gr.Image(label="Result", show_label=False, type="pil", elem_id="output_image", show_download_button=True) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=28, step=1, value=28, ) run_button.click( fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result] ) demo.queue().launch()