import gradio as gr import numpy as np import PIL.Image from PIL import Image import random from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, StableDiffusionXLPipeline, AutoencoderKL from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler #from diffusers.utils import load_image import cv2 import torch import spaces device = torch.device("cuda" if torch.cuda.is_available() else "cpu") controlnet = ControlNetModel.from_pretrained( #"2vXpSwA7/test_controlnet2/CN-anytest_v4-marged_am_dim256.safetensors", "xinsir/controlnet-scribble-sdxl-1.0", torch_dtype=torch.float16 #from_tf=False, #variant="safetensors" ) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) #pipe = StableDiffusionXLControlNetPipeline.from_pretrained( # "yodayo-ai/holodayo-xl-2.1", # controlnet=controlnet, # vae=vae, # torch_dtype=torch.float16, #) pipe = StableDiffusionXLPipeline.from_pretrained( "yodayo-ai/holodayo-xl-2.1", vae=vae, torch_dtype=torch.float16, ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1216 @spaces.GPU #def infer(use_image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, image: PIL.Image.Image = None) -> PIL.Image.Image: def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): # Check if the input image is a valid PIL Image and is not empty use_image = False #image = None #if use_image :# and image is not None : # width, height = image['composite'].size # ratio = np.sqrt(1024. * 1024. / (width * height)) # new_width, new_height = int(width * ratio), int(height * ratio) # image = image['composite'].resize((new_width, new_height)) # print(image) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) if use_image: print("use_image") #output_image = pipe( # prompt=prompt + ", masterpiece, best quality, very aesthetic, absurdres", # negative_prompt=negative_prompt, # image=image, # controlnet_conditioning_scale=1.0, # guidance_scale=guidance_scale, # num_inference_steps=num_inference_steps, # width=new_width, # height=new_height, # generator=generator #).images[0] else: # If no valid image is provided, generate an image based only on the text prompt output_image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] return output_image css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" # Text-to-Image Demo using [Holodayo XL 2.1](https://huggingface.co/yodayo-ai/holodayo-xl-2.1) """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) #image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512)) result = gr.Image(label="Result", show_label=False) #use_image = gr.Checkbox(label="Use image", value=True) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024,#832, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024,#1216, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=28, step=1, value=28, ) run_button.click(#lambda x: None, inputs=None, outputs=result).then( fn=infer, #inputs=[use_image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,image], inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result] ) demo.queue().launch(show_error=True)