Spaces:
No application file
No application file
Commit
Β·
7ee6134
1
Parent(s):
7ff4e27
Create 10_Benchmark_1.ipynb
Browse files- 10_Benchmark_1.ipynb +501 -0
10_Benchmark_1.ipynb
ADDED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 9,
|
6 |
+
"id": "11777db4-14dd-4991-87e4-a8e6ec0c7e89",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"124033\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"import pandas as pd\n",
|
19 |
+
"import numpy as np\n",
|
20 |
+
"import networkx as nx\n",
|
21 |
+
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
22 |
+
"\n",
|
23 |
+
"def generate_graph_modality(file_path, threshold=0.2):\n",
|
24 |
+
" # Read the uploaded file containing user-item ratings\n",
|
25 |
+
" ratings_df = pd.read_csv(file_path) # Assuming CSV format, adjust accordingly if different\n",
|
26 |
+
"\n",
|
27 |
+
" # Compute user-item matrix\n",
|
28 |
+
" user_item_matrix = pd.pivot_table(ratings_df, values='rating', index='user_id', columns='business_id', fill_value=0)\n",
|
29 |
+
"\n",
|
30 |
+
" # Compute cosine similarity between users\n",
|
31 |
+
" user_similarity_matrix = cosine_similarity(user_item_matrix)\n",
|
32 |
+
"\n",
|
33 |
+
" # Convert similarity matrix to binary adjacency matrix\n",
|
34 |
+
" binary_adjacency_matrix = np.where(user_similarity_matrix > threshold, 1, 0)\n",
|
35 |
+
"\n",
|
36 |
+
" # Convert binary adjacency matrix to a list of tuples for graph modality\n",
|
37 |
+
" graph_modality_list = []\n",
|
38 |
+
" for i in range(len(user_item_matrix.index)):\n",
|
39 |
+
" for j in range(i + 1, len(user_item_matrix.index)):\n",
|
40 |
+
" if binary_adjacency_matrix[i][j] == 1:\n",
|
41 |
+
" graph_modality_list.append((user_item_matrix.index[i], user_item_matrix.index[j], 1.0))\n",
|
42 |
+
"\n",
|
43 |
+
" return graph_modality_list\n",
|
44 |
+
"\n",
|
45 |
+
"# Example usage:\n",
|
46 |
+
"file_path = \"../data/rating_final.csv\" # Update with the actual file path\n",
|
47 |
+
"graph_modality_list = generate_graph_modality(file_path)\n",
|
48 |
+
"trust_graph_df = pd.DataFrame(graph_modality_list)\n",
|
49 |
+
"# print(\"Graph Modality List:\")\n",
|
50 |
+
"# print(graph_modality_list)\n",
|
51 |
+
"print(len(trust_graph_df))"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 10,
|
57 |
+
"id": "b877dbe6-7175-4de9-ba89-37d43661500e",
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [
|
60 |
+
{
|
61 |
+
"name": "stdout",
|
62 |
+
"output_type": "stream",
|
63 |
+
"text": [
|
64 |
+
"rating_threshold = 1.0\n",
|
65 |
+
"exclude_unknowns = True\n",
|
66 |
+
"---\n",
|
67 |
+
"Training data:\n",
|
68 |
+
"Number of users = 10999\n",
|
69 |
+
"Number of items = 4922\n",
|
70 |
+
"Number of ratings = 176857\n",
|
71 |
+
"Max rating = 5.0\n",
|
72 |
+
"Min rating = 1.0\n",
|
73 |
+
"Global mean = 3.8\n",
|
74 |
+
"---\n",
|
75 |
+
"Test data:\n",
|
76 |
+
"Number of users = 10999\n",
|
77 |
+
"Number of items = 4922\n",
|
78 |
+
"Number of ratings = 58885\n",
|
79 |
+
"Number of unknown users = 0\n",
|
80 |
+
"Number of unknown items = 0\n",
|
81 |
+
"---\n",
|
82 |
+
"Validation data:\n",
|
83 |
+
"Number of users = 10999\n",
|
84 |
+
"Number of items = 4922\n",
|
85 |
+
"Number of ratings = 58902\n",
|
86 |
+
"---\n",
|
87 |
+
"Total users = 10999\n",
|
88 |
+
"Total items = 4922\n",
|
89 |
+
"Total number of users: 11000\n",
|
90 |
+
"Total number of restaurants: 4963\n",
|
91 |
+
"Total possible ratings: 54593000\n",
|
92 |
+
"Actual number of ratings: 294763\n",
|
93 |
+
"Sparsity of the data: 99.46007180407744\n",
|
94 |
+
"\n",
|
95 |
+
