File size: 1,576 Bytes
b481772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import streamlit as st
import time

from huggingface_sb3 import load_from_hub

from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_atari_env
from stable_baselines3.common.vec_env import VecFrameStack

from stable_baselines3.common.env_util import make_atari_env

st.title("Atari Environments Live Model")

# @st.cache This is not cachable :(
def load_env(env_name):
    env = make_atari_env(env_name, n_envs=1)
    env = VecFrameStack(env, n_stack=4)
    return env


# @st.cache This is not cachable :(
def load_model(env_name):
    custom_objects = {
        "learning_rate": 0.0,
        "lr_schedule": lambda _: 0.0,
        "clip_range": lambda _: 0.0,
    }

    checkpoint = load_from_hub(
        f"ThomasSimonini/ppo-{env_name}",
        f"ppo-{env_name}.zip",
    )

    model = PPO.load(checkpoint, custom_objects=custom_objects)

    return model


env_name = st.selectbox(
    "Select environment",
    (
        "SpaceInvadersNoFrameskip-v4",
        "PongNoFrameskip-v4",
        "SeaquestNoFrameskip-v4",
        "QbertNoFrameskip-v4",
    ),
)

num_episodes = st.slider("Number of Episodes", 1, 20, 5)
env = load_env(env_name)
model = load_model(env_name)

obs = env.reset()

with st.empty():
    for i in range(num_episodes):
        obs = env.reset()
        done = False
        while not done:
            frame = env.render(mode="rgb_array")
            im = st.image(frame, width=400)
            action, _states = model.predict(obs)
            obs, reward, done, info = env.step([action])

            time.sleep(0.1)