from transformers import LEDTokenizer, LEDForConditionalGeneration import torch import re tokenizer = LEDTokenizer.from_pretrained("patrickvonplaten/led-large-16384-pubmed") model = LEDForConditionalGeneration.from_pretrained("patrickvonplaten/led-large-16384-pubmed").to("cuda").half() import gradio as gr import os import docx2txt tokenizer = LEDTokenizer.from_pretrained("patrickvonplaten/led-large-16384-pubmed") model = LEDForConditionalGeneration.from_pretrained("patrickvonplaten/led-large-16384-pubmed", return_dict_in_generate=True).to("cuda") def summarize(text_file): file_extension = os.path.splitext(text_file.name)[1] if file_extension == ".txt": # Load text from a txt file with open(text_file.name, "r", encoding="utf-8") as f: text = f.read() elif file_extension == ".docx": # Load text from a Word file text = docx2txt.process(text_file.name) else: raise ValueError(f"Unsupported file type: {file_extension}") input_ids = tokenizer(text, return_tensors="pt").input_ids.to("cuda") global_attention_mask = torch.zeros_like(input_ids) # set global_attention_mask on first token global_attention_mask[:, 0] = 1 sequences = model.generate(input_ids, global_attention_mask=global_attention_mask).sequences summary = tokenizer.batch_decode(sequences)[0] return text, summary iface = gr.Interface( fn=summarize, inputs=gr.inputs.File(label="Upload a txt file or a Word file for the input text"), outputs=[gr.outputs.Textbox(label="Original text"), gr.outputs.Textbox(label="Summary")], title="Academic Paper Summarization Demo", description="Upload a txt file or a Word file for the input text. Get a summary generated by a small T5 model from Hugging Face.", ) iface.launch()