import os import random from typing import Callable, Dict, Optional, Tuple import gradio as gr import numpy as np import PIL.Image import spaces import torch from transformers import CLIPTextModel from diffusers import AutoencoderKL, StableDiffusionXLPipeline, DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler MODEL = "eienmojiki/Starry-XL-v5.2" HF_TOKEN = os.getenv("HF_TOKEN") MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512")) MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" sampler_list = [ "DPM++ 2M Karras", "DPM++ SDE Karras", "DPM++ 2M SDE Karras", "Euler", "Euler a", "DDIM", ] examples = [ """ 1girl, midori \(blue archive\), blue archive, (ningen mame:0.9), ciloranko, sho \(sho lwlw\), (tianliang duohe fangdongye:0.8), ask \(askzy\), wlop, indoors, plant, hair bow, cake, cat ears, food, smile, animal ear headphones, bare legs, short shorts, drawing \(object\), feet, legs, on back, bed, solo, green eyes, cat, table, window blinds, headphones, nintendo switch, toes, bow, toenails, looking at viewer, chips \(food\), potted plant, halo, calendar \(object\), tray, blonde hair, green halo, lying, barefoot, bare shoulders, blunt bangs, green shorts, picture frame, fake animal ears, closed mouth, shorts, handheld game console, green bow, animal ears, on bed, medium hair, knees up, upshorts, eating, potato chips, pillow, blush, dolphin shorts, ass, character doll, alternate costume, masterpiece, newest, absurdres """ ] torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def seed_everything(seed: int) -> torch.Generator: torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) generator = torch.Generator() generator.manual_seed(seed) return generator def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]: scheduler_factory_map = { "DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config( scheduler_config, use_karras_sigmas=True ), "DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config( scheduler_config, use_karras_sigmas=True ), "DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config( scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++" ), "Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config), "Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config), "DDIM": lambda: DDIMScheduler.from_config(scheduler_config), } return scheduler_factory_map.get(name, lambda: None)() def load_pipeline(model_name): if torch.cuda.is_available(): pipe = StableDiffusionXLPipeline.from_pretrained( model_name, torch_dtype=torch.float16, custom_pipeline="lpw_stable_diffusion_xl", safety_checker=None, use_safetensors=True, add_watermarker=False, use_auth_token=HF_TOKEN ) pipe.to(device) return pipe @spaces.GPU(enable_queue=False) def generate( prompt: str, negative_prompt: str = None, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 5.0, num_inference_steps: int = 26, sampler: str = "Eul""er a", clip_skip: int = 1, progress=gr.Progress(track_tqdm=True), ): """ if torch.cuda.is_available(): pipe = StableDiffusionXLPipeline.from_pretrained( MODEL, torch_dtype=torch.float16, custom_pipeline="lpw_stable_diffusion_xl", safety_checker=None, use_safetensors=True, add_watermarker=False, use_auth_token=HF_TOKEN ) """ generator = seed_everything(seed) pipe.scheduler = get_scheduler(pipe.scheduler.config, sampler) pipe.text_encoder = CLIPTextModel.from_pretrained( MODEL, subfolder = "text_encoder", num_hidden_layers = 12 - (clip_skip - 1), torch_dtype = torch.float16 ) pipe.to(device) try: img = pipe( prompt = prompt, negative_prompt = negative_prompt, width = width, height = height, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, generator = generator, output_type="pil", ).images return img, seed except Exception as e: print(f"An error occurred: {e}") if torch.cuda.is_available(): pipe = load_pipeline(MODEL) print("Loaded on Device!") else: pipe = None with gr.Blocks( theme=gr.themes.Base() ) as demo: gr.HTML( """
This is a simple demo for Starry XL. Feel free to report any issue at Community tab.
""" ) with gr.Group(): prompt = gr.Text( info="Your prompt here OwO", label="Prompt", placeholder="Tips: Follow the instruction at the model page for better prompt." ) negative_prompt = gr.Text( info="Enter your negative prompt here" label="Negative Prompt", placeholder="(Optional)" ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) sampler = gr.Dropdown( label="Sampler", choices=sampler_list, interactive=True, value="Euler a", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=20, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Steps", minimum=10, maximum=100, step=1, value=25, ) clip_skip = gr.Slider( label="Clip Skip", minimum=1, maximum=2, step=1, value=1 ) run_button = gr.Button("Run") result = gr.Gallery( label="Result", columns=1, height="512px", preview=True, show_label=False ) with gr.Group(): used_seed = gr.Number(label="Used Seed", interactive=False) gr.Examples( examples=examples, inputs=prompt, outputs=[result, used_seed], fn=lambda *args, **kwargs: generate(*args, **kwargs), cache_examples=CACHE_EXAMPLES, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=[ prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, sampler, clip_skip ], outputs=[result, used_seed], api_name="run" ) if __name__ == "__main__": demo.queue(max_size=20).launch(show_error=True)