"[BPR] Training started!\n"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"name": "stderr",
|
100 |
+
"output_type": "stream",
|
101 |
+
"text": [
|
102 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 100/100 [00:01<00:00, 51.29it/s, correct=84.93%, skipped=0.81%]\n"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"name": "stdout",
|
107 |
+
"output_type": "stream",
|
108 |
+
"text": [
|
109 |
+
"Optimization finished!\n",
|
110 |
+
"\n",
|
111 |
+
"[BPR] Evaluation started!\n"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"name": "stderr",
|
116 |
+
"output_type": "stream",
|
117 |
+
"text": [
|
118 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10561/10561 [00:02<00:00, 4182.97it/s]\n",
|
119 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10534/10534 [00:02<00:00, 4405.11it/s]\n"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"name": "stdout",
|
124 |
+
"output_type": "stream",
|
125 |
+
"text": [
|
126 |
+
"\n",
|
127 |
+
"[WBPR] Training started!\n"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"name": "stderr",
|
132 |
+
"output_type": "stream",
|
133 |
+
"text": [
|
134 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 100/100 [00:01<00:00, 50.09it/s, correct=50.72%, skipped=3.02%]\n"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"name": "stdout",
|
139 |
+
"output_type": "stream",
|
140 |
+
"text": [
|
141 |
+
"Optimization finished!\n",
|
142 |
+
"\n",
|
143 |
+
"[WBPR] Evaluation started!\n"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"name": "stderr",
|
148 |
+
"output_type": "stream",
|
149 |
+
"text": [
|
150 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10561/10561 [00:02<00:00, 4141.18it/s]\n",
|
151 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10534/10534 [00:02<00:00, 4526.76it/s]\n"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"name": "stdout",
|
156 |
+
"output_type": "stream",
|
157 |
+
"text": [
|
158 |
+
"\n",
|
159 |
+
"[MF] Training started!\n"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"name": "stderr",
|
164 |
+
"output_type": "stream",
|
165 |
+
"text": [
|
166 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 100/100 [00:00<00:00, 228.21it/s, loss=1346.61]\n"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"name": "stdout",
|
171 |
+
"output_type": "stream",
|
172 |
+
"text": [
|
173 |
+
"Optimization finished!\n",
|
174 |
+
"\n",
|
175 |
+
"[MF] Evaluation started!\n"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"name": "stderr",
|
180 |
+
"output_type": "stream",
|
181 |
+
"text": [
|
182 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10561/10561 [00:02<00:00, 4127.18it/s]\n",
|
183 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10534/10534 [00:02<00:00, 4469.11it/s]\n"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"name": "stdout",
|
188 |
+
"output_type": "stream",
|
189 |
+
"text": [
|
190 |
+
"\n",
|
191 |
+
"[WMF] Training started!\n"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"name": "stderr",
|
196 |
+
"output_type": "stream",
|
197 |
+
"text": [
|
198 |
+
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 155/155 [01:10<00:00, 2.20it/s, loss=301]\n"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"name": "stdout",
|
203 |
+
"output_type": "stream",
|
204 |
+
"text": [
|
205 |
+
"Learning completed!\n",
|
206 |
+
"\n",
|
207 |
+
"[WMF] Evaluation started!\n"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"name": "stderr",
|
212 |
+
"output_type": "stream",
|
213 |
+
"text": [
|
214 |
+
"Ranking: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10561/10561 [00:12<00:00, 848.89it/s]\n",
