import transformers transformers.utils.move_cache() import random import tempfile import time import gradio as gr import numpy as np import torch import math import re import sys from gradio import inputs from diffusers import ( AutoencoderKL, #UNet2DConditionModel, ControlNetModel, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, KDPM2DiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, UniPCMultistepScheduler, DEISMultistepScheduler, DDPMScheduler, DDIMScheduler, DPMSolverSDEScheduler, DPMSolverSinglestepScheduler, T2IAdapter, SASolverScheduler, EDMEulerScheduler, EDMDPMSolverMultistepScheduler, ConsistencyDecoderVAE, ) from modules.u_net_condition_modify import UNet2DConditionModel from modules.model_diffusers import ( StableDiffusionPipeline_finetune, StableDiffusionControlNetPipeline_finetune, StableDiffusionControlNetImg2ImgPipeline_finetune, StableDiffusionImg2ImgPipeline_finetune, StableDiffusionInpaintPipeline_finetune, StableDiffusionControlNetInpaintPipeline_finetune, ) from modules.attention_modify import AttnProcessor,IPAdapterAttnProcessor,AttnProcessor2_0,IPAdapterAttnProcessor2_0 from modules.model_k_diffusion import StableDiffusionPipeline from torchvision import transforms from transformers import CLIPTokenizer, CLIPTextModel,CLIPImageProcessor from PIL import Image,ImageOps, ImageChops from pathlib import Path from safetensors.torch import load_file import modules.safe as _ from modules.lora import LoRANetwork import os import cv2 from controlnet_aux import PidiNetDetector, HEDdetector,LineartAnimeDetector,LineartDetector,MLSDdetector,OpenposeDetector,MidasDetector,NormalBaeDetector,ContentShuffleDetector,ZoeDetector from transformers import pipeline from modules import samplers_extra_k_diffusion import gc import copy from modules.preprocessing_segmentation import preprocessing_segmentation import torch.nn.functional as F from modules.t2i_adapter import setup_model_t2i_adapter from diffusers.image_processor import IPAdapterMaskProcessor from typing import Callable, Dict, List, Optional, Union from insightface.app import FaceAnalysis from insightface.utils import face_align from diffusers.utils import load_image from transformers import ( CLIPImageProcessor, CLIPVisionModelWithProjection, ) embeddings_dict = dict() lora_dict = dict() lora_scale_dict = dict() # lora_dict = {'Not using Lora':None,} # lora_scale_dict = {'Not using Lora':1.0,} # lora_lst = ['Not using Lora'] lora_lst = ['Not using Lora'] formula = [ ['w = token_weight_martix * sigma * std(qk)',0], ['w = token_weight_martix * log(1 + sigma) * max(qk)',1], ['w = token_weight_martix * log(1 + sigma) * std(qk)',2], ['w = token_weight_martix * log(1 + sigma^2) * std(qk)',3], ] encoding_type ={ "Automatic111 Encoding": 0, "Long Prompt Encoding": 1, "Short Prompt Encoding": 2, } model_ip_adapter_lst = ['IP-Adapter','IP-Adapter VIT-G','IP-Adapter Light','IP-Adapter Light v1.1','IP-Adapter Face','IP-Adapter FaceID','IP-Adapter Plus','IP-Adapter Plus Face',"IP-Adapter Plus FaceID","IP-Adapter Plus FaceIDv2"] model_ip_adapter_type = { "IP-Adapter": "ip-adapter_sd15.bin", "IP-Adapter VIT-G": "ip-adapter_sd15_vit-G.bin", "IP-Adapter Light": "ip-adapter_sd15_light.bin", "IP-Adapter Light v1.1": "ip-adapter_sd15_light_v11.bin", "IP-Adapter Face":"ip-adapter-full-face_sd15.bin", "IP-Adapter FaceID":"ip-adapter-faceid_sd15.bin", "IP-Adapter Plus": "ip-adapter-plus_sd15.bin", "IP-Adapter Plus Face": "ip-adapter-plus-face_sd15.bin", "IP-Adapter Plus FaceID": "ip-adapter-faceid-plus_sd15.bin", "IP-Adapter Plus FaceIDv2": "ip-adapter-faceid-plusv2_sd15.bin", } controlnet_lst = ["Canny","Depth","Openpose","Soft Edge","Lineart","Lineart (anime)","Scribble","MLSD","Semantic Segmentation","Normal Map","Shuffle","Instruct Pix2Pix"] adapter_lst = ["Canny","Sketch","Color","Depth","Openpose","Semantic Segmentation","Zoedepth"] controlnet_type ={ "Canny": "lllyasviel/control_v11p_sd15_canny", "Depth": "lllyasviel/control_v11f1p_sd15_depth", "Openpose": "lllyasviel/control_v11p_sd15_openpose", "Soft Edge": "lllyasviel/control_v11p_sd15_softedge", "Lineart":"ControlNet-1-1-preview/control_v11p_sd15_lineart", "Lineart (anime)":"lllyasviel/control_v11p_sd15s2_lineart_anime", "Scribble":"lllyasviel/control_v11p_sd15_scribble", "MLSD":"lllyasviel/control_v11p_sd15_mlsd", "Semantic Segmentation":"lllyasviel/control_v11p_sd15_seg", "Normal Map":"lllyasviel/control_v11p_sd15_normalbae", "Shuffle":"lllyasviel/control_v11e_sd15_shuffle", "Instruct Pix2Pix":"lllyasviel/control_v11e_sd15_ip2p", } adapter_type ={ "Canny": "TencentARC/t2iadapter_canny_sd15v2", "Sketch": "TencentARC/t2iadapter_sketch_sd15v2", "Color": "TencentARC/t2iadapter_color_sd14v1", "Depth": "TencentARC/t2iadapter_depth_sd15v2", "Openpose":"TencentARC/t2iadapter_openpose_sd14v1", "Semantic Segmentation":"TencentARC/t2iadapter_seg_sd14v1", "Zoedepth":"TencentARC/t2iadapter_zoedepth_sd15v1", } models_single_file = [] models = [ ("AbyssOrangeMix2", "Korakoe/AbyssOrangeMix2-HF"), ("BloodOrangeMix", "WarriorMama777/BloodOrangeMix"), ("ElyOrangeMix", "WarriorMama777/ElyOrangeMix"), ("Pastal Mix", "JamesFlare/pastel-mix"), ("Basil Mix", "nuigurumi/basil_mix"), ("Stable Diffusion v1.5", "runwayml/stable-diffusion-v1-5"), ("Stable Diffusion v2.1", "stabilityai/stable-diffusion-2-1-base"), ("Realistic Vision v1.4", "SG161222/Realistic_Vision_V1.4"), ("Dreamlike Photoreal v2.0", "dreamlike-art/dreamlike-photoreal-2.0"), ("Waifu-diffusion v1.4", "hakurei/waifu-diffusion"), ("Stable diffusion PixelArt v1.4", "Onodofthenorth/SD_PixelArt_SpriteSheet_Generator"), ("Anything v3", "Linaqruf/anything-v3.0"), ("Sketch style", "Cosk/sketchstyle-cutesexyrobutts"), ("Anything v5", "stablediffusionapi/anything-v5"), ("Counterfeit v2.5", "gsdf/Counterfeit-V2.5"), ("Edge of realism", "stablediffusionapi/edge-of-realism"), ("Photorealistic fuen", "claudfuen/photorealistic-fuen-v1"), ("Protogen x5.8 (Scifi-Anime)", "darkstorm2150/Protogen_x5.8_Official_Release"), ("Dreamlike Anime", "dreamlike-art/dreamlike-anime-1.0"), ("Something V2.2", "NoCrypt/SomethingV2_2"), ("Realistic Vision v3.0", "SG161222/Realistic_Vision_V3.0_VAE"), ("Noosphere v3.0", "digiplay/Noosphere_v3"), ("Beauty Fool v1.2", "digiplay/BeautyFool_v1.2VAE_pruned"), ("Prefix RealisticMix v1.0", "digiplay/PrefixRealisticMix_v1"), ("Prefix FantasyMix v1.0", "digiplay/PrefixFantasyMix_v1"), ("Unstable Diffusers YamerMIX v3.0", "digiplay/unstableDiffusersYamerMIX_v3"), ("GTA5 Artwork Diffusion", "ItsJayQz/GTA5_Artwork_Diffusion"), ("Open Journey", "prompthero/openjourney"), ("SoapMix2.5D v2.0", "digiplay/SoapMix2.5D_v2"), ("CoffeeMix v2.0", "digiplay/CoffeeMix_v2"), ("helloworld v3.0", "digiplay/helloworld_v3"), ("ARRealVX v1.1", "digiplay/ARRealVX1.1"), ("Fishmix v1.0", "digiplay/fishmix_other_v1"), ("DiamondCoalMix v2.0", "digiplay/DiamondCoalMix_v2_pruned_diffusers"), ("ISOMix v3.22", "digiplay/ISOmix_v3.22"), ("Pika v2", "digiplay/Pika_v2"), ("BluePencil v0.9b", "digiplay/bluePencil_v09b"), ("MeinaPastel v6", "Meina/MeinaPastel_V6"), ("Realistic Vision v4", "SG161222/Realistic_Vision_V4.0"), ("Revanimated v1.2.2", "stablediffusionapi/revanimated"), ("NeverEnding Dream v1.2.2", "Lykon/NeverEnding-Dream"), ("CetusMixCoda", "Stax124/CetusMixCoda"), ("NewMarsMix R11", "digiplay/NewMarsMix_R11"), ("Juggernaut Final", "digiplay/Juggernaut_final"), ("BlankCanvas v1.0", "digiplay/BlankCanvas_v1"), ("FumizukiMix v1.0", "digiplay/FumizukiMix_v1"), ("CampurSari v1.0", "digiplay/CampurSari_Gen1"), ("Realisian v1.0", "digiplay/Realisian_v5"), ("Real Epic Majic Revolution v1.0", "digiplay/RealEpicMajicRevolution_v1"), ("QuinceMix v2.0", "digiplay/quincemix_v2"), ("Counterfeit v3.0", "stablediffusionapi/counterfeit-v30"), ("MeinaMix v11.0", "Meina/MeinaMix_V11"), ("MeinaPastel V7.0", "Meina/MeinaPastel_V7"), ("Alter V3.0", "Meina/Alter_V3"), ("MeinaUnreal V5.0", "Meina/MeinaUnreal_V5"), ("MeinaHentai V5.0", "Meina/MeinaHentai_V5"), ("AnyOrangeMix Mint", "GraydientPlatformAPI/anyorange-mint"), ] #Name / link / True = single file , False = need config.json vae_link ={ "Vae ft MSE": "stabilityai/sd-vae-ft-mse", "Vae ft MSE original": "stabilityai/sd-vae-ft-mse-original/vae-ft-mse-840000-ema-pruned.safetensors", "Vae ft EMA": "stabilityai/sd-vae-ft-ema", "Vae ft EMA original": "stabilityai/sd-vae-ft-ema-original/vae-ft-ema-560000-ema-pruned.safetensors", "ClearVAE V2.1" : "digiplay/VAE/ClearVAE_V2.1.safetensors", "Blessed": "digiplay/VAE/blessed.vae.pt", "Color101VAE v1": "digiplay/VAE/color101VAE_v1.safetensors", "kl-f8-anime2": "digiplay/VAE/klF8Anime2VAE_klF8Anime2VAE.ckpt", "Mangled Merge": "digiplay/VAE/mangledMergeVAE_v10.pt", "Orangemix": "digiplay/VAE/orangemix.vae.pt", "Stable 780000": "digiplay/VAE/stable-780000.vae.pt", "CustomVAE Q6": "duongve/VAE/customvae_q6.safetensors", "Voidnoise VAE": "duongve/VAE/voidnoiseVAE_baseonR0829.safetensors", "Lastpiece Contrast": "duongve/VAE/lastpieceVAE_contrast.safetensors", "Lastpiece Brightness": "duongve/VAE/lastpieceVAE_brightness.safetensors", "Berry's Mix v1.0": "duongve/VAE/berrysMixVAE_v10.safetensors", "Async's VAE v1.0": "duongve/VAE/asyncsVAE_v10.safetensors", "WD-VAE v1.0": "duongve/VAE/wdVAE_v10.safetensors", "Nocturnal": "duongve/VAE/nocturnalVAE_.safetensors", "Apricots": "duongve/VAE/apricotsVAESeries_tensorQuantizerV10.safetensors", "Earth & Dusk v1.0": "duongve/VAE/earthDuskVAE_v10.safetensors", "HotaruVAE Anime v1.0": "duongve/VAE/hotaruvae_AnimeV10.safetensors", "HotaruVAE Real v1.0": "duongve/VAE/hotaruvae_RealV10.safetensors", "Consistency Decoder": "openai/consistency-decoder", } vae_single_file ={ "Vae ft MSE": False, "Vae ft MSE original": True, "Vae ft EMA": False, "Vae ft EMA original": True, "ClearVAE V2.1": True, "Blessed": True, "Color101VAE v1": True, "kl-f8-anime2": True, "Mangled Merge": True, "Orangemix": True, "Stable 780000": True, "CustomVAE Q6": True, "Voidnoise VAE": True, "Lastpiece Contrast": True, "Lastpiece Brightness": True, "Berry's Mix v1.0": True, "Async's VAE v1.0": True, "WD-VAE v1.0": True, "Nocturnal": True, "Apricots": True, "Earth & Dusk v1.0": True, "HotaruVAE Anime v1.0": True, "HotaruVAE Real v1.0": True, "Consistency Decoder": False, } vae_lst = [ "Default", "Vae ft MSE", "Vae ft MSE original", "Vae ft EMA", "Vae ft EMA original", "ClearVAE V2.1", "Blessed", "Color101VAE v1", "kl-f8-anime2", "Mangled Merge", "Orangemix", "Stable 780000", "CustomVAE Q6", "Voidnoise VAE", "Lastpiece Contrast", "Lastpiece Brightness", "Berry's Mix v1.0", "Async's VAE v1.0", "WD-VAE v1.0", "Nocturnal", "Apricots", "Earth & Dusk v1.0", "HotaruVAE Anime v1.0", "HotaruVAE Real v1.0", "Consistency Decoder", ] keep_vram = [ "Korakoe/AbyssOrangeMix2-HF", "WarriorMama777/BloodOrangeMix", "WarriorMama777/ElyOrangeMix", "JamesFlare/pastel-mix", "nuigurumi/basil_mix", "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1-base", "SG161222/Realistic_Vision_V1.4", "dreamlike-art/dreamlike-photoreal-2.0", "hakurei/waifu-diffusion", "Onodofthenorth/SD_PixelArt_SpriteSheet_Generator", "Linaqruf/anything-v3.0", "Cosk/sketchstyle-cutesexyrobutts", "stablediffusionapi/anything-v5", "gsdf/Counterfeit-V2.5", "stablediffusionapi/edge-of-realism", "claudfuen/photorealistic-fuen-v1", "darkstorm2150/Protogen_x5.8_Official_Release", "dreamlike-art/dreamlike-anime-1.0", "NoCrypt/SomethingV2_2", "SG161222/Realistic_Vision_V3.0_VAE", "digiplay/Noosphere_v3", "digiplay/BeautyFool_v1.2VAE_pruned", "digiplay/PrefixRealisticMix_v1", "digiplay/PrefixFantasyMix_v1", "digiplay/unstableDiffusersYamerMIX_v3", "ItsJayQz/GTA5_Artwork_Diffusion", "prompthero/openjourney", "digiplay/SoapMix2.5D_v2", "digiplay/CoffeeMix_v2", "digiplay/helloworld_v3", "digiplay/ARRealVX1.1", "digiplay/fishmix_other_v1", "digiplay/DiamondCoalMix_v2_pruned_diffusers", "digiplay/ISOmix_v3.22", "digiplay/Pika_v2", "digiplay/bluePencil_v09b", "Meina/MeinaPastel_V6", "SG161222/Realistic_Vision_V4.0", "stablediffusionapi/revanimated", "Lykon/NeverEnding-Dream", "Stax124/CetusMixCoda", "digiplay/NewMarsMix_R11", "digiplay/Juggernaut_final", "digiplay/BlankCanvas_v1", "digiplay/FumizukiMix_v1", "digiplay/CampurSari_Gen1", "digiplay/Realisian_v5", "digiplay/RealEpicMajicRevolution_v1", "stablediffusionapi/counterfeit-v30", "Meina/MeinaMix_V11", "Meina/MeinaPastel_V7", "Meina/Alter_V3", "Meina/MeinaUnreal_V5", "Meina/MeinaHentai_V5", "GraydientPlatformAPI/anyorange-mint", ] base_name, base_model = models[0] samplers_k_diffusion = [ ('Euler', 'sample_euler', {}), ('Euler a', 'sample_euler_ancestral', {"uses_ensd": True}), ('LMS', 'sample_lms', {}), ('LCM', samplers_extra_k_diffusion.sample_lcm, {"second_order": True}), ('Heun', 'sample_heun', {"second_order": True}), ('Heun++', samplers_extra_k_diffusion.sample_heunpp2, {"second_order": True}), ('DDPM', samplers_extra_k_diffusion.sample_ddpm, {"second_order": True}), ('DPM2', 'sample_dpm_2', {'discard_next_to_last_sigma': True}), ('DPM2 a', 'sample_dpm_2_ancestral', {'discard_next_to_last_sigma': True, "uses_ensd": True}), ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', {"uses_ensd": True, "second_order": True}), ('DPM++ 2M', 'sample_dpmpp_2m', {}), ('DPM++ SDE', 'sample_dpmpp_sde', {"second_order": True, "brownian_noise": True}), ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', {"brownian_noise": True}), ('DPM++ 3M SDE', 'sample_dpmpp_3m_sde', {'discard_next_to_last_sigma': True, "brownian_noise": True}), ('DPM fast (img-to-img)', 'sample_dpm_fast', {"uses_ensd": True}), ('DPM adaptive (img-to-img)', 'sample_dpm_adaptive', {"uses_ensd": True}), ('DPM++ 2M SDE Heun', 'sample_dpmpp_2m_sde', {"brownian_noise": True, "solver_type": "heun"}), ('Restart', samplers_extra_k_diffusion.restart_sampler, {"second_order": True}), ('Euler Karras', 'sample_euler', {'scheduler': 'karras'}), ('Euler a Karras', 'sample_euler_ancestral', {'scheduler': 'karras',"uses_ensd": True}), ('LMS Karras', 'sample_lms', {'scheduler': 'karras'}), ('LCM Karras', samplers_extra_k_diffusion.sample_lcm, {'scheduler': 'karras',"second_order": True}), ('Heun Karras', 'sample_heun', {'scheduler': 'karras',"second_order": True}), ('Heun++ Karras', samplers_extra_k_diffusion.sample_heunpp2, {'scheduler': 'karras',"second_order": True}), ('DDPM Karras', samplers_extra_k_diffusion.sample_ddpm, {'scheduler': 'karras', "second_order": True}), ('DPM2 Karras', 'sample_dpm_2', {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}), ('DPM2 a Karras', 'sample_dpm_2_ancestral', {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}), ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', {'scheduler': 'karras', "uses_ensd": True, "second_order": True}), ('DPM++ 2M Karras', 'sample_dpmpp_2m', {'scheduler': 'karras'}), ('DPM++ SDE Karras', 'sample_dpmpp_sde', {'scheduler': 'karras', "second_order": True, "brownian_noise": True}), ('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', {'scheduler': 'karras', "brownian_noise": True}), ('DPM++ 2M SDE Heun Karras', 'sample_dpmpp_2m_sde', {'scheduler': 'karras', "brownian_noise": True, "solver_type": "heun"}), ('DPM++ 3M SDE Karras', 'sample_dpmpp_3m_sde', {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "brownian_noise": True}), ('Restart