eaglelandsonce commited on
Commit
00249c9
·
verified ·
1 Parent(s): f8e7df2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -50
app.py CHANGED
@@ -158,56 +158,6 @@ result = simulator.run(compiled_circuit, shots=1024).result()
158
  # Retrieve and print the counts
159
  counts = result.get_counts()
160
  print(counts)
161
- """,
162
- "9. Genetic Variant Interaction": """
163
- from qiskit import QuantumCircuit, Aer
164
- from qiskit_aer import AerSimulator
165
-
166
- # Genetic variants as entangled qubits
167
- qc = QuantumCircuit(2, 2)
168
- qc.h(0) # Variant 1 in superposition
169
- qc.cx(0, 1) # Entangle with Variant 2
170
- qc.measure([0, 1], [0, 1])
171
-
172
- simulator = AerSimulator()
173
- compiled_circuit = transpile(qc, simulator)
174
- result = simulator.run(compiled_circuit, shots=1024).result()
175
- counts = result.get_counts()
176
- print(counts)
177
- """,
178
- "10. DNA Alignment Scoring": """
179
- from qiskit import QuantumCircuit, Aer
180
- from qiskit_aer import AerSimulator
181
-
182
- # Create a Quantum Circuit for DNA alignment
183
- qc = QuantumCircuit(3, 3)
184
-
185
- # Simulate possible alignments with superposition
186
- qc.h([0, 1, 2]) # 3 alignments in parallel
187
- qc.measure([0, 1, 2], [0, 1, 2])
188
-
189
- simulator = AerSimulator()
190
- compiled_circuit = transpile(qc, simulator)
191
- result = simulator.run(compiled_circuit, shots=1024).result()
192
- counts = result.get_counts()
193
- print(counts)
194
- """,
195
- "11. Protein Folding Simulation with QAOA": """
196
- from qiskit import Aer, QuantumCircuit
197
- from qiskit.algorithms.optimizers import COBYLA
198
- from qiskit_aer import AerSimulator
199
- from qiskit.algorithms.minimum_eigensolvers import QAOA
200
- from qiskit.circuit.library import TwoLocal
201
-
202
- # Build a QAOA circuit for protein folding
203
- p = 1
204
- ansatz = TwoLocal(2, "ry", "cz", reps=p)
205
- qaoa = QAOA(ansatz=ansatz, optimizer=COBYLA())
206
-
207
- # Simulate energy minimization
208
- simulator = AerSimulator()
209
- qaoa_result = qaoa.compute_minimum_eigenvalue(operator=None)
210
- print(qaoa_result)
211
  """
212
  }
213
 
 
158
  # Retrieve and print the counts
159
  counts = result.get_counts()
160
  print(counts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  """
162
  }
163