|
215 |
+
"Ranking: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10534/10534 [00:12<00:00, 876.97it/s]\n"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"name": "stdout",
|
220 |
+
"output_type": "stream",
|
221 |
+
"text": [
|
222 |
+
"\n",
|
223 |
+
"[NeuMF] Training started!\n"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"name": "stderr",
|
228 |
+
"output_type": "stream",
|
229 |
+
"text": [
|
230 |
+
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5/5 [00:46<00:00, 9.23s/it, loss=0.501]\n"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"name": "stdout",
|
235 |
+
"output_type": "stream",
|
236 |
+
"text": [
|
237 |
+
"\n",
|
238 |
+
"[NeuMF] Evaluation started!\n"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"name": "stderr",
|
243 |
+
"output_type": "stream",
|
244 |
+
"text": [
|
245 |
+
"Ranking: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10561/10561 [00:19<00:00, 542.52it/s]\n",
|
246 |
+
"Ranking: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10534/10534 [00:18<00:00, 566.23it/s]\n"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"name": "stdout",
|
251 |
+
"output_type": "stream",
|
252 |
+
"text": [
|
253 |
+
"\n",
|
254 |
+
"[VAECF] Training started!\n"
|
255 |
+
]
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"name": "stderr",
|
259 |
+
"output_type": "stream",
|
260 |
+
"text": [
|
261 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5/5 [00:06<00:00, 1.22s/it, loss=1.17]\n"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"name": "stdout",
|
266 |
+
"output_type": "stream",
|
267 |
+
"text": [
|
268 |
+
"\n",
|
269 |
+
"[VAECF] Evaluation started!\n"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"name": "stderr",
|
274 |
+
"output_type": "stream",
|
275 |
+
"text": [
|
276 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10561/10561 [00:03<00:00, 2717.43it/s]\n",
|
277 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10534/10534 [00:03<00:00, 2860.03it/s]\n"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"name": "stdout",
|
282 |
+
"output_type": "stream",
|
283 |
+
"text": [
|
284 |
+
"\n",
|
285 |
+
"[CVAECF] Training started!\n"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"name": "stderr",
|
290 |
+
"output_type": "stream",
|
291 |
+
"text": [
|
292 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 50/50 [01:31<00:00, 1.84s/it, loss=0.93]\n"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"name": "stdout",
|
297 |
+
"output_type": "stream",
|
298 |
+
"text": [
|
299 |
+
"\n",
|
300 |
+
"[CVAECF] Evaluation started!\n"
|
301 |
+
]
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"name": "stderr",
|
305 |
+
"output_type": "stream",
|
306 |
+
"text": [
|
307 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10561/10561 [00:05<00:00, 1832.24it/s]\n",
|
308 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10534/10534 [00:05<00:00, 1897.65it/s]\n"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"name": "stdout",
|
313 |
+
"output_type": "stream",
|
314 |
+
"text": [
|
315 |
+
"\n",
|
316 |
+
"[BiVAECF] Training started!\n"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"name": "stderr",
|
321 |
+
"output_type": "stream",
|
322 |
+
"text": [
|
323 |
+
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 50/50 [01:42<00:00, 2.06s/it, loss_i=0.441, loss_u=0.191]\n"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"name": "stdout",
|
328 |
+
"output_type": "stream",
|
329 |
+
"text": [
|
330 |
+
"\n",
|
331 |
+
"[BiVAECF] Evaluation started!\n"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"name": "stderr",
