import streamlit as st import requests import requests from pytube import YouTube import os from twelvelabs.models.task import Task # Streamlit interface setup st.title('Video Summary Interface') from twelvelabs import TwelveLabs client = TwelveLabs(api_key=os.environ.get('TL_API_KEY')) # Creating tabs, tab1, tab2, tab3, tab4, tab5 = st.tabs(["Project Description", "Video Uploader", "Video Indexer", "Video Prompt", "Unique Value Add"]) with tab1: st.header("Project Description") st.write("Here you can describe the project in detail.") image_path = 'data/data_projectflow.png' # Display the image st.image(image_path, caption='Project Flow Diagram') # Add more components as needed with tab2: # Function to download YouTube video def download_youtube_video(url): yt = YouTube(url) stream = yt.streams.filter(file_extension='mp4').first() video = stream.download() return video st.title('Video Upload and Processing Interface') # Setup your Twelve Labs client # Assuming 'client' is set up here (use your actual client initialization) # client = TwelveLabsClient(api_key="your_api_key") # Container for video input with st.container(): st.header("Video Input") video_file = st.file_uploader("Upload a video file", type=["mp4", "avi"]) youtube_url = st.text_input("Or paste a YouTube URL here:") # Container for video processing output with st.container(): st.header("Video Processing") if st.button("Process Video"): if video_file is not None: video_path = video_file.name with open(video_path, mode='wb') as f: f.write(video_file.getbuffer()) elif youtube_url: video_path = download_youtube_video(youtube_url) else: st.warning("Please upload a video file or enter a YouTube URL.") st.stop() print(f"Uploading {video_path}") task = client.task.create(index_id="", file=video_path, language="en") st.success(f"Task id={task.id}") # Optional: Monitor the video indexing process def on_task_update(task: Task): st.write(f"Status={task.status}") task.wait_for_done(callback=on_task_update) if task.status != "ready": st.error(f"Indexing failed with status {task.status}") else: st.success(f"Uploaded {video_path}. The unique identifier of your video is {task.video_id}.") with tab3: st.header("Video Indexer") st.write("Information and controls related to the Scrum TruEra Assistants API.") # Integration and API controls could be managed here with tab4: st.header("Video Prompt") st.write("Information and controls related to the Scrum TruEra Assistants API.") # Input for modifying the prompt prompt = st.text_input("Enter your prompt:", "list the top 4 job interview mistakes and how to improve") # Slider to adjust the number in the prompt number = st.slider("Select the number of top mistakes:", min_value=1, max_value=10, value=4) # Update the prompt with the chosen number updated_prompt = prompt.replace("4", str(number)) # Button to send the request if st.button("Summarize Video"): BASE_URL = "https://api.twelvelabs.io/v1.2" api_key = "tlk_3CPMVGM0ZPTKNT2TKQ3Y62TA7ZY9" data = { "video_id": "6636cf7fd1cd5a287c957cf5", "type": "summary", "prompt": updated_prompt } # Send the request response = requests.post(f"{BASE_URL}/summarize", json=data, headers={"x-api-key": api_key}) # Check if the response is successful if response.status_code == 200: st.text_area("Summary:", response.json()['summary'], height=300) else: st.error("Failed to fetch summary: " + response.text) # Run this script using the following command: # streamlit run your_script_name.py with tab5: st.header("Unique Value Add") st.write("Information and controls related to the Scrum TruEra Assistants API.") # Integration and API controls could be managed here