eaglelandsonce
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -158,56 +158,6 @@ result = simulator.run(compiled_circuit, shots=1024).result()
|
|
158 |
# Retrieve and print the counts
|
159 |
counts = result.get_counts()
|
160 |
print(counts)
|
161 |
-
""",
|
162 |
-
"9. Genetic Variant Interaction": """
|
163 |
-
from qiskit import QuantumCircuit, Aer
|
164 |
-
from qiskit_aer import AerSimulator
|
165 |
-
|
166 |
-
# Genetic variants as entangled qubits
|
167 |
-
qc = QuantumCircuit(2, 2)
|
168 |
-
qc.h(0) # Variant 1 in superposition
|
169 |
-
qc.cx(0, 1) # Entangle with Variant 2
|
170 |
-
qc.measure([0, 1], [0, 1])
|
171 |
-
|
172 |
-
simulator = AerSimulator()
|
173 |
-
compiled_circuit = transpile(qc, simulator)
|
174 |
-
result = simulator.run(compiled_circuit, shots=1024).result()
|
175 |
-
counts = result.get_counts()
|
176 |
-
print(counts)
|
177 |
-
""",
|
178 |
-
"10. DNA Alignment Scoring": """
|
179 |
-
from qiskit import QuantumCircuit, Aer
|
180 |
-
from qiskit_aer import AerSimulator
|
181 |
-
|
182 |
-
# Create a Quantum Circuit for DNA alignment
|
183 |
-
qc = QuantumCircuit(3, 3)
|
184 |
-
|
185 |
-
# Simulate possible alignments with superposition
|
186 |
-
qc.h([0, 1, 2]) # 3 alignments in parallel
|
187 |
-
qc.measure([0, 1, 2], [0, 1, 2])
|
188 |
-
|
189 |
-
simulator = AerSimulator()
|
190 |
-
compiled_circuit = transpile(qc, simulator)
|
191 |
-
result = simulator.run(compiled_circuit, shots=1024).result()
|
192 |
-
counts = result.get_counts()
|
193 |
-
print(counts)
|
194 |
-
""",
|
195 |
-
"11. Protein Folding Simulation with QAOA": """
|
196 |
-
from qiskit import Aer, QuantumCircuit
|
197 |
-
from qiskit.algorithms.optimizers import COBYLA
|
198 |
-
from qiskit_aer import AerSimulator
|
199 |
-
from qiskit.algorithms.minimum_eigensolvers import QAOA
|
200 |
-
from qiskit.circuit.library import TwoLocal
|
201 |
-
|
202 |
-
# Build a QAOA circuit for protein folding
|
203 |
-
p = 1
|
204 |
-
ansatz = TwoLocal(2, "ry", "cz", reps=p)
|
205 |
-
qaoa = QAOA(ansatz=ansatz, optimizer=COBYLA())
|
206 |
-
|
207 |
-
# Simulate energy minimization
|
208 |
-
simulator = AerSimulator()
|
209 |
-
qaoa_result = qaoa.compute_minimum_eigenvalue(operator=None)
|
210 |
-
print(qaoa_result)
|
211 |
"""
|
212 |
}
|
213 |
|
|
|
158 |
# Retrieve and print the counts
|
159 |
counts = result.get_counts()
|
160 |
print(counts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
"""
|
162 |
}
|
163 |
|