Karras', samplers_extra_k_diffusion.restart_sampler, {'scheduler': 'karras', "second_order": True}), ('Euler Exponential', 'sample_euler', {'scheduler': 'exponential'}), ('Euler a Exponential', 'sample_euler_ancestral', {'scheduler': 'exponential',"uses_ensd": True}), ('LMS Exponential', 'sample_lms', {'scheduler': 'exponential'}), ('LCM Exponential', samplers_extra_k_diffusion.sample_lcm, {'scheduler': 'exponential',"second_order": True}), ('Heun Exponential', 'sample_heun', {'scheduler': 'exponential',"second_order": True}), ('Heun++ Exponential', samplers_extra_k_diffusion.sample_heunpp2, {'scheduler': 'exponential',"second_order": True}), ('DDPM Exponential', samplers_extra_k_diffusion.sample_ddpm, {'scheduler': 'exponential', "second_order": True}), ('DPM++ 2M Exponential', 'sample_dpmpp_2m', {'scheduler': 'exponential'}), ('DPM++ 2M SDE Exponential', 'sample_dpmpp_2m_sde', {'scheduler': 'exponential', "brownian_noise": True}), ('DPM++ 2M SDE Heun Exponential', 'sample_dpmpp_2m_sde', {'scheduler': 'exponential', "brownian_noise": True, "solver_type": "heun"}), ('DPM++ 3M SDE Exponential', 'sample_dpmpp_3m_sde', {'scheduler': 'exponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}), ('Restart Exponential', samplers_extra_k_diffusion.restart_sampler, {'scheduler': 'exponential', "second_order": True}), ('Euler Polyexponential', 'sample_euler', {'scheduler': 'polyexponential'}), ('Euler a Polyexponential', 'sample_euler_ancestral', {'scheduler': 'polyexponential',"uses_ensd": True}), ('LMS Polyexponential', 'sample_lms', {'scheduler': 'polyexponential'}), ('LCM Polyexponential', samplers_extra_k_diffusion.sample_lcm, {'scheduler': 'polyexponential',"second_order": True}), ('Heun Polyexponential', 'sample_heun', {'scheduler': 'polyexponential',"second_order": True}), ('Heun++ Polyexponential', samplers_extra_k_diffusion.sample_heunpp2, {'scheduler': 'polyexponential',"second_order": True}), ('DDPM Polyexponential', samplers_extra_k_diffusion.sample_ddpm, {'scheduler': 'polyexponential', "second_order": True}), ('DPM++ 2M Polyexponential', 'sample_dpmpp_2m', {'scheduler': 'polyexponential'}), ('DPM++ 2M SDE Heun Polyexponential', 'sample_dpmpp_2m_sde', {'scheduler': 'polyexponential', "brownian_noise": True, "solver_type": "heun"}), ('DPM++ 3M SDE Polyexponential', 'sample_dpmpp_3m_sde', {'scheduler': 'polyexponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}), ('Restart Polyexponential', samplers_extra_k_diffusion.restart_sampler, {'scheduler': 'polyexponential', "second_order": True}), ] #Add to sigma sp which library is missing '''class DEISMultistepScheduler_modify(DEISMultistepScheduler): def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor: """Constructs the noise schedule of Karras et al. (2022).""" sigma_min: float = in_sigmas[-1].item() sigma_max: float = in_sigmas[0].item() rho = 7.0 # 7.0 is the value used in the paper ramp = np.linspace(0, 1, num_inference_steps) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas def _sigma_to_t(self, sigma, log_sigmas): # get log sigma log_sigma = np.log(sigma) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low = log_sigmas[low_idx] high = log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = np.clip(w, 0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t''' samplers_diffusers = [ ('Euler a', lambda ddim_scheduler_config: EulerAncestralDiscreteScheduler.from_config(ddim_scheduler_config), {}), ('Euler', lambda ddim_scheduler_config: EulerDiscreteScheduler.from_config(ddim_scheduler_config), {}), #('EDM Euler', lambda ddim_scheduler_config: EDMEulerScheduler.from_config(ddim_scheduler_config), {}), ('LMS', lambda ddim_scheduler_config: LMSDiscreteScheduler.from_config(ddim_scheduler_config), {}), ('Heun',lambda ddim_scheduler_config: HeunDiscreteScheduler.from_config(ddim_scheduler_config), {}), ('DPM2',lambda ddim_scheduler_config: KDPM2DiscreteScheduler.from_config(ddim_scheduler_config), {}), ('DPM2 a',lambda ddim_scheduler_config: KDPM2AncestralDiscreteScheduler.from_config(ddim_scheduler_config), {}), ('DPM++ 2S a',lambda ddim_scheduler_config: DPMSolverSinglestepScheduler.from_config(ddim_scheduler_config), {}), ('DPM++ 2M',lambda ddim_scheduler_config: DPMSolverMultistepScheduler.from_config(ddim_scheduler_config), {}), #('EDM DPM++ 2M',lambda ddim_scheduler_config: EDMDPMSolverMultistepScheduler.from_config(ddim_scheduler_config), {}), ('DPM++ SDE',lambda ddim_scheduler_config: DPMSolverSDEScheduler.from_config(ddim_scheduler_config), {}), ('DPM++ 2M SDE',lambda ddim_scheduler_config: DPMSolverMultistepScheduler.from_config(ddim_scheduler_config,algorithm_type="sde-dpmsolver++"), {}), #('EDM DPM++ 2M SDE',lambda ddim_scheduler_config: EDMDPMSolverMultistepScheduler.from_config(ddim_scheduler_config,algorithm_type="sde-dpmsolver++"), {}), ('DEIS',lambda ddim_scheduler_config: DEISMultistepScheduler.from_config(ddim_scheduler_config), {}), ('UniPC Time Uniform 1',lambda ddim_scheduler_config: UniPCMultistepScheduler.from_config(ddim_scheduler_config,solver_type = "bh1"), {}), ('UniPC Time Uniform 2',lambda ddim_scheduler_config: UniPCMultistepScheduler.from_config(ddim_scheduler_config,solver_type = "bh2"), {}), ('SA-Solver',lambda ddim_scheduler_config: SASolverScheduler.from_config(ddim_scheduler_config), {}), ('Euler Karras', lambda ddim_scheduler_config: EulerDiscreteScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}), ('LMS Karras',lambda ddim_scheduler_config: LMSDiscreteScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}), ('Heun Karras',lambda ddim_scheduler_config: HeunDiscreteScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}), ('DPM2 Karras',lambda ddim_scheduler_config: KDPM2DiscreteScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}), ('DPM2 a Karras',lambda ddim_scheduler_config: KDPM2AncestralDiscreteScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}), ('DPM++ 2S a Karras',lambda ddim_scheduler_config: DPMSolverSinglestepScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}), ('DPM++ 2M Karras',lambda ddim_scheduler_config: DPMSolverMultistepScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}), ('DPM++ SDE Karras',lambda ddim_scheduler_config: DPMSolverSDEScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}), ('DPM++ 2M SDE Karras',lambda ddim_scheduler_config: DPMSolverMultistepScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True,algorithm_type="sde-dpmsolver++"), {}), ('DEIS Karras',lambda ddim_scheduler_config: DEISMultistepScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}), ('UniPC Time Uniform 1 Karras',lambda ddim_scheduler_config: UniPCMultistepScheduler.from_config(ddim_scheduler_config,solver_type = "bh1",use_karras_sigmas=True), {}), ('UniPC Time Uniform 2 Karras',lambda ddim_scheduler_config: UniPCMultistepScheduler.from_config(ddim_scheduler_config,solver_type = "bh2",use_karras_sigmas=True), {}), ('SA-Solver Karras',lambda ddim_scheduler_config: SASolverScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}), ] # samplers_diffusers = [ # ("DDIMScheduler", "diffusers.schedulers.DDIMScheduler", {}) # ("DDPMScheduler", "diffusers.schedulers.DDPMScheduler", {}) # ("DEISMultistepScheduler", "diffusers.schedulers.DEISMultistepScheduler", {}) # ] start_time = time.time() timeout = 360 scheduler = DDIMScheduler.from_pretrained( base_model, subfolder="scheduler", ) '''vae = AutoencoderKL.from_pretrained( "stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16 )''' vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=torch.float16, ) if vae is None: vae = AutoencoderKL.from_pretrained( "stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16, ) text_encoder = CLIPTextModel.from_pretrained( base_model, subfolder="text_encoder", torch_dtype=torch.float16, ) tokenizer = CLIPTokenizer.from_pretrained( base_model, subfolder="tokenizer", torch_dtype=torch.float16, ) unet = UNet2DConditionModel.from_pretrained( base_model, subfolder="unet", torch_dtype=torch.float16, ) feature_extract = CLIPImageProcessor.from_pretrained( base_model, subfolder="feature_extractor", ) pipe = StableDiffusionPipeline( text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, vae=vae, scheduler=scheduler, feature_extractor = feature_extract, ) if torch.cuda.is_available(): pipe = pipe.to("cuda") def get_model_list(): return models scheduler_cache ={ base_name: scheduler } te_cache = { base_name: text_encoder } vae_cache = { base_name: vae } unet_cache = { base_name: unet } lora_cache = { base_name: LoRANetwork(text_encoder, unet) } tokenizer_cache ={ base_name: tokenizer } feature_cache ={ base_name: feature_extract } controlnetmodel_cache ={ } adapter_cache ={ } vae_enhance_cache ={ } te_base_weight_length = text_encoder.get_input_embeddings().weight.data.shape[0] original_prepare_for_tokenization = tokenizer.prepare_for_tokenization current_model = base_name def setup_controlnet(name_control,device): global controlnet_type,controlnetmodel_cache if name_control not in controlnetmodel_cache: model_control = ControlNetModel.from_pretrained(name_control, torch_dtype=torch.float16).to(device) controlnetmodel_cache[name_control] = model_control return controlnetmodel_cache[name_control] def setup_adapter(adapter_sp,device): global model_ip_adapter_type,adapter_cache if adapter_sp not in adapter_cache: model_control = T2IAdapter.from_pretrained(adapter_sp, torch_dtype=torch.float16).to(device) adapter_cache[adapter_sp] = model_control return adapter_cache[adapter_sp] def setup_vae(model,vae_used = "Default"): global vae_link,vae_single_file vae_model = None if vae_used == "Default": vae_model = AutoencoderKL.from_pretrained(model,subfolder="vae",torch_dtype=torch.float16) elif vae_used == "Consistency Decoder": vae_model = ConsistencyDecoderVAE.from_pretrained(vae_link[vae_used], torch_dtype=torch.float16) else: if vae_single_file[vae_used]: vae_model = AutoencoderKL.from_single_file(vae_link[vae_used],torch_dtype=torch.float16) else: vae_model = AutoencoderKL.from_pretrained(vae_link[vae_used],torch_dtype=torch.float16) if vae_model is None: vae_model = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) return vae_model def setup_model(name,clip_skip, lora_group=None,diffuser_pipeline = False ,control_net_model = None,img_input = None,device = "cpu",mask_inpaiting = None,vae_used = "Default"): global current_model,vae_link,vae_single_file,models_single_file keys = [k[0] for k in models] model = models[keys.index(name)][1] if name not in unet_cache: if name not in models_single_file: try: vae_model = AutoencoderKL.from_pretrained(model,subfolder="vae",torch_dtype=torch.float16) except OSError: vae_model = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) try: unet = UNet2DConditionModel.from_pretrained(model, subfolder="unet", torch_dtype=torch.float16) except OSError: unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet", torch_dtype=torch.float16) try: text_encoder = CLIPTextModel.from_pretrained(model, subfolder="text_encoder", torch_dtype=torch.float16) except OSError: text_encoder = CLIPTextModel.from_pretrained(base_model, subfolder="text_encoder", torch_dtype=torch.float16) try: tokenizer = CLIPTokenizer.from_pretrained(model,subfolder="tokenizer",torch_dtype=torch.float16) except OSError: tokenizer = CLIPTokenizer.from_pretrained(base_model,subfolder="tokenizer",torch_dtype=torch.float16) try: scheduler = DDIMScheduler.from_pretrained(model,subfolder="scheduler") except OSError: scheduler = DDIMScheduler.from_pretrained(base_model,subfolder="scheduler") try: feature_extract = CLIPImageProcessor.from_pretrained(model,subfolder="feature_extractor") except OSError: feature_extract = CLIPImageProcessor.from_pretrained(base_model,subfolder="feature_extractor") else: pipe_get = StableDiffusionPipeline_finetune.from_single_file(model,safety_checker= None,requires_safety_checker = False,torch_dtype=torch.float16).to(device) vae_model = pipe_get.vae unet = pipe_get.unet text_encoder = pipe_get.text_encoder tokenizer = pipe_get.tokenizer scheduler = pipe_get.scheduler feature_extract = pipe_get.feature_extractor if pipe_get.feature_extractor is not None else CLIPImageProcessor.from_pretrained(base_model,subfolder="feature_extractor") del pipe_get # if vae_model is None: # vae_model = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) scheduler_cache[name] = scheduler unet_cache[name] = unet te_cache[name] = text_encoder vae_cache[name] = vae_model tokenizer_cache[name] = tokenizer feature_cache[name] = feature_extract #lora_cache[model] = LoRANetwork(text_encoder, unet) if vae_used != "Default" and vae_used not in vae_enhance_cache: vae_enhance_cache[vae_used] = setup_vae(model,vae_used) if current_model != name: #if current_model not in keep_vram: # offload current model unet_cache[current_model].to(device) te_cache[current_model].to(device) vae_cache[current_model].to(device) current_model = name local_te, local_unet,local_sche,local_vae,local_token,local_feature = copy.deepcopy(te_cache[name]), copy.deepcopy(unet_cache[name]),scheduler_cache[name],vae_cache[name], copy.deepcopy(tokenizer_cache[name]),feature_cache[name] if vae_used != "Default": local_vae = vae_enhance_cache[vae_used] if torch.cuda.is_available(): local_unet.to("cuda") local_te.to("cuda") local_vae.to("cuda") #local_unet.set_attn_processor(AttnProcessor()) #local_lora.reset() if diffuser_pipeline: if control_net_model is not None: if mask_inpaiting and img_input: pipe = StableDiffusionControlNetInpaintPipeline_finetune( vae= local_vae, text_encoder= local_te, tokenizer=local_token, unet=local_unet, controlnet = control_net_model, safety_checker= None, scheduler = local_sche, feature_extractor=local_feature, requires_safety_checker = False, ).to(device) elif img_input is not None: #pipe = StableDiffusionControlNetImg2ImgPipeline_finetune.from_pretrained(model,safety_checker = None,controlnet=control_net_model, torch_dtype=torch.float16).to(device) pipe = StableDiffusionControlNetImg2ImgPipeline_finetune( vae= local_vae, text_encoder= local_te, tokenizer=local_token, unet=local_unet, controlnet = control_net_model, safety_checker= None, scheduler = local_sche, feature_extractor=local_feature, requires_safety_checker = False, ).to(device) else: #pipe = StableDiffusionControlNetPipeline_finetune.from_pretrained(model,safety_checker = None,controlnet=control_net_model, torch_dtype=torch.float16).to(device) pipe = StableDiffusionControlNetPipeline_finetune( vae= local_vae, text_encoder= local_te, tokenizer=local_token, unet=local_unet, controlnet = control_net_model, scheduler = local_sche, safety_checker= None, feature_extractor=local_feature, requires_safety_checker = False, ).to(device) else: if mask_inpaiting and img_input: pipe = StableDiffusionInpaintPipeline_finetune( vae= local_vae, text_encoder= local_te, tokenizer=local_token, unet=local_unet, scheduler = local_sche, safety_checker= None, feature_extractor=local_feature, requires_safety_checker = False, ).to(device) elif img_input is not None: #pipe = StableDiffusionImg2ImgPipeline_finetune.from_pretrained(model,safety_checker = None, torch_dtype=torch.float16).to(device) pipe = StableDiffusionImg2ImgPipeline_finetune( vae= local_vae, text_encoder= local_te, tokenizer=local_token, unet=local_unet, scheduler = local_sche, safety_checker= None, feature_extractor=local_feature, requires_safety_checker = False, ).to(device) else: #pipe = StableDiffusionPipeline_finetune.from_pretrained(model,safety_checker = None, torch_dtype=torch.float16).to(device) pipe = StableDiffusionPipeline_finetune( vae= local_vae, text_encoder= local_te, tokenizer=local_token, unet=local_unet, scheduler = local_sche, safety_checker= None, feature_extractor=local_feature, requires_safety_checker = False, ).to(device) else: #global pipe #pipe.text_encoder, pipe.unet,pipe.scheduler,pipe.vae = local_te, local_unet,local_sche,local_vae pipe = StableDiffusionPipeline( text_encoder=local_te, tokenizer=local_token, unet=local_unet, vae=local_vae, scheduler=local_sche, feature_extractor=local_feature, ).to(device) #if lora_state is not None and lora_state != "": if lora_group is not None and len(lora_group) > 0: global lora_scale_dict adapter_name_lst = [] adapter_weights_lst = [] for name, file in lora_group.items(): pipe.load_lora_weights(file, adapter_name = name) adapter_name_lst.append(name) adapter_weights_lst.append(lora_scale_dict[name]) pipe.set_adapters(adapter_name_lst, adapter_weights=adapter_weights_lst) #pipe.fuse_lora(lora_scale=lora_scale_dict[name]) #pipe = load_lora_control_pipeline(pipe,lora_state,lora_scale,device) pipe.unet.set_attn_processor(AttnProcessor()) if hasattr(F, "scaled_dot_product_attention"): pipe.unet.set_attn_processor(AttnProcessor2_0()) if diffuser_pipeline == False: pipe.setup_unet(pipe.unet) pipe.tokenizer.prepare_for_tokenization = local_token.prepare_for_tokenization #pipe.tokenizer.added_tokens_encoder = {} #pipe.tokenizer.added_tokens_decoder = {} #pipe.setup_text_encoder(clip_skip, local_te) '''if lora_state is not None and lora_state != "": local_lora.load(lora_state, lora_scale) local_lora.to(local_unet.device, dtype=local_unet.dtype) pipe.text_encoder, pipe.unet,pipe.scheduler,pipe.vae = local_te, local_unet,local_sche,local_vae pipe.setup_unet(local_unet) pipe.tokenizer.prepare_for_tokenization = local_token.prepare_for_tokenization pipe.tokenizer.added_tokens_encoder = {} pipe.tokenizer.added_tokens_decoder = {} pipe.setup_text_encoder(clip_skip, local_te)''' torch.cuda.empty_cache() gc.collect() return pipe def error_str(error, title="Error"): return ( f"""#### {title} {error}""" if error else "" ) def make_token_names(embs): all_tokens = [] for name, vec in embs.items(): tokens = [f'emb-{name}-{i}' for i in range(len(vec))] all_tokens.append(tokens) return all_tokens def setup_tokenizer(tokenizer, embs): reg_match = [re.compile(fr"(?:^|(?<=\s|,)){k}(?=,|\s|$)") for k in embs.keys()] clip_keywords = [' '.join(s) for s in make_token_names(embs)] def parse_prompt(prompt: str): for m, v in zip(reg_match, clip_keywords): prompt = m.sub(v, prompt) return prompt def prepare_for_tokenization(self, text: str, is_split_into_words: bool = False, **kwargs): text = parse_prompt(text) r = original_prepare_for_tokenization(text, is_split_into_words, **kwargs) return r tokenizer.prepare_for_tokenization = prepare_for_tokenization.__get__(tokenizer, CLIPTokenizer) return [t for sublist in make_token_names(embs) for t in sublist] def convert_size(size_bytes): if size_bytes == 0: return "0B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(size_bytes, 1024))) p = math.pow(1024, i) s = round(size_bytes / p, 2) return "%s %s" % (s, size_name[i]) def load_lora_control_pipeline(pipeline_control,file_path,lora_scale,device): state_dict = load_file(file_path,device=device) LORA_PREFIX_UNET = 'lora_unet' LORA_PREFIX_TEXT_ENCODER = 'lora_te' alpha = lora_scale visited = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if '.alpha' in key or key in visited: continue if 'text' in key: layer_infos = key.split('.')[0].split(LORA_PREFIX_TEXT_ENCODER+'_')[-1].split('_') curr_layer = pipeline_control.text_encoder else: layer_infos = key.split('.')[0].split(LORA_PREFIX_UNET+'_')[-1].split('_') curr_layer = pipeline_control.unet # find the target layer temp_name = layer_infos.pop(0) while len(layer_infos) > -1: try: curr_layer = curr_layer.__getattr__(temp_name) if len(layer_infos) > 0: temp_name = layer_infos.pop(0) elif len(layer_infos) == 0: break except Exception: if len(temp_name) > 0: temp_name += '_'+layer_infos.pop(0) else: temp_name = layer_infos.pop(0) # org_forward(x) + lora_up(lora_down(x)) * multiplier pair_keys = [] if 'lora_down' in key: pair_keys.append(key.replace('lora_down', 'lora_up')) pair_keys.append(key) else: pair_keys.append(key) pair_keys.append(key.replace('lora_up', 'lora_down')) # update weight if len(state_dict[pair_keys[0]].shape) == 4: weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32) weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32) curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) else: weight_up = state_dict[pair_keys[0]].to(torch.float32) weight_down = state_dict[pair_keys[1]].to(torch.float32) curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down) # update visited list for item in pair_keys: visited.append(item) torch.cuda.empty_cache() gc.collect() return pipeline_control def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None): """Converts a depth map to a color image. Args: value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None. vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None. cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'. invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99. invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None. background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255). gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False. value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None. Returns: numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4) """ if isinstance(value, torch.Tensor): value = value.detach().cpu().numpy() value = value.squeeze() if invalid_mask is None: invalid_mask = value == invalid_val mask = np.logical_not(invalid_mask) # normalize vmin = np.percentile(value[mask],2) if vmin is None else vmin vmax = np.percentile(value[mask],85) if vmax is None else vmax if vmin != vmax: value = (value - vmin) / (vmax - vmin) # vmin..vmax else: # Avoid 0-division value = value * 0. # squeeze last dim if it exists # grey out the invalid values value[invalid_mask] = np.nan cmapper = matplotlib.cm.get_cmap(cmap) if value_transform: value = value_transform(value) # value = value / value.max() value = cmapper(value, bytes=True) # (nxmx4) img = value[...] img[invalid_mask] = background_color if gamma_corrected: img = img / 255 img = np.power(img, 2.2) img = img * 255 img = img.astype(np.uint8) return img def adapter_preprocessing(model_adapter,img_control,low_threshold_adapter = None,high_threshold_adapter=None,has_body=False,has_hand=False,has_face=False,preprocessor_adapter=None,disable_preprocessing_adapter=False): if disable_preprocessing_adapter == True : return img_control.copy() device = 'cpu' if torch.cuda.is_available(): device = 'cuda' if model_adapter == 'Canny': img_control = np.array(img_control) img_control = cv2.Canny(img_control, low_threshold_adapter, high_threshold_adapter) img_control = Image.fromarray(img_control) elif model_adapter == 'Openpose': #model_openpose = OpenposeDetector() processor = OpenposeDetector.from_pretrained('lllyasviel/ControlNet').to(device) img_control = processor(img_control, include_body=has_body, include_hand=has_hand, include_face=has_face) #img_control = model_openpose(img_control, has_hand)[0] elif model_adapter == 'Depth': #model_midas = MidasDetector() #img_control = model_midas(resize_image(img_control))[0] if preprocessor_adapter == 'DPT': processor = pipeline('depth-estimation') img_control = processor(img_control)['depth'] img_control = np.array(img_control) img_control = img_control[:, :, None] img_control = np.concatenate([img_control, img_control, img_control], axis=2) img_control = Image.fromarray(img_control) else: processor = MidasDetector.from_pretrained("lllyasviel/Annotators").to(device) img_control = processor(img_control) elif model_adapter == 'Semantic Segmentation': img_control = preprocessing_segmentation(preprocessor_adapter,img_control) elif model_adapter == 'Color': img_control = img_control.resize((8, 8)) img_control = img_control.resize((512, 512), resample=Image.Resampling.NEAREST) elif model_adapter == 'Zoedepth': '''processor = torch.hub.load("isl-org/ZoeDepth", "ZoeD_N", pretrained=True).to(device) img_control = processor.infer_pil(img_control) img_control = Image.fromarray(colorize(img_control)).convert('RGB')''' '''processor = ZoeDetector.from_pretrained("lllyasviel/Annotators").to(device) img_control = processor(img_control)''' processor = ZoeDetector.from_pretrained("valhalla/t2iadapter-aux-models", filename="zoed_nk.pth", model_type="zoedepth_nk").to(device) img_control = processor(img_control, gamma_corrected=True) else: active_model = False if model_adapter == 'Sketch': active_model = True if preprocessor_name == 'HED': processor = HEDdetector.from_pretrained('lllyasviel/Annotators').to(device) else: processor = PidiNetDetector.from_pretrained('lllyasviel/Annotators').to(device) img_control = processor(img_control,scribble=active_model) #img_control = np.array(img_control) #img = cv2.resize(img_control,(width, height)) #img_input = img_input.resize((width, height), Image.LANCZOS) #img_control = img_control.resize((width, height), Image.LANCZOS) if model_adapter != 'Canny' and model_adapter != 'Semantic Segmentation' and model_adapter != 'Color': del processor torch.cuda.empty_cache() gc.collect() return img_control def control_net_preprocessing(control_net_model,img_control,low_threshold = None,high_threshold=None,has_body=False,has_hand=False,has_face=False,preprocessor_name=None,disable_preprocessing=False): if disable_preprocessing == True or control_net_model == 'Instruct Pix2Pix': return img_control.copy() device = 'cpu' if torch.cuda.is_available(): device = 'cuda' if control_net_model == 'Canny': img_control = np.array(img_control) img_control = cv2.Canny(img_control, low_threshold, high_threshold) img_control = img_control[:, :, None] img_control = np.concatenate([img_control, img_control, img_control], axis=2) img_control = Image.fromarray(img_control) elif control_net_model == 'Openpose': #model_openpose = OpenposeDetector() processor = OpenposeDetector.from_pretrained('lllyasviel/ControlNet').to(device) img_control = processor(img_control, include_body=has_body, include_hand=has_hand, include_face=has_face) #img_control = model_openpose(img_control, has_hand)[0] elif control_net_model == 'Depth': #model_midas = MidasDetector() #img_control = model_midas(resize_image(img_control))[0] if preprocessor_name == 'DPT': processor = pipeline('depth-estimation') img_control = processor(img_control)['depth'] img_control = np.array(img_control) img_control = img_control[:, :, None] img_control = np.concatenate([img_control, img_control, img_control], axis=2) img_control = Image.fromarray(img_control) else: processor = MidasDetector.from_pretrained("lllyasviel/Annotators").to(device) img_control = processor(img_control) elif control_net_model == 'Lineart (anime)': processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators").to(device) img_control = processor(img_control) #img_control = np.array(img_control) elif control_net_model == 'Lineart': processor = LineartDetector.from_pretrained("lllyasviel/Annotators").to(device) img_control = processor(img_control) #img_control = np.array(img_control) elif control_net_model == 'MLSD': processor = MLSDdetector.from_pretrained("lllyasviel/ControlNet").to(device) img_control = processor(img_control) #img_control = np.array(img_control) elif control_net_model == 'Semantic Segmentation': img_control = preprocessing_segmentation(preprocessor_name,img_control) elif control_net_model == 'Normal Map': processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators").to(device) img_control = processor(img_control) elif control_net_model == 'Shuffle': processor = ContentShuffleDetector() img_control = processor(img_control) else: active_model = False if control_net_model == 'Scribble': active_model = True if preprocessor_name == 'HED': processor = HEDdetector.from_pretrained('lllyasviel/Annotators').to(device) else: processor = PidiNetDetector.from_pretrained('lllyasviel/Annotators').to(device) img_control = processor(img_control,scribble=active_model) #img_control = np.array(img_control) #img = cv2.resize(img_control,(width, height)) #img_input = img_input.resize((width, height), Image.LANCZOS) #img_control = img_control.resize((width, height), Image.LANCZOS) if control_net_model != 'Canny' and control_net_model != 'Semantic Segmentation': del processor torch.cuda.empty_cache() gc.collect() return img_control def add_embedding(pipe_model,embs): tokenizer, text_encoder = pipe_model.tokenizer, pipe_model.text_encoder if embs is not None and len(embs) > 0: ti_embs = {} for name, file in embs.items(): if str(file).endswith(".pt"): loaded_learned_embeds = torch.load(file, map_location="cpu") else: loaded_learned_embeds = load_file(file, device="cpu") loaded_learned_embeds = loaded_learned_embeds["string_to_param"]["*"] if "string_to_param" in loaded_learned_embeds else loaded_learned_embeds if isinstance(loaded_learned_embeds, dict): #loaded_learned_embeds = list(loaded_learned_embeds.values())[-1] ti_embs.update(loaded_learned_embeds) else: ti_embs[name] = loaded_learned_embeds if len(ti_embs) > 0: '''for key, value in ti_embs.items(): if isinstance(value, dict): ti_embs.pop(key) ti_embs.update(value)''' tokens = setup_tokenizer(tokenizer, ti_embs) added_tokens = tokenizer.add_tokens(tokens) delta_weight = torch.cat([val for val in ti_embs.values()], dim=0) assert added_tokens == delta_weight.shape[0] text_encoder.resize_token_embeddings(len(tokenizer)) token_embeds = text_encoder.get_input_embeddings().weight.data token_embeds[-delta_weight.shape[0]:] = delta_weight torch.cuda.empty_cache() gc.collect() return pipe_model def add_embedding_with_diffusers(pipe,embs): if embs is not None and len(embs) > 0: for name, file in embs.items(): pipe.load_textual_inversion(file) torch.cuda.empty_cache() gc.collect() return pipe def mask_region_apply_ip_adapter(mask,invert_ip_adapter_mask_mode): if mask is None: return None #define black is region masked if not isinstance(mask,List): mask = [mask] if len(mask) == 0: return None if invert_ip_adapter_mask_mode: mask = [ImageOps.invert(i).convert('RGB') for i in mask] processor = IPAdapterMaskProcessor() masks = processor.preprocess(mask) '''mask = mask.resize((width, height), Image.BICUBIC) mask = np.array(mask).astype(np.float32) / 255.0 #If the region is black apply ( 0 = black) mask = np.expand_dims(np.where(mask==0, 1,0)[:, :, 0], axis=0) if mask.ndim == 3: mask = mask[..., None] mask = torch.from_numpy(mask.transpose(0, 3, 1, 2)) return mask[0]''' return masks def ip_adapter_face_id_embedding(lst_img_face_id_embed,device,dtype,guidance_scale,plus_faceid = False): ref_images_embeds = [] ref_unc_images_embeds = [] ip_adapter_images = [] app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) if not isinstance(lst_img_face_id_embed,list): lst_img_face_id_embed = [lst_img_face_id_embed] for im in lst_img_face_id_embed: #im = load_image(im) image = cv2.cvtColor(np.asarray(im), cv2.COLOR_BGR2RGB) faces = app.get(image) #faces is a list if len(faces) == 0: raise ValueError( "Can not find any faces in the image." ) if plus_faceid: ip_adapter_images.append(face_align.norm_crop(image, landmark=faces[0].kps, image_size=224)) #For plus faceid image = torch.from_numpy(faces[0].normed_embedding) image_embeds = image.unsqueeze(0) uncond_image_embeds = torch.zeros_like(image_embeds) ref_images_embeds.append(image_embeds) ref_unc_images_embeds.append(uncond_image_embeds) ref_images_embeds = torch.stack(ref_images_embeds, dim=0) if guidance_scale > 1 : ref_unc_images_embeds = torch.stack(ref_unc_images_embeds, dim=0) single_image_embeds = torch.cat([ref_unc_images_embeds, ref_images_embeds], dim=0).to(device,dtype=dtype) else: single_image_embeds = ref_images_embeds.to(device,dtype=dtype) return single_image_embeds,ip_adapter_images lst_control = [] lst_adapter =[] lst_ip_adapter = [] current_number_ip_adapter = 0 current_number_control = 0 current_number_adapter = 0 def inference( prompt, guidance, steps, width=512, height=512, clip_skip =2, seed=0, neg_prompt="", state=None, img_input=None, i2i_scale=0.5, hr_enabled=False, hr_method="Latent", hr_scale=1.5, hr_denoise=0.8, sampler="DPM++ 2M Karras", embs=None, model=None, lora_group = None, #lora_state=None, #lora_scale=None, formula_setting = None, controlnet_enabled = False, control_net_model = None, low_threshold = None, high_threshold = None, has_body = False, has_hand = False, has_face = False, img_control = None, image_condition = None, controlnet_scale = 0, preprocessor_name = None, diffuser_pipeline = False, sampler_hires="DPM++ 2M Karras", latent_processing = 0, control_guidance_start = 0.0, control_guidance_end = 1.0, multi_controlnet = False, disable_preprocessing = False, region_condition = False, hr_process_enabled = False, ip_adapter = False, model_ip_adapter = None, inf_adapt_image = None, inf_adapt_image_strength = 1.0, hr_region_condition = False, adapter_enabled = False, model_adapter = None, low_threshold_adapter = None, high_threshold_adapter = None, has_body_openpose_adapter = False, has_hand_openpose_adapter = False, has_face_openpose_adapter = False, adapter_img = None, image_condition_adapter = None, preprocessor_adapter = None, adapter_conditioning_scale = 0, adapter_conditioning_factor = None, multi_adapter = False, disable_preprocessing_adapter = False, ip_adapter_multi = False, guidance_rescale = 0, inf_control_adapt_image = None, long_encode = 0, inpaiting_mode = False, invert_mask_mode = False, mask_upload = None, inf_image_inpaiting = None, invert_ip_adapter_mask_mode = True, vae_used = "Default", ): global formula,controlnet_type,lst_control,lst_adapter,model_ip_adapter_type,adapter_type,lst_ip_adapter,current_number_ip_adapter,encoding_type img_control_input = None device = "cpu" if torch.cuda.is_available(): device = "cuda" if region_condition == False: state = None mask_inpaiting = None if inpaiting_mode and isinstance(inf_image_inpaiting,dict): mask_inpaiting = inf_image_inpaiting["mask"] img_input = inf_image_inpaiting["image"] diff = ImageChops.difference(mask_inpaiting, img_input) if diff.getbbox() is None: mask_inpaiting = None if inpaiting_mode and mask_upload: mask_inpaiting = mask_upload if mask_inpaiting and invert_mask_mode: mask_inpaiting = ImageOps.invert(mask_inpaiting).convert('RGB') if adapter_enabled: if len(lst_adapter) > 0 and multi_adapter: adapter_img = [] model_adapter = [] adapter_conditioning_scale = [] adapter_conditioning_factor = [] for i in range( len(lst_adapter)): setting_processing = list(lst_adapter[i].items()) setting_processing = setting_processing[:-2] setting_processing = dict(setting_processing) image_sp_adapter = adapter_preprocessing(**setting_processing) adapter_img.append(image_sp_adapter) adapter_sp = adapter_type[lst_adapter[i]["model_adapter"]] model_adapter.append(setup_adapter(adapter_sp,device)) adapter_conditioning_scale.append(float(lst_adapter[i]["adapter_conditioning_scale"])) adapter_conditioning_factor.append(float(lst_adapter[i]["adapter_conditioning_factor"])) adapter_conditioning_factor = adapter_conditioning_factor[-1] torch.cuda.empty_cache() gc.collect() elif adapter_img is not None and multi_adapter ==False: adapter_img = adapter_preprocessing(model_adapter,adapter_img,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter,disable_preprocessing_adapter) model_adapter = adapter_type[model_adapter] adapter_conditioning_scale = float(adapter_conditioning_scale) adapter_conditioning_factor = float(adapter_conditioning_factor) torch.cuda.empty_cache() gc.collect() model_adapter=setup_adapter(model_adapter,device) torch.cuda.empty_cache() gc.collect() else: model_adapter = None adapter_img = None else: model_adapter = None adapter_img = None if controlnet_enabled: if len(lst_control) > 0 and multi_controlnet: img_control = [] control_net_model = [] controlnet_scale = [] control_guidance_start = [] control_guidance_end = [] for i in range( len(lst_control)): setting_processing = list(lst_control[i].items()) setting_processing = setting_processing[:-3] setting_processing = dict(setting_processing) image_sp_control = control_net_preprocessing(**setting_processing) img_control.append(image_sp_control) conrol_net_sp = controlnet_type[lst_control[i]["control_net_model"]] control_net_model.append(setup_controlnet(conrol_net_sp,device)) controlnet_scale.append(float(lst_control[i]["controlnet_scale"])) control_guidance_start.append(float(lst_control[i]["control_guidance_start"])) control_guidance_end.append(float(lst_control[i]["control_guidance_end"])) torch.cuda.empty_cache() gc.collect() elif img_control is not None and multi_controlnet ==False: img_control = control_net_preprocessing(control_net_model,img_control,low_threshold,high_threshold,has_body,has_hand,has_face,preprocessor_name,disable_preprocessing) control_net_model = controlnet_type[control_net_model] controlnet_scale = float(controlnet_scale) control_guidance_start = float(control_guidance_start) control_guidance_end = float(control_guidance_end) torch.cuda.empty_cache() gc.collect() control_net_model=setup_controlnet(control_net_model,device) torch.cuda.empty_cache() gc.collect() else: control_net_model = None img_control = None else: control_net_model = None img_control = None keys_f = [k[0] for k in formula] formula_setting = formula[keys_f.index(formula_setting)][1] if seed is None or seed < 0: seed = random.randint(0, sys.maxsize) #lora_state = lora_dict[lora_state] pipe = setup_model(model,clip_skip, lora_group,diffuser_pipeline,control_net_model,img_input,device,mask_inpaiting,vae_used) generator = torch.Generator(device).manual_seed(int(seed)) if formula_setting == 0: weight_func = lambda w, sigma, qk: w * sigma * qk.std() elif formula_setting == 1: weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max() elif formula_setting == 2: weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.std() else: weight_func = lambda w, sigma, qk: w * math.log(1 + sigma**2) * qk.std() start_time = time.time() sampler_name, sampler_opt = None, None '''for label, funcname, options in samplers_k_diffusion: if label == sampler_hires: sampler_name_hires, sampler_opt_hires = funcname, options''' #add_Textual Inversion or text embeddings pipe = add_embedding(pipe,embs) width_resize_mask_ipadapter = width height_resize_mask_ipadapter = height if img_input is not None: width_resize_mask_ipadapter = img_input.width height_resize_mask_ipadapter = img_input.height setup_model_t2i_adapter(pipe,model_adapter) cross_attention_kwargs = {} #Get type encoding long_encode = encoding_type[long_encode] ip_adapter_image_embeds = None faceid_plus_v2 = False #clip_embeds = None #Support for faceid_plus if ip_adapter == True: #inf_adapt_image = None ip_adapter_images_faceid_plus = [] if ip_adapter_multi and len(lst_ip_adapter) > 0: ip_adapter_image_lst =[] model_ip_adapter_lst = [] scale_ip_adapter_lst = [] region_aplly_lst = [] ip_adapter_image_vitg_lst =[] model_ip_adapter_vitg_lst = [] scale_ip_adapter_vitg_lst = [] region_aplly_vitg_lst = [] ip_adapter_faceid_image_lst =[] model_ip_adapter_faceid_lst = [] scale_ip_adapter_faceid_lst = [] region_aplly_lst_faceid = [] ip_adapter_faceid_plus_image_lst =[] model_ip_adapter_faceid_plus_lst = [] scale_ip_adapter_faceid_plus_lst = [] region_aplly_lst_faceid_plus = [] #Support not marks img_full_black = Image.new('RGB', (width, height), (0, 0, 0)) img_full_white = Image.new('RGB', (width, height), (255, 255, 255)) for i in lst_ip_adapter: if 'VIT-G' in i["model"]: ip_adapter_image_vitg_lst.append(i["image"]) model_ip_adapter_vitg_lst.append(model_ip_adapter_type[i["model"]]) scale_ip_adapter_vitg_lst.append(float(i["scale"])) if i["region_apply"] is not None: region_aplly_vitg_lst.append(i["region_apply"]) else: if invert_ip_adapter_mask_mode: region_aplly_vitg_lst.append(img_full_black) else: region_aplly_vitg_lst.append(img_full_white) elif 'FaceID' not in i["model"]: ip_adapter_image_lst.append(i["image"]) model_ip_adapter_lst.append(model_ip_adapter_type[i["model"]]) scale_ip_adapter_lst.append(float(i["scale"])) if i["region_apply"] is not None: region_aplly_lst.append(i["region_apply"]) else: if invert_ip_adapter_mask_mode: region_aplly_lst.append(img_full_black) else: region_aplly_lst.append(img_full_white) elif 'Plus FaceID' in i["model"]: if 'Plus FaceIDv2' in i["model"]: faceid_plus_v2 = True ip_adapter_faceid_plus_image_lst.append(i["image"]) model_ip_adapter_faceid_plus_lst.append(model_ip_adapter_type[i["model"]]) scale_ip_adapter_faceid_plus_lst.append(float(i["scale"])) if i["region_apply"] is not None: region_aplly_lst_faceid_plus.append(i["region_apply"]) else: if invert_ip_adapter_mask_mode: region_aplly_lst_faceid_plus.append(img_full_black) else: region_aplly_lst_faceid_plus.append(img_full_white) else: ip_adapter_faceid_image_lst.append(i["image"]) model_ip_adapter_faceid_lst.append(model_ip_adapter_type[i["model"]]) scale_ip_adapter_faceid_lst.append(float(i["scale"])) if i["region_apply"] is not None: region_aplly_lst_faceid.append(i["region_apply"]) else: if invert_ip_adapter_mask_mode: region_aplly_lst_faceid.append(img_full_black) else: region_aplly_lst_faceid.append(img_full_white) #Concat faceid and ipadapter none_img_encoder = False # if len(model_ip_adapter_lst) == 0: # only_face_id = 1 if len(ip_adapter_faceid_image_lst) > 0 or len(ip_adapter_image_vitg_lst) > 0 or len(ip_adapter_faceid_plus_image_lst) > 0: #Image_encode vit-H ip_adapter_embeds = [] ip_adapter_vitg_embeds = [] ip_adapter_image_embeds_faceid = [] ip_adapter_image_embeds_faceid_plus = [] if len(model_ip_adapter_lst) > 0: pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=model_ip_adapter_lst) pipe.set_ip_adapter_scale(scale_ip_adapter_lst) ip_adapter_embeds = pipe.prepare_ip_adapter_image_embeds(ip_adapter_image_lst,None,device,1, guidance>1) pipe.unload_ip_adapter() if len(ip_adapter_faceid_image_lst) > 0: ip_adapter_image_embeds_faceid,_ = ip_adapter_face_id_embedding(ip_adapter_faceid_image_lst,device,pipe.unet.dtype,guidance,False) ip_adapter_image_embeds_faceid = [ip_adapter_image_embeds_faceid] if len(ip_adapter_faceid_plus_image_lst) >0: ip_adapter_image_embeds_faceid_plus,ip_adapter_images_faceid_plus = ip_adapter_face_id_embedding(ip_adapter_faceid_plus_image_lst,device,pipe.unet.dtype,guidance,True) ip_adapter_image_embeds_faceid_plus = [ip_adapter_image_embeds_faceid_plus] #Image encoder vit-G if len(ip_adapter_image_vitg_lst) > 0: pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=model_ip_adapter_vitg_lst,image_encoder_folder=None) pipe.set_ip_adapter_scale(scale_ip_adapter_vitg_lst) pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained( "h94/IP-Adapter", subfolder="sdxl_models/image_encoder", ).to(device, dtype=pipe.unet.dtype) ip_adapter_vitg_embeds = pipe.prepare_ip_adapter_image_embeds(ip_adapter_image_vitg_lst,None,device,1, guidance>1) pipe.unload_ip_adapter() ip_adapter_image_embeds = ip_adapter_embeds + ip_adapter_image_embeds_faceid + ip_adapter_vitg_embeds + ip_adapter_image_embeds_faceid_plus inf_adapt_image = None none_img_encoder = True if not isinstance(ip_adapter_image_embeds, list): ip_adapter_image_embeds = [ip_adapter_image_embeds] else: inf_adapt_image = ip_adapter_image_lst ip_adapter_image_embeds = None region_aplly_lst = region_aplly_lst + region_aplly_lst_faceid + region_aplly_vitg_lst + region_aplly_lst_faceid_plus load_model = ["h94/IP-Adapter"]*len(model_ip_adapter_lst) + ["h94/IP-Adapter-FaceID"]*len(model_ip_adapter_faceid_lst) + ["h94/IP-Adapter"]*len(model_ip_adapter_vitg_lst) + ["h94/IP-Adapter-FaceID"]*len(model_ip_adapter_faceid_plus_lst) subfolder = ["models"]*len(model_ip_adapter_lst) + [None]*len(model_ip_adapter_faceid_lst) + ["models"] * len(model_ip_adapter_vitg_lst) + [None]*len(model_ip_adapter_faceid_plus_lst) model_ip_adapter_lst = model_ip_adapter_lst + model_ip_adapter_faceid_lst + model_ip_adapter_vitg_lst + model_ip_adapter_faceid_plus_lst scale_ip_adapter_lst = scale_ip_adapter_lst + scale_ip_adapter_faceid_lst + scale_ip_adapter_vitg_lst + scale_ip_adapter_faceid_plus_lst clip_embeds = None if len(ip_adapter_images_faceid_plus) > 0: pipe.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder=None, weight_name=model_ip_adapter_faceid_plus_lst,image_encoder_folder=None) pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained( "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" ).to(device, dtype=pipe.unet.dtype) # Extract CLIP embeddings clip_embeds = pipe.prepare_ip_adapter_image_embeds([ip_adapter_images_faceid_plus], None, device, 1, guidance>1)[0] #num_images = 1 pipe.unload_ip_adapter() if none_img_encoder: pipe.load_ip_adapter(load_model, subfolder=subfolder, weight_name=model_ip_adapter_lst,image_encoder_folder=None) else: pipe.load_ip_adapter(load_model, subfolder=subfolder, weight_name=model_ip_adapter_lst) pipe.set_ip_adapter_scale(scale_ip_adapter_lst) if len(ip_adapter_images_faceid_plus) > 0: pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained( "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" ).to(device, dtype=pipe.unet.dtype) # Set CLIP embeddings as class parameter pipe.unet.encoder_hid_proj.image_projection_layers[0].clip_embeds = clip_embeds.to(dtype=pipe.unet.dtype) pipe.unet.encoder_hid_proj.image_projection_layers[0].shortcut = faceid_plus_v2 cross_attention_kwargs = {"ip_adapter_masks":mask_region_apply_ip_adapter(region_aplly_lst,invert_ip_adapter_mask_mode)} elif inf_adapt_image is not None and ip_adapter_multi == False: if 'VIT-G' in model_ip_adapter: model_ip_adapter = model_ip_adapter_type[model_ip_adapter] pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=model_ip_adapter,image_encoder_folder=None) pipe.set_ip_adapter_scale(float(inf_adapt_image_strength)) pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained( "h94/IP-Adapter", subfolder="sdxl_models/image_encoder", ).to(device, dtype=pipe.unet.dtype) cross_attention_kwargs = {"ip_adapter_masks":mask_region_apply_ip_adapter(inf_control_adapt_image,invert_ip_adapter_mask_mode)} elif 'FaceID' not in model_ip_adapter: model_ip_adapter = model_ip_adapter_type[model_ip_adapter] pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=model_ip_adapter) pipe.set_ip_adapter_scale(float(inf_adapt_image_strength)) cross_attention_kwargs = {"ip_adapter_masks":mask_region_apply_ip_adapter(inf_control_adapt_image,invert_ip_adapter_mask_mode)} elif 'Plus FaceID' in model_ip_adapter: if 'Plus FaceIDv2' in model_ip_adapter: faceid_plus_v2 = True model_ip_adapter = model_ip_adapter_type[model_ip_adapter] pipe.