# Import necessary libraries from transformers import MusicgenForConditionalGeneration from transformers import AutoProcessor import scipy import streamlit as st # Set a random seed for reproducibility import torch torch.manual_seed(2912) # Configure the Streamlit app with a custom title and icon st.set_page_config( page_title="Plant Orchestra", page_icon="🎵" ) # Initialize the model for generating music @st.cache_resource def initialise_model(): """ Initialize the model for generating music using Hugging Face Transformers. This function loads a pre-trained processor and model from the "facebook/musicgen-small" checkpoint. It is wrapped in a Streamlit cache, ensuring efficient resource management for repeated usage of the model within the application. Returns: Tuple[Optional[AutoProcessor], Optional[MusicgenForConditionalGeneration]]: A tuple containing the processor and model if initialization is successful. If an error occurs during initialization, the function returns None for both elements of the tuple. Example: processor, model = initialise_model() if processor is not None and model is not None: # Model is successfully initialized, and you can use it for music generation. pass else: # Handle initialization error. pass """ try: # Load the processor and model from the pretrained model checkpoint processor = AutoProcessor.from_pretrained("facebook/musicgen-small") model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") return processor, model except Exception as e: # Handle any errors that may occur during model initialization st.error(f"Error initializing the model: {str(e)}") return None, None # Call the 'initialise_model' function to set up the processor and model processor, model = initialise_model() # Generate audio with given prompt def generate_audio(processor, model, prompt): """ Generate audio based on a given prompt using a pre-trained model. This function takes a processor and model, which are responsible for processing the input and generating audio, and a user-provided prompt to create a musical composition. Args: processor (AutoProcessor): A pre-trained processor for text-to-sequence tasks. model (MusicgenForConditionalGeneration): A pre-trained model for generating music. prompt (str): The user-provided text prompt to guide music generation. Returns: Union[None, torch.Tensor]: If the audio generation is successful, it returns a tensor containing the generated audio. If an error occurs during generation, the function returns None. Example: processor, model = initialise_model() if processor is not None and model is not None: audio_data = generate_audio(processor, model, "Sunflower, temperature: 32.5 C, UV light intensity: 50%, Soil water level: 3cm/h") if audio_data is not None: # Use the generated audio for further processing or display. pass else: # Handle audio generation error. pass else: # Handle model initialization error. pass """ if processor is not None and model is not None: try: # Prepare the input for the model by tokenizing and converting the text to tensors. inputs = processor( text=[prompt], padding=True, return_tensors="pt", ) # Generate audio based on the processed input using the pre-trained model. audio_values = model.generate( **inputs.to("cpu"), # Ensure computation on the CPU do_sample=True, # Enable sampling for creative output guidance_scale=3, # Adjust the guidance scale (you can customize) max_new_tokens=256, # Limit the length of generated audio (you can customize) ) return audio_values except Exception as e: # Handle any exceptions that may occur during audio generation. st.error(f"Error generating audio: {str(e)}") return None # Save audio file with scipy def save_file(model, audio_values, filename): """ Save audio data as a WAV file using the SciPy library. Args: model: The pre-trained model used for audio generation. audio_values (torch.Tensor): The tensor containing the generated audio data. filename (str): The desired filename for the saved WAV file. Returns: None Example: save_file(model, audio_data, "generated_audio.wav") """ # Get the sampling rate from the model's configuration sampling_rate = model.config.audio_encoder.sampling_rate # Write the audio data to a WAV file with the specified filename scipy.io.wavfile.write(filename, rate=sampling_rate, data=audio_values[0, 0].cpu().numpy()) # Main Code st.title("Plant Orchestra 🌿") st.markdown("Generate music based on your own terrarium plants.") prompt = st.text_input(label='User input:', value='baby tears') if st.button("Generate Music"): if processor is not None and model is not None: with st.spinner("Generating audio..."): results = generate_audio(processor, model, prompt) if results is not None: sampling_rate = model.config.audio_encoder.sampling_rate st.write("Listen to the generated music:") st.audio(sample_rate=sampling_rate, data=results[0, 0].cpu().numpy(), format="audio/wav") # Sidebar: How-to-use and Samples st.sidebar.header("How to Use:") st.sidebar.write("1. Enter a plant and condition (optional) in the text input. E.g. moss, 30C") st.sidebar.write("2. Click the 'Generate Music' button to create music based on the provided input.") st.sidebar.write("3. You can listen to the generated music and download it.") st.sidebar.write() st.sidebar.header('Samples 🎵') st.sidebar.write('Holland moss') st.sidebar.audio('sound/holland_moss.wav') st.sidebar.write('Nerve plant') st.sidebar.audio('sound/nerve_plant.wav') st.sidebar.write('Artillery plant') st.sidebar.audio('sound/artillery_plant.wav') st.sidebar.write('Malayan moss') st.sidebar.audio('sound/malayan_moss.wav') st.sidebar.write('Pilea') st.sidebar.audio('sound/pilea.wav') st.sidebar.write('Hydrocotyle tripartita') st.sidebar.audio('sound/hydrocotyle_tripartita.wav') st.sidebar.write('Oak leaf fig') st.sidebar.audio('sound/oak_leaf_fig.wav') # Footer st.markdown('##') st.markdown("---") st.markdown("Created with ❤️ by HS2912 W4 Group 2")