|
336 |
+
"output_type": "stream",
|
337 |
+
"text": [
|
338 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10561/10561 [00:02<00:00, 4216.96it/s]\n",
|
339 |
+
"Ranking: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 10534/10534 [00:02<00:00, 4669.25it/s]"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"name": "stdout",
|
344 |
+
"output_type": "stream",
|
345 |
+
"text": [
|
346 |
+
"\n",
|
347 |
+
"VALIDATION:\n",
|
348 |
+
"...\n",
|
349 |
+
" | NCRR@10 | NDCG@10 | Recall@10 | Time (s)\n",
|
350 |
+
"------- + ------- + ------- + --------- + --------\n",
|
351 |
+
"BPR | 0.0377 | 0.0413 | 0.0468 | 2.3963\n",
|
352 |
+
"WBPR | 0.0297 | 0.0333 | 0.0399 | 2.3315\n",
|
353 |
+
"MF | 0.0040 | 0.0043 | 0.0042 | 2.3616\n",
|
354 |
+
"WMF | 0.0489 | 0.0541 | 0.0632 | 12.0190\n",
|
355 |
+
"NeuMF | 0.0013 | 0.0014 | 0.0015 | 18.6082\n",
|
356 |
+
"VAECF | 0.0347 | 0.0383 | 0.0445 | 3.6877\n",
|
357 |
+
"CVAECF | 0.0545 | 0.0615 | 0.0739 | 5.5564\n",
|
358 |
+
"BiVAECF | 0.0002 | 0.0002 | 0.0002 | 2.2606\n",
|
359 |
+
"\n",
|
360 |
+
"TEST:\n",
|
361 |
+
"...\n",
|
362 |
+
" | NCRR@10 | NDCG@10 | Recall@10 | Train (s) | Test (s)\n",
|
363 |
+
"------- + ------- + ------- + --------- + --------- + --------\n",
|
364 |
+
"BPR | 0.0425 | 0.0456 | 0.0502 | 1.9605 | 2.5325\n",
|
365 |
+
"WBPR | 0.0332 | 0.0365 | 0.0422 | 2.0041 | 2.5546\n",
|
366 |
+
"MF | 0.0033 | 0.0035 | 0.0034 | 0.4536 | 2.5634\n",
|
367 |
+
"WMF | 0.0533 | 0.0583 | 0.0669 | 70.6555 | 12.4469\n",
|
368 |
+
"NeuMF | 0.0009 | 0.0011 | 0.0014 | 46.3940 | 19.4710\n",
|
369 |
+
"VAECF | 0.0401 | 0.0427 | 0.0469 | 6.0933 | 3.8909\n",
|
370 |
+
"CVAECF | 0.0601 | 0.0661 | 0.0770 | 91.9570 | 5.7691\n",
|
371 |
+
"BiVAECF | 0.0005 | 0.0005 | 0.0005 | 103.3335 | 2.5094\n",
|
372 |
+
"\n"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"name": "stderr",
|
377 |
+
"output_type": "stream",
|
378 |
+
"text": [
|
379 |
+
"\n"
|
380 |
+
]
|
381 |
+
}
|
382 |
+
],
|
383 |
+
"source": [
|
384 |
+
"import cornac\n",
|
385 |
+
"from cornac.eval_methods import RatioSplit\n",
|
386 |
+
"from cornac.models import BPR, MF, NeuMF, VAECF, CVAECF, BiVAECF, LightGCN, WBPR, WMF\n",
|
387 |
+
"from cornac.metrics import NCRR\n",
|
388 |
+
"from cornac.data import GraphModality\n",
|
389 |
+
"import pandas as pd\n",
|
390 |
+
"\n",
|
391 |
+
"# Assume data is a Cornac dataset object\n",
|
392 |
+
"# data = cornac.data.Dataset.from_uir(your_data)\n",
|
393 |
+
"\n",
|
394 |
+
"# Model parameters\n",
|
395 |
+
"LATENT_DIM = 50\n",
|
396 |
+
"ENCODER_DIMS = [20]\n",
|
397 |
+
"ACT_FUNC = \"tanh\"\n",
|
398 |
+
"LIKELIHOOD = \"gaus\"\n",
|
399 |
+
"NUM_EPOCHS = 5\n",
|
400 |
+
"BATCH_SIZE = 128\n",
|
401 |
+
"LEARNING_RATE = 0.01\n",
|
402 |
+
"\n",
|
403 |
+
"SEED=4567\n",
|
404 |
+
"VERBOSE=True\n",
|
405 |
+
"\n",
|
406 |
+
"df = pd.read_csv('../data/rating_final.csv')\n",
|
407 |
+
"data_list = df.values.tolist()\n",
|
408 |
+
"\n",
|
409 |
+
"eval_metrics = [\n",
|
410 |
+
" cornac.metrics.Recall(k=10),\n",
|
411 |
+
" cornac.metrics.NDCG(k=10),\n",
|
412 |
+
" cornac.metrics.NCRR(k=10),\n",
|
413 |
+
"]\n",
|
414 |
+
"\n",
|
415 |
+
"user_graph_modality = GraphModality(data=graph_modality_list)\n",
|
416 |
+
"\n",
|
417 |
+
"# Split the data\n",
|
418 |
+
"ratio_split = RatioSplit(data=data_list, val_size=0.2, test_size=0.2, \n",
|
419 |
+
" user_graph=user_graph_modality,\n",
|
420 |
+
" exclude_unknowns=True, seed=SEED, verbose=True)\n",
|
421 |
+
"\n",
|
422 |
+
"# Define models\n",
|
423 |
+
"models = [\n",
|
424 |
