Spaces:
Sleeping
Sleeping
Edward Baker
commited on
Commit
•
07cb201
1
Parent(s):
d6b5ce1
updating with proper gradio
Browse files
app.py
CHANGED
@@ -1,7 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
iface
|
7 |
-
iface.launch()
|
|
|
1 |
+
from transformers import LEDTokenizer, LEDForConditionalGeneration
|
2 |
+
import torch
|
3 |
+
import re
|
4 |
+
tokenizer = LEDTokenizer.from_pretrained("patrickvonplaten/led-large-16384-pubmed")
|
5 |
+
model = LEDForConditionalGeneration.from_pretrained("patrickvonplaten/led-large-16384-pubmed").to("cuda").half()
|
6 |
+
|
7 |
import gradio as gr
|
8 |
+
import os
|
9 |
+
import docx2txt
|
10 |
+
|
11 |
+
|
12 |
+
tokenizer = LEDTokenizer.from_pretrained("patrickvonplaten/led-large-16384-pubmed")
|
13 |
+
model = LEDForConditionalGeneration.from_pretrained("patrickvonplaten/led-large-16384-pubmed", return_dict_in_generate=True).to("cuda")
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
def summarize(text_file):
|
18 |
+
file_extension = os.path.splitext(text_file.name)[1]
|
19 |
+
if file_extension == ".txt":
|
20 |
+
# Load text from a txt file
|
21 |
+
with open(text_file.name, "r", encoding="utf-8") as f:
|
22 |
+
text = f.read()
|
23 |
+
elif file_extension == ".docx":
|
24 |
+
# Load text from a Word file
|
25 |
+
text = docx2txt.process(text_file.name)
|
26 |
+
else:
|
27 |
+
raise ValueError(f"Unsupported file type: {file_extension}")
|
28 |
+
|
29 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids.to("cuda")
|
30 |
+
global_attention_mask = torch.zeros_like(input_ids)
|
31 |
+
# set global_attention_mask on first token
|
32 |
+
global_attention_mask[:, 0] = 1
|
33 |
+
|
34 |
+
sequences = model.generate(input_ids, global_attention_mask=global_attention_mask).sequences
|
35 |
+
|
36 |
+
summary = tokenizer.batch_decode(sequences)[0]
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
return text, summary
|
41 |
+
|
42 |
+
|
43 |
|
44 |
+
iface = gr.Interface(
|
45 |
+
fn=summarize,
|
46 |
+
inputs=gr.inputs.File(label="Upload a txt file or a Word file for the input text"),
|
47 |
+
outputs=[gr.outputs.Textbox(label="Original text"), gr.outputs.Textbox(label="Summary")],
|
48 |
+
title="Academic Paper Summarization Demo",
|
49 |
+
description="Upload a txt file or a Word file for the input text. Get a summary generated by a small T5 model from Hugging Face.",
|
50 |
+
)
|
51 |
|
52 |
+
iface.launch()
|
|