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder=None, weight_name=model_ip_adapter,image_encoder_folder=None) pipe.set_ip_adapter_scale(float(inf_adapt_image_strength)) ip_adapter_image_embeds,ip_adapter_images_faceid_plus = ip_adapter_face_id_embedding([inf_adapt_image],device,pipe.unet.dtype,guidance,True) if not isinstance(ip_adapter_image_embeds, list): ip_adapter_image_embeds = [ip_adapter_image_embeds] cross_attention_kwargs = {"ip_adapter_masks":mask_region_apply_ip_adapter(inf_control_adapt_image,invert_ip_adapter_mask_mode)} if len(ip_adapter_images_faceid_plus) > 0: pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained( "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" ).to(device, dtype=pipe.unet.dtype) # Extract CLIP embeddings clip_embeds = pipe.prepare_ip_adapter_image_embeds([ip_adapter_images_faceid_plus], None, device, 1, guidance>1)[0] #num_images = 1 # Set CLIP embeddings as class parameter pipe.unet.encoder_hid_proj.image_projection_layers[0].clip_embeds = clip_embeds.to(dtype=pipe.unet.dtype) pipe.unet.encoder_hid_proj.image_projection_layers[0].shortcut = faceid_plus_v2 #pipe.unload_ip_adapter() inf_adapt_image = None else: model_ip_adapter = model_ip_adapter_type[model_ip_adapter] pipe.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder=None, weight_name=model_ip_adapter,image_encoder_folder=None) pipe.set_ip_adapter_scale(float(inf_adapt_image_strength)) ip_adapter_image_embeds,_ = ip_adapter_face_id_embedding([inf_adapt_image],device,pipe.unet.dtype,guidance,False) if not isinstance(ip_adapter_image_embeds, list): ip_adapter_image_embeds = [ip_adapter_image_embeds] cross_attention_kwargs = {"ip_adapter_masks":mask_region_apply_ip_adapter(inf_control_adapt_image,invert_ip_adapter_mask_mode)} inf_adapt_image = None else: inf_adapt_image = None else: inf_adapt_image = None if diffuser_pipeline: for label, funcname, options in samplers_diffusers: if label == sampler: sampler_name, sampler_opt = funcname, options if label == sampler_hires: sampler_name_hires, sampler_opt_hires = funcname, options pipe.scheduler = sampler_name(pipe.scheduler.config) output_type = 'pil' if hr_enabled and img_input is None: output_type = 'latent' #Need to reduce clip_skip by 1 because when using clip_skip the value will increase in the encode_prompt config = { "prompt": prompt, "negative_prompt": neg_prompt, "num_inference_steps": int(steps), "guidance_scale": guidance, "generator": generator, "region_map_state": state, #"region_map_attn_weight": g_strength, "latent_processing": latent_processing, 'weight_func':weight_func, 'clip_skip' :int(clip_skip), "output_type" : output_type, "image_t2i_adapter":adapter_img, "adapter_conditioning_scale":adapter_conditioning_scale, "adapter_conditioning_factor":adapter_conditioning_factor, "guidance_rescale":guidance_rescale, "long_encode" : int(long_encode), "ip_adapter_image_embeds": ip_adapter_image_embeds, "cross_attention_kwargs": cross_attention_kwargs } '''if ip_adapter == False: inf_adapt_image = None''' if mask_inpaiting and img_input and inpaiting_mode and control_net_model: result = pipe(mask_image = mask_inpaiting,width=img_input.width,height=img_input.height, controlnet_conditioning_scale = controlnet_scale,inf_adapt_image=inf_adapt_image,image =img_input , control_image=img_control,strength = i2i_scale,control_guidance_start=control_guidance_start,control_guidance_end=control_guidance_end,**config) elif control_net_model is not None and img_input is not None: result = pipe(controlnet_conditioning_scale = controlnet_scale,inf_adapt_image=inf_adapt_image,image =img_input , control_image=img_control,strength = i2i_scale,control_guidance_start=control_guidance_start,control_guidance_end=control_guidance_end,**config) elif control_net_model is not None: result = pipe(width = width,height = height,controlnet_conditioning_scale = controlnet_scale, image=img_control,control_guidance_start=control_guidance_start,control_guidance_end=control_guidance_end,ip_adapter_image=inf_adapt_image,**config) elif mask_inpaiting and img_input and inpaiting_mode: result = pipe(image =img_input,ip_adapter_image=inf_adapt_image,mask_image = mask_inpaiting,strength=i2i_scale,width=img_input.width,height=img_input.height,**config) elif img_input is not None: result = pipe(image =img_input,strength = i2i_scale,ip_adapter_image=inf_adapt_image,**config) else: result = pipe(height = height, width = width,ip_adapter_image=inf_adapt_image,**config) if hr_enabled and img_input is None: del pipe torch.cuda.empty_cache() gc.collect() pipe = setup_model(model,clip_skip, lora_group,diffuser_pipeline,control_net_model,True,device,vae_used) #add_Textual Inversion or text embeddings pipe = add_embedding(pipe,embs) pipe.scheduler = sampler_name_hires(pipe.scheduler.config) vae_scale_factor = 2 ** (len(pipe.vae.config.block_out_channels) - 1) target_height = int(height * upscale_x // vae_scale_factor )* 8 target_width = int(width * upscale_x // vae_scale_factor)*8 latents = result[-1].unsqueeze(0) #print(latents.shape) latents = torch.nn.functional.interpolate( latents, size=( int(target_height // vae_scale_factor), int(target_width // vae_scale_factor), ), mode=latent_upscale_modes[hr_method]["upscale_method"], antialias=latent_upscale_modes[hr_method]["upscale_antialias"], ) config = { "prompt": prompt, "negative_prompt": neg_prompt, "num_inference_steps": int(steps), "guidance_scale": guidance, "generator": generator, "region_map_state": state, #"region_map_attn_weight": g_strength, "latent_processing": hr_process_enabled, 'weight_func':weight_func, 'clip_skip' :int(clip_skip), "image_t2i_adapter":adapter_img, "adapter_conditioning_scale":adapter_conditioning_scale, "adapter_conditioning_factor":adapter_conditioning_factor, "guidance_rescale":guidance_rescale, "long_encode" : int(long_encode), "ip_adapter_image_embeds": ip_adapter_image_embeds, "cross_attention_kwargs":cross_attention_kwargs, } if control_net_model is not None: upscale_result = pipe(width=int(target_width),height=int(target_height),controlnet_conditioning_scale = controlnet_scale,image = latents, control_image=img_control,strength = hr_denoise,control_guidance_start=control_guidance_start,control_guidance_end=control_guidance_end,**config) else: upscale_result = pipe(width=int(target_width),height=int(target_height),image = latents,strength = hr_denoise,**config) #print(type(upscale_result[-1])) #print(upscale_result) result = result[:-1] + upscale_result else: for label, funcname, options in samplers_k_diffusion: if label == sampler: sampler_name, sampler_opt = funcname, options if label == sampler_hires: sampler_name_hires, sampler_opt_hires = funcname, options config = { "negative_prompt": neg_prompt, "num_inference_steps": int(steps), "guidance_scale": guidance, "generator": generator, "sampler_name": sampler_name, "sampler_opt": sampler_opt, "region_map_state": state, #"region_map_attn_weight": g_strength, "start_time": start_time, "timeout": timeout, "latent_processing": latent_processing, 'weight_func':weight_func, 'seed': int(seed), 'sampler_name_hires': sampler_name_hires, 'sampler_opt_hires': sampler_opt_hires, "latent_upscale_processing": hr_process_enabled, "ip_adapter_image":inf_adapt_image, "controlnet_conditioning_scale":controlnet_scale, "control_img": img_control, "control_guidance_start":control_guidance_start, "control_guidance_end":control_guidance_end, "image_t2i_adapter":adapter_img, "adapter_conditioning_scale":adapter_conditioning_scale, "adapter_conditioning_factor":adapter_conditioning_factor, "guidance_rescale":guidance_rescale, 'clip_skip' :int(clip_skip), "long_encode" : int(long_encode), "ip_adapter_image_embeds": ip_adapter_image_embeds, "cross_attention_kwargs":cross_attention_kwargs, } #if control_net_model is not None: pipe.setup_controlnet(control_net_model) if mask_inpaiting and img_input and inpaiting_mode: result = pipe.inpaiting(prompt, image=img_input,mask_image = mask_inpaiting,strength=i2i_scale,width=img_input.width,height=img_input.height, **config) elif img_input is not None: result = pipe.img2img(prompt, image=img_input, strength=i2i_scale,width=img_input.width,height=img_input.height, **config) elif hr_enabled: result = pipe.txt2img( prompt, width=width, height=height, upscale=True, upscale_x=hr_scale, upscale_denoising_strength=hr_denoise, **config, **latent_upscale_modes[hr_method], ) else: result = pipe.txt2img(prompt, width=width, height=height, **config) end_time = time.time() vram_free, vram_total = torch.cuda.mem_get_info() if ip_adapter : pipe.unload_ip_adapter() if lora_group is not None and len(lora_group) > 0: #pipe.unfuse_lora()#Unload lora pipe.unload_lora_weights() #if embs is not None and len(embs) > 0: #pipe.unload_textual_inversion() del pipe torch.cuda.empty_cache() gc.collect() print(f"done: model={model}, res={result[-1].width}x{result[-1].height}, step={steps}, time={round(end_time-start_time, 2)}s, vram_alloc={convert_size(vram_total-vram_free)}/{convert_size(vram_total)}") return gr.Image.update(result[-1], label=f"Initial Seed: {seed}"),result color_list = [] def get_color(n): for _ in range(n - len(color_list)): color_list.append(tuple(np.random.random(size=3) * 256)) return color_list def create_mixed_img(current, state, w=512, h=512): w, h = int(w), int(h) image_np = np.full([h, w, 4], 255) if state is None: state = {} colors = get_color(len(state)) idx = 0 for key, item in state.items(): if item["map"] is not None: m = item["map"] < 255 alpha = 150 if current == key: alpha = 200 image_np[m] = colors[idx] + (alpha,) idx += 1 return image_np def apply_size_sketch(width,height,state,inf_image,inpaiting_mode,inf_image_inpaiting): if inpaiting_mode and inf_image_inpaiting: w_change = inf_image_inpaiting["image"].width h_change = inf_image_inpaiting["image"].height elif inf_image is not None: w_change = inf_image.width h_change = inf_image.height #update_img = gr.Image.update(value=create_mixed_img("", state, w_change, h_change)) #return state, update_img,gr.Image.update(width=w_change,height = h_change) else: w_change = int(width) h_change = int(height) if state is not None: for key, item in state.items(): if item["map"] is not None: #inverted_image = PIL.ImageOps.invert(item["map"].convert('RGB')) item["map"] = resize(item["map"], w_change, h_change) update_img = gr.Image.update(value=create_mixed_img("", state, w_change, h_change)) return state, update_img,gr.Image.update(width=w_change,height = h_change) # width.change(apply_new_res, inputs=[width, height, global_stats], outputs=[global_stats, sp, rendered]) '''def apply_new_res(w, h, state,inf_image,rendered): if inf_image is not None: return state, rendered w, h = int(w), int(h) if state is not None: for key, item in state.items(): if item["map"] is not None: item["map"] = resize(item["map"], w, h) update_img = gr.Image.update(value=create_mixed_img("", state, w, h)) return state, update_img''' def detect_text(text, state, width, height,formula_button,inf_image,inpaiting_mode,inf_image_inpaiting): global formula if text is None or text == "": return None, None, gr.Radio.update(value=None,visible = False), None,gr.Dropdown.update(value = formula_button) if inpaiting_mode and inf_image_inpaiting: w_change = inf_image_inpaiting["image"].width h_change = inf_image_inpaiting["image"].height elif inf_image is not None: w_change = inf_image.width h_change = inf_image.height else: w_change = int(width) h_change = int(height) t = text.split(",") new_state = {} for item in t: item = item.strip() if item == "": continue if state is not None and item in state: new_state[item] = { "map": state[item]["map"], "weight": state[item]["weight"], "mask_outsides": state[item]["mask_outsides"], } else: new_state[item] = { "map": None, "weight": 0.5, "mask_outsides": 0 } update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None,visible = True) update_img = gr.update(value=create_mixed_img("", new_state, w_change, h_change)) update_sketch = gr.update(value=None, interactive=False) return new_state, update_sketch, update, update_img,gr.Dropdown.update(value = formula_button) def detect_text1(text, state, width, height,formula_button,inf_image,inpaiting_mode,inf_image_inpaiting): global formula if text is None or text == "": return None, None, gr.Radio.update(value=None,visible = False), None,gr.Dropdown.update(value = formula_button) if inpaiting_mode and inf_image_inpaiting: w_change = inf_image_inpaiting["image"].width h_change = inf_image_inpaiting["image"].height elif inf_image is not None: w_change = inf_image.width h_change = inf_image.height else: w_change = int(width) h_change = int(height) t = text.split(",") new_state = {} for item in t: item = item.strip() if item == "": continue if state is not None and item in state: new_state[item] = { "map": state[item]["map"], "weight": state[item]["weight"], "mask_outsides": state[item]["mask_outsides"], } else: new_state[item] = { "map": None, "weight": 0.5, "mask_outsides": False } update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None,visible = True) update_img = gr.update(value=create_mixed_img("", new_state, w_change, h_change)) return new_state, update, update_img,gr.Dropdown.update(value = formula_button) def resize(img, w, h): trs = transforms.Compose( [ transforms.ToPILImage(), #transforms.Resize(min(h, w)), transforms.Resize((h, w),interpolation=transforms.InterpolationMode.BICUBIC), transforms.CenterCrop((h, w)), ] ) result = np.array(trs(img), dtype=np.uint8) return result def switch_canvas(entry, state, width, height,inf_image,inpaiting_mode,inf_image_inpaiting): if inpaiting_mode and inf_image_inpaiting: w_change = inf_image_inpaiting["image"].width h_change = inf_image_inpaiting["image"].height elif inf_image is not None: w_change = inf_image.width h_change = inf_image.height else: w_change = int(width) h_change = int(height) if entry is None or state is None: return None, 0.5, False, create_mixed_img("", state, w_change, h_change) return ( gr.update(value=None, interactive=True), gr.update(value=state[entry]["weight"] if entry in state else 0.5), gr.update(value=state[entry]["mask_outsides"] if entry in state else False), create_mixed_img(entry, state, w_change, h_change), ) def apply_canvas(selected, draw, state, w, h,inf_image,inpaiting_mode,inf_image_inpaiting): if inpaiting_mode and inf_image_inpaiting: w_change = inf_image_inpaiting["image"].width h_change = inf_image_inpaiting["image"].height elif inf_image is not None: w_change = inf_image.width h_change = inf_image.height else: w_change = int(w) h_change = int(h) if state is not None and selected in state and draw is not None: w, h = int(w_change), int(h_change) state[selected]["map"] = resize(draw, w, h) return state, gr.Image.update(value=create_mixed_img(selected, state, w, h)) def apply_weight(selected, weight, state): if state is not None and selected in state: state[selected]["weight"] = weight return state def apply_option(selected, mask, state): if state is not None and selected in state: state[selected]["mask_outsides"] = mask return state clustering_image =[] number_clustering = 0 def is_image_black(image): average_intensity = image.mean() if average_intensity < 10: return True else: return False def change_diferent_black_to_white(image): width, height = image.size for x in range(width): for y in range(height): r, g, b = image.getpixel((x, y)) if r != 0 and g != 0 and b != 0: image.putpixel((x, y), (255, 255, 255)) return image def change_black_to_other_color(image,color_list): width, height = image.size new_pixel = (random.randrange(1,256), random.randrange(1,256), random.randrange(1,256)) while new_pixel in color_list: new_pixel = (random.randrange(1,256), random.randrange(1,256), random.randrange(1,256)) for x in range(width): for y in range(height): pixel = image.getpixel((x, y)) if pixel == (0, 0, 0): image.putpixel((x, y), new_pixel) return image def get_color_mask(color, image, threshold=30): """ Returns a color mask for the given color in the given image. """ img_array = np.array(image, dtype=np.uint8) color_diff = np.sum((img_array - color) ** 2, axis=-1) img_array[color_diff > threshold] = img_array[color_diff > threshold] * 0 return Image.fromarray(img_array) def unique_colors(image, threshold=0.01): colors = image.getcolors(image.size[0] * image.size[1]) total_pixels = image.size[0] * image.size[1] unique_colors = [] for count, color in colors: if count / total_pixels > threshold: unique_colors.append(color) return unique_colors def extract_color_textboxes(color_map_image,MAX_NUM_COLORS): #color_map_image = Image.open(color_map_image) #color_map_image = cv2.imread(color_map_image) color_map_image= Image.fromarray(color_map_image.astype('uint8'), 'RGB') # Get unique colors in color_map_image colors = unique_colors(color_map_image) color_map_image = change_black_to_other_color(color_map_image,colors) colors = unique_colors(color_map_image) color_masks = [get_color_mask(color, color_map_image) for color in colors] # Append white blocks to color_masks to fill up to MAX_NUM_COLORS num_missing_masks = MAX_NUM_COLORS - len(color_masks) white_mask = Image.new("RGB", color_map_image.size, color=(32, 32, 32)) color_masks += [white_mask] * num_missing_masks color_output =[] for i in range(0,len(color_masks)) : #color_masks[i] = color_masks[i].convert('L') color_masks[i] = change_diferent_black_to_white(color_masks[i]) color_masks[i] = np.array(color_masks[i]) color_masks[i] = cv2.cvtColor(color_masks[i], cv2.COLOR_RGB2GRAY) color_masks[i] = 255.0 - color_masks[i] if is_image_black(color_masks[i]) == False: color_masks[i] = color_masks[i].astype(np.uint8) color_output.append(color_masks[i]) return color_output def apply_image_clustering(image, selected, w, h, strength, mask, state,inf_image,inpaiting_mode,inf_image_inpaiting): if inpaiting_mode and inf_image_inpaiting: w_change = inf_image_inpaiting["image"].width h_change = inf_image_inpaiting["image"].height elif inf_image is not None: w_change = inf_image.width h_change = inf_image.height else: w_change = int(w) h_change = int(h) if state is not None and selected in state: state[selected] = { "map": resize(image, w_change, h_change), "weight": strength, "mask_outsides": mask } return state, gr.Image.update(value=create_mixed_img(selected, state, w_change, h_change)) # sp2, radio, width, height, global_stats def apply_image(image, selected, w, h, strength, mask, state,inf_image,inpaiting_mode,inf_image_inpaiting): if inpaiting_mode and inf_image_inpaiting: w_change = inf_image_inpaiting["image"].width h_change = inf_image_inpaiting["image"].height elif inf_image is not None: w_change = inf_image.width h_change = inf_image.height else: w_change = int(w) h_change = int(h) if state is not None and selected in state: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) state[selected] = { "map": resize(image, w_change, h_change), "weight": strength, "mask_outsides": mask } elif state is not None: key_state = list(state.keys()) global number_clustering,clustering_image number_clustering = 0 clustering_image = [] clustering_image = extract_color_textboxes(image,len(state)+1) number_clustering = len(clustering_image) if len(state) > len(clustering_image): amount_add = len(clustering_image) else: amount_add = len(state) for i in range(0,amount_add): state[key_state[i]] = { "map": resize(clustering_image[i], w_change, h_change), "weight": strength, "mask_outsides": mask } return state, gr.Image.update(value=create_mixed_img(selected, state, w_change, h_change)) #rendered, apply_style, apply_clustering_style,Previous,Next,Completed,sp2,sp3 def apply_base_on_color(sp2,state, width, height,inf_image,inpaiting_mode,inf_image_inpaiting): global number_clustering,clustering_image if inpaiting_mode and inf_image_inpaiting: w_change = inf_image_inpaiting["image"].width h_change = inf_image_inpaiting["image"].height elif inf_image is not None: w_change = inf_image.width h_change = inf_image.height else: w_change = int(width) h_change = int(height) number_clustering = 0 clustering_image = [] clustering_image = extract_color_textboxes(sp2,len(state)+1) new_state = {} for i in state: new_state[i] = { "map": None, "weight": 0.5, "mask_outsides": False } return gr.Image.update(value = create_mixed_img("", new_state, w_change, h_change)),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Image.update(visible = False),gr.Image.update(value=clustering_image[0],visible = True),gr.Button.update(visible = True),new_state def completing_clustering(sp2): return gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Image.update(visible = True),gr.Image.update(visible = False),gr.Button.update(visible = False) def previous_image_page(sp3): global clustering_image,number_clustering number_clustering = number_clustering - 1 if number_clustering < 0: number_clustering = len(clustering_image)-1 return gr.Image.update(value = clustering_image[number_clustering]) def next_image_page(sp3): global clustering_image,number_clustering number_clustering = number_clustering + 1 if number_clustering >= len(clustering_image): number_clustering = 0 return gr.Image.update(value = clustering_image[number_clustering]) # [ti_state, lora_state, ti_vals, lora_vals, uploads] def get_file_link_sp(link): import requests import os from urllib.parse import unquote file_name = None absolute_path = None try: response = requests.get(link) response.raise_for_status() except requests.exceptions.HTTPError as err: print(f"There was an error downloading: {err}") else: content_disposition = response.headers.get("content-disposition") if content_disposition: file_name = content_disposition.split("filename=")[1] file_name = unquote(file_name) # remove quotation marks file_name = file_name.strip('"') else: file_name = "downloaded_file" with open(file_name, "wb") as f: f.write(response.content) #Get absolute_path absolute_path = os.path.abspath(file_name) #Change format file_name file_name = file_name.split('.')[0] file_name = file_name.replace('_',' ') file_name = file_name.replace('-',' ') file_name = file_name.title() return absolute_path, file_name def get_file_link(link): import requests import os from urllib.parse import unquote file_name = None absolute_path = None try: with requests.get(link, stream=True) as response: response.raise_for_status() # Get file size from headers total_size = int(response.headers.get('content-length', 0)) content_disposition = response.headers.get("content-disposition") if content_disposition: file_name = content_disposition.split("filename=")[1] file_name = unquote(file_name) # remove quotation marks file_name = file_name.strip('"') else: file_name = "downloaded_file" # Stream download and write to file chunk_size = 1024 downloaded_size = 0 with open(file_name, "wb") as f: for chunk in response.iter_content(chunk_size=chunk_size): if chunk: f.write(chunk) downloaded_size += len(chunk) # Print download progress progress = (downloaded_size / total_size) * 100 if progress%10 == 0: print(f"Download progress: {progress:.2f}% ({downloaded_size / 1024:.2f} KB / {total_size / 1024:.2f} KB)") # Get absolute_path absolute_path = os.path.abspath(file_name) # Change format file_name file_name = file_name.split('.')[0] file_name = file_name.replace('_', ' ') file_name = file_name.replace('-', ' ') file_name = file_name.title() except requests.exceptions.HTTPError as err: print(f"There was an error downloading: {err}") return absolute_path, file_name def add_net(files,link_download): global lora_scale_dict, lora_lst, lora_dict, embeddings_dict if files is None and (link_download is None or link_download == ''): return gr.CheckboxGroup.update(choices=list(embeddings_dict.keys())),gr.CheckboxGroup.update(choices=list(lora_dict.keys())),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],),gr.File.update(value=None),gr.Textbox.update(value = ''), if link_download is not None and link_download != '': path_file, file_name_download = get_file_link(link_download) if file_name_download: items_dl = Path(path_file) if items_dl.suffix == ".pt": state_dict = torch.load(path_file, map_location="cpu") else: state_dict = load_file(path_file, device="cpu") if any("lora" in k for k in state_dict.keys()): #lora_state = file.name if file_name_download not in lora_dict: lora_lst.append(file_name_download) lora_dict[file_name_download] = path_file lora_scale_dict[file_name_download] = 1.0 else: if file_name_download not in embeddings_dict: embeddings_dict[file_name_download] = path_file if files is not None: for file in files: item = Path(file.name) stripedname = str(item.stem).strip() stripedname = stripedname.replace('_',' ') stripedname = stripedname.replace('-',' ') stripedname = stripedname.title() if item.suffix == ".pt": state_dict = torch.load(file.name, map_location="cpu") else: state_dict = load_file(file.name, device="cpu") if any("lora" in k for k in state_dict.keys()): #lora_state = file.name if stripedname not in lora_dict: lora_lst.append(stripedname) lora_dict[stripedname] = file.name lora_scale_dict[stripedname] = 1.0 else: #ti_state[stripedname] = file.name if stripedname not in embeddings_dict: embeddings_dict[stripedname] = file.name return gr.CheckboxGroup.update(choices=list(embeddings_dict.keys())), gr.CheckboxGroup.update(choices=list(lora_dict.keys())),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],),gr.File.update(value=None),gr.Textbox.update(value = ''), def change_lora_value(lora_vals): global lora_scale_dict if len(lora_scale_dict) == 0 or lora_vals == 'Not using Lora': return gr.Slider.update(value = 1.0) return gr.Slider.update(value = lora_scale_dict[lora_vals]) def update_lora_value(lora_scale,lora_vals): global lora_scale_dict if len(lora_scale_dict) and lora_vals != 'Not using Lora': lora_scale_dict[lora_vals] = float(lora_scale) # [ti_state, lora_state, ti_vals, lora_vals, uploads] def clean_states(ti_state,lora_group): global lora_dict,embeddings_dict,lora_lst,lora_scale_dict delete_lora = list(lora_dict.values()) for i in delete_lora: os.remove(i) delete_embed_lst = list(embeddings_dict.values()) for i in delete_embed_lst: os.remove(i) embeddings_dict = dict() lora_dict = dict() lora_scale_dict = dict() lora_lst = ['Not using Lora'] return dict(),dict(),gr.CheckboxGroup.update(choices=list(embeddings_dict.keys()),value = None),gr.CheckboxGroup.update(choices=list(lora_dict.keys()),value = None),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],),gr.File.update(value=None),gr.Text.update(f""),gr.Text.update(f""),gr.Textbox.update(value = ''), def add_model(insert_model): global models,keep_vram,models_single_file insert_model=insert_model.replace(" ", "") if len(insert_model) == 0: return gr.Dropdown.update(choices=[k[0] for k in get_model_list()],value=base_name),gr.Textbox.update(value = '') if 'https' in insert_model: path_file, file_name_download = get_file_link(insert_model) for i in models: if file_name_download in i: return gr.Dropdown.update(choices=[k[0] for k in get_model_list()],value=base_name),gr.Textbox.update(value = '') models.append((file_name_download,path_file)) keep_vram.append(path_file) models_single_file.append(file_name_download) else: author,name = insert_model.split('/') name = name.replace('_',' ') name = name.replace('-',' ') name = name.title() for i in models: if name in i or insert_model in i: return gr.Dropdown.update(choices=[k[0] for k in get_model_list()],value=base_name),gr.Textbox.update(value = '') models.append((name,insert_model)) keep_vram.append(insert_model) return gr.Dropdown.update(choices=[k[0] for k in get_model_list()],value=base_name),gr.Textbox.update(value = '') def add_vae(insert_vae,single_load_file): global vae_link,vae_single_file,vae_lst insert_vae=insert_vae.replace(" ", "") if len(insert_vae) == 0: return gr.Dropdown.update(choices=[k for k in vae_lst],value=vae_lst[0]),gr.Textbox.update(value = ''),gr.Checkbox.update(value = False), if 'https' in insert_vae: path_file, file_name_download = get_file_link(insert_vae) if file_name_download not in vae_lst: vae_lst.append(file_name_download) vae_link[file_name_download] = path_file vae_single_file[file_name_download] = True else: name = insert_vae.split('/')[-1] name = name.split('.')