+
" BPR(k=50, learning_rate=0.01, lambda_reg=0.01, max_iter=100),\n",
|
425 |
+
" WBPR(k=50, max_iter=100, learning_rate=0.001, lambda_reg=0.01, verbose=True),\n",
|
426 |
+
" MF(k=50, learning_rate=0.01, lambda_reg=0.01, max_iter=100),\n",
|
427 |
+
" WMF(k=50, max_iter=155, a=1.0, b=0.1, learning_rate=0.00555, lambda_u=0.0155, lambda_v=0.0155,\n",
|
428 |
+
" verbose=VERBOSE, seed=SEED),\n",
|
429 |
+
" NeuMF(num_factors=50, layers=(64, 64, 32, 16), act_fn='relu', reg=0.01, num_epochs=5, \n",
|
430 |
+
" batch_size=128, num_neg=4, lr=0.01, learner='adam', trainable=True, verbose=True, seed=SEED),\n",
|
431 |
+
" VAECF(k=50, autoencoder_structure=[20], act_fn='tanh', likelihood='pois', n_epochs=5, batch_size=128),\n",
|
432 |
+
" # LightGCN(seed=SEED,emb_size=64,num_epochs=5,num_layers=3,early_stopping={\"min_delta\": 1e-4, \"patience\": 50},batch_size=128,\n",
|
433 |
+
" # learning_rate=0.01,lambda_reg=0.01,verbose=True),\n",
|
434 |
+
" CVAECF(z_dim=50,h_dim=20,autoencoder_structure=[40],learning_rate=0.01,n_epochs = 50,batch_size = 128,seed = SEED),\n",
|
435 |
+
" BiVAECF(k=LATENT_DIM,encoder_structure=ENCODER_DIMS,act_fn=ACT_FUNC,likelihood=LIKELIHOOD,n_epochs=50,batch_size=BATCH_SIZE,\n",
|
436 |
+
" learning_rate=LEARNING_RATE,seed=SEED,trainable = True,use_gpu=True,verbose=True)\n",
|
437 |
+
"]\n",
|
438 |
+
"\n",
|
439 |
+
"# Count the total number of unique users and unique businesses\n",
|
440 |
+
"num_users = df['user_id'].nunique()\n",
|
441 |
+
"num_businesses = df['business_id'].nunique()\n",
|
442 |
+
"\n",
|
443 |
+
"# Calculate the total number of possible ratings\n",
|
444 |
+
"total_possible_ratings = num_users * num_businesses\n",
|
445 |
+
"\n",
|
446 |
+
"# Count the actual number of ratings in the dataset\n",
|
447 |
+
"num_ratings = len(df)\n",
|
448 |
+
"\n",
|
449 |
+
"# Calculate the sparsity of the data\n",
|
450 |
+
"sparsity = 1 - (num_ratings / total_possible_ratings)\n",
|
451 |
+
"\n",
|
452 |
+
"print(\"Total number of users:\", num_users)\n",
|
453 |
+
"print(\"Total number of restaurants:\", num_businesses)\n",
|
454 |
+
"print(\"Total possible ratings:\", total_possible_ratings)\n",
|
455 |
+
"print(\"Actual number of ratings:\", num_ratings)\n",
|
456 |
+
"print(\"Sparsity of the data:\", sparsity * 100)\n",
|
457 |
+
"\n",
|
458 |
+
"\n",
|
459 |
+
"# Evaluate models\n",
|
460 |
+
"cornac.Experiment(eval_method=ratio_split, models=models, metrics=eval_metrics, verbose=True).run()\n"
|
461 |
+
]
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"cell_type": "code",
|
465 |
+
"execution_count": null,
|
466 |
+
"id": "e44e15b4-1127-4048-b429-895a1382ddfb",
|
467 |
+
"metadata": {},
|
468 |
+
"outputs": [],
|
469 |
+
"source": []
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"cell_type": "code",
|
473 |
+
"execution_count": null,
|
474 |
+
"id": "91efdbb7-6e6c-491a-8ca3-5812429807fe",
|
475 |
+
"metadata": {},
|
476 |
+
"outputs": [],
|
477 |
+
"source": []
|
478 |
+
}
|
479 |
+
],
|
480 |
+
"metadata": {
|
481 |
+
"kernelspec": {
|
482 |
+
"display_name": "Python 3 (ipykernel)",
|
483 |
+
"language": "python",
|
484 |
+
"name": "python3"
|
485 |
+
},
|
486 |
+
"language_info": {
|
487 |
+
"codemirror_mode": {
|
488 |
+
"name": "ipython",
|
489 |
+
"version": 3
|
490 |
+
},
|
491 |
+
"file_extension": ".py",
|
492 |
+
"mimetype": "text/x-python",
|
493 |
+
"name": "python",
|
494 |
+
"nbconvert_exporter": "python",
|
495 |
+
"pygments_lexer": "ipython3",
|
496 |
+
"version": "3.11.0"
|
497 |
+
}
|
498 |
+
},
|
499 |
+
"nbformat": 4,
|
500 |
+
"nbformat_minor": 5
|
501 |
+
}
|