Spaces:
Paused
Paused
File size: 3,326 Bytes
ad6330a 1efd233 250a59f 27bcfa0 c1fc3a9 ad6330a 1efd233 c1fc3a9 3d4f4ef c1fc3a9 47e0177 4b29566 ad6330a 4b29566 a6d3ba4 4b29566 a6d3ba4 4b29566 c1fc3a9 b1c8b37 fa0d21c ad6330a c1fc3a9 ad6330a c1fc3a9 1a4a0d3 5debe34 bf6c5c6 1a4a0d3 32ccac4 1a4a0d3 5debe34 1a4a0d3 c1fc3a9 7e7282e 4b29566 c1fc3a9 4b29566 0d18b6e c1fc3a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import os
import gradio as gr
from utils import get_model_summary, install_flash_attn#, authenticate_hf
# Install required package
install_flash_attn()
# Create the Gradio Blocks interface
with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
with gr.Row():
with gr.Column():
textbox = gr.Textbox(label="Model Name", placeholder="Enter the model name here OR select an example below...", lines=1)
gr.Markdown("### Vision Models")
vision_examples = gr.Examples(
examples=[
["google/paligemma-3b-mix-224"],
["google/paligemma-3b-ft-refcoco-seg-224"],
["llava-hf/llava-v1.6-mistral-7b-hf"],
["xtuner/llava-phi-3-mini-hf"],
["xtuner/llava-llama-3-8b-v1_1-transformers"],
["vikhyatk/moondream2"],
["openbmb/MiniCPM-Llama3-V-2_5"],
["microsoft/Phi-3-vision-128k-instruct"],
["HuggingFaceM4/idefics2-8b-chatty"],
["microsoft/llava-med-v1.5-mistral-7b"]
],
inputs=textbox
)
gr.Markdown("### Other Models")
other_examples = gr.Examples(
examples=[
["NousResearch/Meta-Llama-3-8B-Instruct"],
["dwb2023/llama38binstruct_summarize"],
["dwb2023/llama38binstruct_summarize_v3"],
["dwb2023/llama38binstruct_summarize_v4"],
["dwb2023/mistral-7b-instruct-quantized"],
["mistralai/Mistral-7B-Instruct-v0.2"],
["mistralai/Mistral-7B-Instruct-v0.3"],
["google/gemma-7b"],
["microsoft/Phi-3-mini-4k-instruct"],
["meta-llama/Meta-Llama-3-8B"]
],
inputs=textbox
)
submit_button = gr.Button("Submit")
gr.Markdown("""
#### 🧠📖 Where to get started with Vision Language Models!!! 🔧🧩
- [Hugging Face overview of VLMs](https://huggingface.co/blog/vlms#overview-of-open-source-vision-language-models)
- [Blog Post on PaliGemma Model Capabilities and Use Cases](https://huggingface.co/blog/paligemma#model-capabilities)
Keep an eye on the evolution of the [Model Explorer from Google](https://ai.google.dev/edge/model-explorer#two_ways_to_use_model_explorer). It didn't work initially for some of the VLM "fusion" model types I was initially looking at, but certainly a great tool for the right model.
""")
with gr.Column():
output = gr.Textbox(label="Model Architecture", lines=20, placeholder="Model architecture will appear here...", show_copy_button=True)
error_output = gr.Textbox(label="Error", lines=10, placeholder="Exceptions will appear here...", show_copy_button=True)
def handle_click(model_name):
model_summary, error_message = get_model_summary(model_name)
return model_summary, error_message
submit_button.click(fn=handle_click, inputs=textbox, outputs=[output, error_output])
# Launch the interface
demo.launch()
|