[0] name = name.replace('_',' ') name = name.replace('-',' ') name = name.title() if name not in vae_lst: vae_lst.append(name) vae_link[name] = insert_vae vae_single_file[name] = single_load_file return gr.Dropdown.update(choices=[k for k in vae_lst],value=vae_lst[0]),gr.Textbox.update(value = ''),gr.Checkbox.update(value = False), def reset_model_button(insert_model): return gr.Textbox.update(value = '') def choose_tistate(ti_vals): if len(ti_vals) == 0: return dict(),gr.Text.update(""),gr.CheckboxGroup.update(choices=list(embeddings_dict.keys()),value = None) dict_copy = dict() for key, value in embeddings_dict.items(): if key in ti_vals: dict_copy[key] = value lst_key = [key for key in dict_copy.keys()] lst_key = '; '.join(map(str, lst_key)) return dict_copy,gr.Text.update(lst_key),gr.CheckboxGroup.update(choices=list(embeddings_dict.keys()),value = None) def choose_lora_function(lora_list): global lora_dict if len(lora_list) == 0: return dict(),gr.Text.update(""),gr.CheckboxGroup.update(choices=list(lora_dict.keys()),value = None),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],) dict_copy = dict() for key, value in lora_dict.items(): if key in lora_list: dict_copy[key] = value lst_key = [key for key in dict_copy.keys()] lst_key = '; '.join(map(str, lst_key)) return dict_copy,gr.Text.update(lst_key),gr.CheckboxGroup.update(choices=list(lora_dict.keys()),value = None),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],) def delete_embed(ti_vals,ti_state,embs_choose): if len(ti_vals) == 0: return gr.CheckboxGroup.update(choices=list(embeddings_dict.keys())),ti_state,gr.Text.update(embs_choose) for key in ti_vals: if key in ti_state: ti_state.pop(key) if key in embeddings_dict: os.remove(embeddings_dict[key]) embeddings_dict.pop(key) if len(ti_state) >= 1: lst_key = [key for key in ti_state.keys()] lst_key = '; '.join(map(str, lst_key)) else: lst_key ="" return gr.CheckboxGroup.update(choices=list(embeddings_dict.keys()),value = None),ti_state,gr.Text.update(lst_key) def delete_lora_function(lora_list,lora_group,lora_choose): global lora_dict,lora_lst,lora_scale_dict if len(lora_list) == 0: return gr.CheckboxGroup.update(choices=list(lora_dict.keys())),lora_group,gr.Text.update(lora_choose),gr.Dropdown.update() for key in lora_list: if key in lora_group: lora_group.pop(key) if key in lora_scale_dict: lora_scale_dict.pop(key) if key in lora_dict: os.remove(lora_dict[key]) lora_dict.pop(key) if len(lora_group) >= 1: lst_key = [key for key in lora_group.keys()] lst_key = '; '.join(map(str, lst_key)) else: lst_key ="" lora_lst = ["Not using Lora"]+[key for key in lora_dict.keys()] return gr.CheckboxGroup.update(choices=list(lora_dict.keys()),value = None),lora_group,gr.Text.update(lst_key),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],) def lora_delete(lora_vals): global lora_dict global lora_lst if lora_vals == 'Not using Lora': return gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],) os.remove(lora_dict[lora_vals]) lora_dict.pop(lora_vals) lora_lst.remove(lora_vals) return gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],) #diffuser_pipeline,sampler,gallery,hr_enabled def mode_diffuser_pipeline( controlnet_enabled): if controlnet_enabled == True: return gr.Checkbox.update(value = True),gr.Checkbox.update() return gr.Checkbox.update(value = False),gr.Checkbox.update(value = False) '''def mode_diffuser_pipeline1(diffuser_pipeline, controlnet_enabled): assert diffuser_pipeline == False, "Please enable diffusers pipeline to use this option" return gr.Checkbox.update(value = True)''' def res_cap(g, w, h, x): if g: return f"Enable upscaler: {w}x{h} to {int(w*x)//8 *8}x{int(h*x)//8 *8}" else: return "Enable upscaler" #diffuser_pipeline,hr_enabled,sampler,gallery,controlnet_enabled def mode_upscale(diffuser_pipeline, hr_scale, width, height,hr_enabled): if hr_enabled == True: return gr.Checkbox.update(value = False),gr.Checkbox.update(value = True,label=res_cap(True, width, height, hr_scale)),gr.Dropdown.update(value="DPM++ 2M Karras",choices=[s[0] for s in samplers_k_diffusion]),gr.Checkbox.update(value = False) return gr.Checkbox.update(value = False),gr.Checkbox.update(value = False,label=res_cap(False, width, height, hr_scale)),gr.Dropdown.update(value="DPM++ 2M Karras",choices=[s[0] for s in samplers_k_diffusion]),gr.Checkbox.update() def change_control_net(model_control_net, low_threshold, high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose): if model_control_net == 'Canny': return gr.Slider.update(visible = True),gr.Slider.update(visible = True),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Radio.update(visible = False) if model_control_net == 'Depth': return gr.Slider.update(visible = False),gr.Slider.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Radio.update(visible = True,choices=["Midas","DPT"]) if model_control_net == 'Openpose': return gr.Slider.update(visible = False),gr.Slider.update(visible = False),gr.Checkbox.update(visible = True),gr.Checkbox.update(visible = True),gr.Checkbox.update(visible = True),gr.Radio.update(visible = False) if model_control_net == 'Semantic Segmentation': return gr.Slider.update(visible = False),gr.Slider.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Radio.update(visible = True,choices=["Convnet tiny","Convnet small","Convnet base","Convnet large","Convnet xlarge","Swin tiny","Swin small","Swin base","Swin large"]) if model_control_net =='Soft Edge' or model_control_net == 'Scribble' or model_control_net == 'Sketch': return gr.Slider.update(visible = False),gr.Slider.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Radio.update(visible = True,choices=["HED","PidiNet"]) return gr.Slider.update(visible = False),gr.Slider.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Radio.update(visible = False) previous_sampler = 'DPM++ 2M Karras' previous_sampler_hires = 'DPM++ 2M Karras' #sampler,gallery,hr_enabled,controlnet_enabled def mode_diffuser_pipeline_sampler(diffuser_pipeline, sampler,sampler_hires): global previous_sampler, previous_sampler_hires sample_now = previous_sampler sampler_hires_now = previous_sampler_hires previous_sampler = sampler previous_sampler_hires = sampler_hires if diffuser_pipeline == False: return gr.Checkbox.update(value = False), gr.Dropdown.update(value=sample_now,choices=[s[0] for s in samplers_k_diffusion]),gr.Dropdown.update(value=sampler_hires_now,choices=[s[0] for s in samplers_k_diffusion]) return gr.Checkbox.update(value = True),gr.Dropdown.update(value=sample_now,choices=[s[0] for s in samplers_diffusers]),gr.Dropdown.update(value=sampler_hires_now,choices=[s[0] for s in samplers_diffusers]) def change_gallery(latent_processing,hr_process_enabled): if latent_processing or hr_process_enabled: return gr.Gallery.update(visible = True) return gr.Gallery.update(visible = False) in_edit_mode = False in_edit_mode_adapter = False def preview_image(model_control_net,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,img_control,preprocessor_name,multi_controlnet,disable_preprocessing): global in_edit_mode if multi_controlnet == True and in_edit_mode == True: global lst_control,current_number_control if model_control_net == lst_control[current_number_control]["control_net_model"]: setting_processing = list(lst_control[current_number_control].items()) setting_processing = setting_processing[:-3] setting_processing = dict(setting_processing) else: setting_processing = { "control_net_model": model_control_net, "img_control": img_control, "low_threshold": low_threshold, "high_threshold": high_threshold, "has_body": has_body_openpose, "has_face": has_face_openpose, "has_hand": has_hand_openpose, "preprocessor_name": preprocessor_name, "disable_preprocessing":disable_preprocessing, } image_sp_control = control_net_preprocessing(**setting_processing) return gr.Image.update(image_sp_control) elif img_control is not None: image_show = control_net_preprocessing(model_control_net,img_control,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,preprocessor_name,disable_preprocessing) return gr.Image.update(image_show) return gr.Image.update(value = None) def change_image_condition(image_condition): if image_condition is None: return gr.Image.update() return gr.Image.update(value= None) #control_net_model,img_control,low_threshold = None,high_threshold=None,has_hand=None,preprocessor_name=None def control_net_muti(control_net_model,img_control,low_threshold ,high_threshold,has_body,has_hand,has_face,preprocessor_name,controlnet_scale,control_guidance_start,control_guidance_end,disable_preprocessing): global lst_control if img_control is not None: config = { "control_net_model": control_net_model, "img_control": img_control, "low_threshold": low_threshold, "high_threshold": high_threshold, "has_body": has_body, "has_face": has_face, "has_hand": has_hand, "preprocessor_name": preprocessor_name, "disable_preprocessing":disable_preprocessing, "controlnet_scale": controlnet_scale, "control_guidance_start": control_guidance_start, "control_guidance_end": control_guidance_end, } lst_control.append(config) return gr.Image.update(value = None) def previous_view_control(): global lst_control,current_number_control if current_number_control <= 0: current_number_control = len(lst_control)-1 else: current_number_control -= 1 return gr.Dropdown.update(value = lst_control[current_number_control]["control_net_model"]),gr.Image.update(value = lst_control[current_number_control]["img_control"]),gr.Slider.update(value = lst_control[current_number_control]["low_threshold"]),gr.Slider.update(value = lst_control[current_number_control]["high_threshold"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_body"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_hand"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_face"]),gr.Radio.update(value = lst_control[current_number_control]["preprocessor_name"]),gr.Slider.update(value= lst_control[current_number_control]["controlnet_scale"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_start"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_end"]),gr.Checkbox.update(value = lst_control[current_number_control]["disable_preprocessing"]) def next_view_control(): global lst_control,current_number_control if current_number_control >= len(lst_control)-1: current_number_control = 0 else: current_number_control += 1 return gr.Dropdown.update(value = lst_control[current_number_control]["control_net_model"]),gr.Image.update(value = lst_control[current_number_control]["img_control"]),gr.Slider.update(value = lst_control[current_number_control]["low_threshold"]),gr.Slider.update(value = lst_control[current_number_control]["high_threshold"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_body"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_hand"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_face"]),gr.Radio.update(value = lst_control[current_number_control]["preprocessor_name"]),gr.Slider.update(value= lst_control[current_number_control]["controlnet_scale"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_start"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_end"]),gr.Checkbox.update(value = lst_control[current_number_control]["disable_preprocessing"]) def apply_edit_control_net(control_net_model,img_control,low_threshold ,high_threshold,has_body,has_hand,has_face,preprocessor_name,controlnet_scale,control_guidance_start,control_guidance_end,disable_preprocessing): global lst_control,current_number_control,in_edit_mode if img_control is not None: config = { "control_net_model": control_net_model, "img_control": img_control, "low_threshold": low_threshold, "high_threshold": high_threshold, "has_body": has_body, "has_face": has_face, "has_hand": has_hand, "preprocessor_name": preprocessor_name, "disable_preprocessing":disable_preprocessing, "controlnet_scale": controlnet_scale, "control_guidance_start": control_guidance_start, "control_guidance_end": control_guidance_end, } lst_control[current_number_control] = config return gr.Dropdown.update(),gr.Image.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Checkbox.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Slider.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update() else: lst_control.pop(current_number_control) current_number_control -=1 if current_number_control == -1: current_number_control = len(lst_control)-1 if len(lst_control) == 0: in_edit_mode = False return gr.Dropdown.update(),gr.Image.update(value = None),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Checkbox.update(value = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Slider.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update() return gr.Dropdown.update(value = lst_control[current_number_control]["control_net_model"]),gr.Image.update(value = lst_control[current_number_control]["img_control"]),gr.Slider.update(value = lst_control[current_number_control]["low_threshold"]),gr.Slider.update(value = lst_control[current_number_control]["high_threshold"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_body"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_hand"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_face"]),gr.Radio.update(value = lst_control[current_number_control]["preprocessor_name"]),gr.Checkbox.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Slider.update(value= lst_control[current_number_control]["controlnet_scale"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_start"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_end"]),gr.Checkbox.update(value = lst_control[current_number_control]["disable_preprocessing"]) def complete_edit_multi(): global current_number_control,in_edit_mode current_number_control = 0 in_edit_mode = False return gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Image.update(value= None),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False) def multi_controlnet_function(multi_controlnet): if multi_controlnet: return gr.Checkbox.update(value = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update() return gr.Checkbox.update(),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False) def edit_multi_control_image_function(): global lst_control,current_number_control,in_edit_mode if len(lst_control) > 0: in_edit_mode = True return gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Dropdown.update(value = lst_control[current_number_control]["control_net_model"]),gr.Image.update(value = lst_control[current_number_control]["img_control"]),gr.Slider.update(value = lst_control[current_number_control]["low_threshold"]),gr.Slider.update(value = lst_control[current_number_control]["high_threshold"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_body"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_hand"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_face"]),gr.Radio.update(value = lst_control[current_number_control]["preprocessor_name"]),gr.Slider.update(value= lst_control[current_number_control]["controlnet_scale"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_start"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_end"]),gr.Checkbox.update(value = lst_control[current_number_control]["disable_preprocessing"]) in_edit_mode = False return gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Dropdown.update(),gr.Image.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Slider.