import gradio as gr import shutil import subprocess import tempfile import os import sys import json def get_functions(file): with tempfile.TemporaryDirectory() as TEMP_DIR: subprocess.run( f"/ghidra/support/analyzeHeadless {TEMP_DIR} Project -import {file} -postscript /home/user/app/scripts/dump_functions.py {TEMP_DIR}/funcs.json", shell=True, ) json_funcs = json.load(open(f"{TEMP_DIR}/funcs.json")) return json_funcs with gr.Blocks() as demo: state = gr.State() intro = gr.Markdown( """ # DIRTY-Ghidra Inference Demo Welcome! This is a demo of DIRTY-Ghidra, a tool that predict names and types for variables for Ghidra's decompiler. To get started, upload a binary. """ ) file_widget = gr.File(label="Executable file") with gr.Column(visible=False) as col: # output = gr.Textbox("Output") gr.Markdown( """ Great, you selected an executable! Now pick the function you would like to analyze. Simple functions (without variables) will probably fail, so you may have to try a few before you find one that works. """ ) fun_dropdown = gr.Dropdown( label="Select a function", choices=["Woohoo!"], interactive=True ) gr.Markdown( """ Below you can find some information. """ ) with gr.Row(visible=True) as result: disassembly = gr.Textbox( label="Disassembly", value="Please wait...", lines=20 ) original_decompile = gr.Textbox( label="Original Decompilation", value="Please wait...", lines=20 ) decompile = gr.Textbox( label="Renamed and retyped Decompilation", value="Please wait...", lines=20, ) model_output = gr.Textbox( label="Model Output", value="Please wait...", lines=4 ) # with gr.Column(): # clazz = gr.Label() # interpret_button = gr.Button("Interpret (very slow)") # interpretation = gr.components.Interpretation(disassembly) def file_change_fn(file): if file is None: return {col: gr.update(visible=False), state: {"file": None}} else: try: progress = gr.Progress() progress( 0, desc=f"Analyzing binary {os.path.basename(file.name)} with Ghidra...", ) fun_data = get_functions(file.name) # print(fun_data) addrs = [ (f"{name} ({hex(int(addr))})", int(addr)) for addr, name in fun_data.items() ] except Exception as e: raise gr.Error(f"Unable to analyze binary with Ghidra: {e}") return { col: gr.Column(visible=True), fun_dropdown: gr.Dropdown(choices=addrs, value=addrs[0][1]), state: {"file": file}, } def function_change_fn(selected_fun, state, progress=gr.Progress()): # disassembly_str = fun_data[int(selected_fun, 16)].decode("utf-8") # load_results = model.fn(disassembly_str) # top_k = {e['label']: e['confidence'] for e in load_results['confidences']} with tempfile.TemporaryDirectory() as TEMP_DIR: print(selected_fun) progress(0, desc=f"Running DIRTY Ghidra on {hex(selected_fun)}...") try: subprocess.run( f"/ghidra/support/analyzeHeadless {TEMP_DIR} Project -import {state['file'].name} -postscript /DIRTY/scripts/DIRTY_infer.py {TEMP_DIR}/funcs.json {selected_fun}", shell=True, ) json_info = json.load(open(f"{TEMP_DIR}/funcs.json")) if "exception" in json_info: raise gr.Error(f"DIRTY Ghidra failed: {json_info['exception']}") except Exception as e: raise gr.Error(f"Unable to run DIRTY Ghidra: {e}") #print(json_info) return { disassembly: gr.Textbox(value=json_info["disassembly"]), original_decompile: gr.Textbox(value=json_info["original_decompile"]), decompile: gr.Textbox(value=json_info["decompile"]), model_output: gr.Textbox(value=json_info["model_output"]), } # Need to put intro as output to get progress to work! file_widget.change( file_change_fn, file_widget, outputs=[intro, state, col, fun_dropdown] ) fun_dropdown.change( function_change_fn, inputs=[fun_dropdown, state], outputs=[disassembly, original_decompile, decompile, model_output], ) # spaces only shows stderr.. os.dup2(sys.stdout.fileno(), sys.stderr.fileno()) demo.queue() demo.launch(server_name="0.0.0.0", server_port=7860)