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update() def ip_adapter_work(ip_adapter): if ip_adapter: return gr.Checkbox.update(value = True) return gr.Checkbox.update() def preview_image_adapter(model_adapter,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,img_control,preprocessor_adapter,multi_adapter,disable_preprocessing_adapter): global in_edit_mode_adapter if multi_adapter == True and in_edit_mode_adapter == True: global lst_adapter,current_number_adapter if model_adapter == lst_adapter[current_number_adapter]["model_adapter"]: setting_processing = list(lst_adapter[current_number_adapter].items()) setting_processing = setting_processing[:-3] setting_processing = dict(setting_processing) else: setting_processing = { "model_adapter": model_adapter, "img_control": img_control, "low_threshold_adapter": low_threshold_adapter, "high_threshold_adapter": high_threshold_adapter, "has_body": has_body_openpose_adapter, "has_face": has_face_openpose_adapter, "has_hand": has_hand_openpose_adapter, "preprocessor_adapter": preprocessor_adapter, "disable_preprocessing_adapter":disable_preprocessing_adapter, } image_sp_control = adapter_preprocessing(**setting_processing) return gr.Image.update(image_sp_control) elif img_control is not None: image_show = adapter_preprocessing(model_adapter,img_control,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter,disable_preprocessing_adapter) return gr.Image.update(image_show) return gr.Image.update(value = None) def change_image_condition_adapter(image_condition_adapter): if image_condition_adapter is None: return gr.Image.update() return gr.Image.update(value= None) #control_net_model,img_control,low_threshold_adapter = None,high_threshold_adapter=None,has_hand=None,preprocessor_adapter=None def adapter_muti(model_adapter,img_control,low_threshold_adapter ,high_threshold_adapter,has_body,has_hand,has_face,preprocessor_adapter,adapter_conditioning_scale,adapter_conditioning_factor,disable_preprocessing_adapter): global lst_adapter if img_control is not None: config = { "model_adapter": model_adapter, "img_control": img_control, "low_threshold_adapter": low_threshold_adapter, "high_threshold_adapter": high_threshold_adapter, "has_body": has_body, "has_face": has_face, "has_hand": has_hand, "preprocessor_adapter": preprocessor_adapter, "disable_preprocessing_adapter":disable_preprocessing_adapter, "adapter_conditioning_scale": adapter_conditioning_scale, "adapter_conditioning_factor": adapter_conditioning_factor, } lst_adapter.append(config) return gr.Image.update(value = None) def previous_view_adapter(): global lst_adapter,current_number_adapter if current_number_adapter <= 0: current_number_adapter = len(lst_adapter)-1 else: current_number_adapter -= 1 return gr.Dropdown.update(value = lst_adapter[current_number_adapter]["model_adapter"]),gr.Image.update(value = lst_adapter[current_number_adapter]["img_control"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["low_threshold_adapter"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["high_threshold_adapter"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_body"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_hand"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_face"]),gr.Radio.update(value = lst_adapter[current_number_adapter]["preprocessor_adapter"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_scale"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_factor"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["disable_preprocessing_adapter"]) def next_view_adapter(): global lst_adapter,current_number_adapter if current_number_adapter >= len(lst_adapter)-1: current_number_adapter = 0 else: current_number_adapter += 1 return gr.Dropdown.update(value = lst_adapter[current_number_adapter]["model_adapter"]),gr.Image.update(value = lst_adapter[current_number_adapter]["img_control"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["low_threshold_adapter"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["high_threshold_adapter"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_body"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_hand"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_face"]),gr.Radio.update(value = lst_adapter[current_number_adapter]["preprocessor_adapter"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_scale"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_factor"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["disable_preprocessing_adapter"]) def apply_edit_adapter(model_adapter,img_control,low_threshold_adapter ,high_threshold_adapter,has_body,has_hand,has_face,preprocessor_adapter,adapter_conditioning_scale,adapter_conditioning_factor,disable_preprocessing_adapter): global lst_adapter,current_number_adapter,in_edit_mode_adapter if img_control is not None: config = { "model_adapter": model_adapter, "img_control": img_control, "low_threshold_adapter": low_threshold_adapter, "high_threshold_adapter": high_threshold_adapter, "has_body": has_body, "has_face": has_face, "has_hand": has_hand, "preprocessor_adapter": preprocessor_adapter, "disable_preprocessing_adapter":disable_preprocessing_adapter, "adapter_conditioning_scale": adapter_conditioning_scale, "adapter_conditioning_factor": adapter_conditioning_factor, } lst_adapter[current_number_adapter] = config return gr.Dropdown.update(),gr.Image.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Checkbox.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update() else: lst_adapter.pop(current_number_adapter) current_number_adapter -=1 if current_number_adapter == -1: current_number_adapter = len(lst_adapter)-1 if len(lst_adapter) == 0: in_edit_mode_adapter = False return gr.Dropdown.update(),gr.Image.update(value = None),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Checkbox.update(value = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update() return gr.Dropdown.update(value = lst_adapter[current_number_adapter]["model_adapter"]),gr.Image.update(value = lst_adapter[current_number_adapter]["img_control"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["low_threshold_adapter"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["high_threshold_adapter"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_body"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_hand"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_face"]),gr.Radio.update(value = lst_adapter[current_number_adapter]["preprocessor_adapter"]),gr.Checkbox.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_scale"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_factor"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["disable_preprocessing_adapter"]) def complete_edit_multi_adapter(): global current_number_adapter,in_edit_mode_adapter current_number_adapter = 0 in_edit_mode_adapter = False return gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Image.update(value= None),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False) def multi_adapter_function(multi_adapter): if multi_adapter: return gr.Checkbox.update(value = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update() return gr.Checkbox.update(),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False) def edit_multi_adapter_image_function(): global lst_adapter,current_number_adapter,in_edit_mode_adapter if len(lst_adapter) > 0: in_edit_mode_adapter = True return gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Dropdown.update(value = lst_adapter[current_number_adapter]["model_adapter"]),gr.Image.update(value = lst_adapter[current_number_adapter]["img_control"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["low_threshold_adapter"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["high_threshold_adapter"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_body"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_hand"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_face"]),gr.Radio.update(value = lst_adapter[current_number_adapter]["preprocessor_adapter"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_scale"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_factor"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["disable_preprocessing_adapter"]) in_edit_mode_adapter = False return gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Dropdown.update(),gr.Image.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update() def ip_adpater_function(ip_adapter): if ip_adapter: return gr.Checkbox.update() return gr.Checkbox.update(value = False) #ip_adapter,inf_adapt_image,inf_adapt_image_multi,inf_adapt_image_strength,inf_adapt_image_strength_multi,edit_ip_adapter_setting,apply_ip_adapter_setting def ip_adpater_multi_function(ip_adapter_multi): if ip_adapter_multi: return gr.Dropdown.update(choices=[k for k in model_ip_adapter_lst[:-2]],value=model_ip_adapter_lst[0]),gr.Checkbox.update(value = True), gr.Image.update(visible = False), gr.Image.update(visible = True), gr.Slider.update(visible = False), gr.Slider.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True), gr.Image.update(visible = False), gr.Image.update(visible = True) return gr.Dropdown.update(choices=[k for k in model_ip_adapter_lst],value=model_ip_adapter_lst[0]),gr.Checkbox.update(), gr.Image.update(visible = True), gr.Image.update(visible = False), gr.Slider.update(visible = True), gr.Slider.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False), gr.Image.update(visible = True), gr.Image.update(visible = False) def apply_ip_adapter_setting_function(model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,inf_control_adapt_image_multi): global lst_ip_adapter,current_number_ip_adapter if inf_adapt_image_multi is not None: config ={ "model" : model_ip_adapter, "image" : inf_adapt_image_multi, "region_apply": inf_control_adapt_image_multi, "scale" : float(inf_adapt_image_strength_multi), } lst_ip_adapter.append(config) return gr.Image.update(value = None),gr.Image.update(value = None) return gr.Image.update(value = None),gr.Image.update(value = None) #model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,previous_ip_adapter_setting,next_ip_adapter_setting,apply_edit_ip_adapter_setting,complete_cip_adapter_setting,edit_ip_adapter_setting,apply_ip_adapter_setting def edit_ip_adapter_setting_function(): global lst_ip_adapter,current_number_ip_adapter if len(lst_ip_adapter) == 0: return ( gr.Dropdown.update(), gr.Image.update(), gr.Slider.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Image.update(), ) return ( gr.Dropdown.update(value = lst_ip_adapter[current_number_ip_adapter]["model"]), gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["image"]), gr.Slider.update(value = lst_ip_adapter[current_number_ip_adapter]["scale"]), gr.Button.update(visible = True), gr.Button.update(visible = True), gr.Button.update(visible = True), gr.Button.update(visible = True), gr.Button.update(visible = False), gr.Button.update(visible = False), gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["region_apply"]), ) def previous_ip_adapter_setting_function(): global lst_ip_adapter,current_number_ip_adapter current_number_ip_adapter -= 1 if current_number_ip_adapter < 0: current_number_ip_adapter = len(lst_ip_adapter) -1 return ( gr.Dropdown.update(value = lst_ip_adapter[current_number_ip_adapter]["model"]), gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["image"]), gr.Slider.update(value = lst_ip_adapter[current_number_ip_adapter]["scale"]), gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["region_apply"]), ) def next_ip_adapter_setting_function(): global lst_ip_adapter,current_number_ip_adapter current_number_ip_adapter += 1 if current_number_ip_adapter == len(lst_ip_adapter): current_number_ip_adapter = 0 return ( gr.Dropdown.update(value = lst_ip_adapter[current_number_ip_adapter]["model"]), gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["image"]), gr.Slider.update(value = lst_ip_adapter[current_number_ip_adapter]["scale"]), gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["region_apply"]), ) #inf_adapt_image_multi,previous_ip_adapter_setting,next_ip_adapter_setting,edit_ip_adapter_setting,apply_ip_adapter_setting,apply_edit_ip_adapter_setting,complete_cip_adapter_setting def complete_cip_adapter_setting_function(): return ( gr.Image.update(value = None), gr.Button.update(visible = False), gr.Button.update(visible = False), gr.Button.update(visible = True), gr.Button.update(visible = True), gr.Button.update(visible = False), gr.Button.update(visible = False), gr.Image.update(value = None), ) #model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,previous_ip_adapter_setting,next_ip_adapter_setting,edit_ip_adapter_setting,apply_ip_adapter_setting,apply_edit_ip_adapter_setting,complete_cip_adapter_setting def apply_edit_ip_adapter_setting_function(model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,inf_control_adapt_image_multi): global lst_ip_adapter,current_number_ip_adapter if inf_adapt_image_multi is not None: config_change = lst_ip_adapter[current_number_ip_adapter] config_change["model"] = model_ip_adapter config_change["image"] = inf_adapt_image_multi config_change["scale"] = float(inf_adapt_image_strength_multi) config_change["region_apply"] = inf_control_adapt_image_multi return ( gr.Dropdown.update(), gr.Image.update(), gr.Slider.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Image.update(), ) #Delete lst_ip_adapter.pop(current_number_ip_adapter) current_number_ip_adapter -= 1 if len(lst_ip_adapter) == 0: return ( gr.Dropdown.update(), gr.Image.update(value = None), gr.Slider.update(), gr.Button.update(visible = False), gr.Button.update(visible = False), gr.Button.update(visible = True), gr.Button.update(visible = True), gr.Button.update(visible = False), gr.Button.update(visible = False), gr.Image.update(value = None), ) if current_number_ip_adapter == -1: current_number_ip_adapter = len(lst_ip_adapter)-1 return ( gr.Dropdown.update(value = lst_ip_adapter[current_number_ip_adapter]["model"]), gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["image"]), gr.Slider.update(value = lst_ip_adapter[current_number_ip_adapter]["scale"]), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Button.update(), gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["region_apply"]), ) def inpaiting_mode_fuction(inpaiting_mode): if inpaiting_mode: return gr.Image.update(visible = False),gr.Image.update(visible = True), gr.Image.update(visible = True),gr.Checkbox.update(visible = True),gr.Button.update(visible = True),gr.Slider.update(value = 1.0) return gr.Image.update(visible = True),gr.Image.update(visible = False), gr.Image.update(visible = False),gr.Checkbox.update(visible = False),gr.Button.update(visible = False),gr.Slider.update(value = 0.5) def get_mask_fuction(inf_image_inpaiting): img_mask = None if isinstance(inf_image_inpaiting,dict): img_mask = inf_image_inpaiting["mask"].copy() return gr.Image.update(img_mask) latent_upscale_modes = { "Latent (bilinear)": {"upscale_method": "bilinear", "upscale_antialias": False}, "Latent (bilinear antialiased)": {"upscale_method": "bilinear", "upscale_antialias": True}, "Latent (bicubic)": {"upscale_method": "bicubic", "upscale_antialias": False}, "Latent (bicubic antialiased)": { "upscale_method": "bicubic", "upscale_antialias": True, }, "Latent (nearest)": {"upscale_method": "nearest", "upscale_antialias": False}, "Latent (nearest-exact)": { "upscale_method": "nearest-exact", "upscale_antialias": False, }, #"Latent (linear)": {"upscale_method": "linear", "upscale_antialias": False}, #"Latent (trilinear)": {"upscale_method": "trilinear", "upscale_antialias": False}, "Latent (area)": {"upscale_method": "area", "upscale_antialias": False}, } css = """ .finetuned-diffusion-div div{ display:inline-flex; align-items:center; gap:.8rem; font-size:1.75rem; padding-top:2rem; } .finetuned-diffusion-div div h1{ font-weight:900; margin-bottom:7px } .finetuned-diffusion-div p{ margin-bottom:10px; font-size:94% } .box { float: left; height: 20px; width: 20px; margin-bottom: 15px; border: 1px solid black; clear: both; } a{ text-decoration:underline } .tabs{ margin-top:0; margin-bottom:0 } #gallery{ min-height:20rem } .no-border { border: none !important; } """ with gr.Blocks(css=css) as demo: gr.HTML( f"""
Running on CPU 🥶 This demo does not work on CPU.
Using the following formula as default: w = scale * token_weight_martix * sigma * std(qk).