File size: 11,330 Bytes
0e99845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# _____________ Import Python Libraries _________________ #

import streamlit as st
import numpy as np
import plotly.express as px
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline

# ________________ Page Configuration Section _____________  #

st.set_page_config(
    page_title="Data Ocean",
    page_icon= 'πŸ”₯'
)

# _________________ Web Page Info Section _____________________ #

st.title(":red[Data] :blue[Analytic] :orange[Portal & Machine Learning]")
st.header(":rainbow[Explore Data With Ease]")

# __________________ File Upload Section _________________ #

file = st.file_uploader('Drop Your CSV, Excel', type=['csv', 'xlsx'])

if file is not None:
    try:
        if file.name.endswith('csv'):
            data = pd.read_csv(file)
        elif file.name.endswith('xlsx'):
            data = pd.read_excel(file)
        else:
            pass

        st.dataframe(data)
        st.success("File Successfully Uploaded" ,icon='πŸŽ‰')

        # ________________ Basic Info Summary Section ______________  #

        st.subheader(':rainbow[Basic Information of The Dataset]',divider='violet')
        tab1, tab2, tab3, tab4 ,tab5 , tab6 = st.tabs(['Summary', 'Top & Bottom Rows', 'Data Types', 'Columns','Missing Values','Duplicates Value'])

        with tab1:
            st.write(f'There are {data.shape[0]} Rows and {data.shape[1]} Columns in The Dataset')
            st.subheader(':blue[Statistical Summary]')
            st.dataframe(data.describe())

        with tab2:
            st.subheader(':gray[Top Rows]')
            top_rows = st.slider('Number of Rows to Fetch', 1, data.shape[0], key='topslider')
            st.dataframe(data.head(top_rows))

            st.subheader(':green[Bottom Rows]')
            bottom_rows = st.slider('Number of Rows to Fetch', 1, data.shape[0], key='bottomslider')
            st.dataframe(data.tail(bottom_rows))

        with tab3:
            st.subheader(':orange[Data Types]')
            st.write(data.dtypes.tolist())

        with tab4:
            st.subheader(':green[Columns]')
            st.write(data.columns.tolist())

        with tab5:
            st.subheader(':red[Missing Values]')
            missing_values = data.isnull().sum()
            st.dataframe(missing_values)
            if missing_values.sum() > 0:
                remove_tab, fill_tab = st.tabs(['Remove Missing Values', 'Fill Missing Values'])

                with remove_tab:
                    if st.checkbox("Remove Rows with Missing Values"):
                        data = data.dropna(inplace=True)
                        st.success('Rows with missing values removed!', icon="πŸŽ‰")

                with fill_tab:
                    replace_nulls = st.selectbox('Replace Missing Values With:', ['None', 'Mean', 'Median', 'Mode'])

                    if replace_nulls != 'None':
                        for col in data.select_dtypes(include=[np.number]):
                            if replace_nulls == 'Mean':
                                data[col].fillna(data[col].mean(), inplace=True)
                            elif replace_nulls == 'Median':
                                data[col].fillna(data[col].median(), inplace=True)
                            elif replace_nulls == 'Mode':
                                data[col].fillna(data[col].mode()[0], inplace=True)
                        st.success("Missing values replaced successfully!", icon='βœ…')
            else:
                st.success("No missing values detected.", icon='πŸ”₯')

        with tab6:
            st.subheader(':green[Duplicate Values]')
            duplicates = data.duplicated().sum()
            if duplicates ==0:
                st.info(f' No Duplicates Value Found',icon='πŸ”₯')

            if duplicates > 0 and st.checkbox('Remove Duplicates'):
                data = data.drop_duplicates()
                st.success('Duplicate rows removed!', icon='πŸ”₯')


        # __________________ Value Count Section _____________________ #

        st.subheader(':rainbow[Column Value Count]',divider='green')
        with st.expander('Value Count'):
            col1, col2 = st.columns(2)
            with col1:
                column = st.selectbox('Choose Column Name', options=[None] + data.columns.tolist())
            with col2:
                toprows = st.number_input('Number of Top Rows', min_value=1, step=1, value=5)

            if column:
                result = data[column].value_counts().reset_index().head(toprows)
                result.columns = [column, 'count']  
                st.dataframe(result)

                if not result.empty:
                    fig = px.bar(data_frame=result, x=column, y='count', template='plotly_white')
                    st.plotly_chart(fig)

                    fig = px.line(data_frame=result, x=column, y='count')
                    st.plotly_chart(fig)

                    fig = px.pie(data_frame=result, names=column, values='count')
                    st.plotly_chart(fig)

        # ______________ GroupBy Section _________________________ #

        st.subheader(':blue[Groupby : Simplify Your Data Analysis]',divider='violet')
        st.write("Groupby allows you to summarize data by categories.")

        with st.expander('Group By Your Columns'):
            col1, col2, col3 = st.columns(3)

            with col1:
                groupby_cols = st.multiselect('Choose Columns to Group By', options=data.columns.tolist())

            with col2:
                operation_col = st.selectbox("Choose Column for Operation", options=data.columns.tolist())

            with col3:
                operation = st.selectbox("Choose Operation", options=['sum', 'max', 'min', 'count', 'mean', 'median'])

            if groupby_cols and operation_col and operation:
                result = data.groupby(groupby_cols).agg(newcol=(operation_col, operation)).reset_index()
                st.dataframe(result)

                st.subheader(':rainbow[Data Visualization]')
                graph_type = st.selectbox('Choose Graph Type', options=['line', 'bar', 'scatter', 'pie', 'sunburst'])

                if graph_type == 'line':
                    x_axis = st.selectbox('X Axis', options=result.columns.tolist())
                    y_axis = st.selectbox('Y Axis', options=result.columns.tolist())
                    fig = px.line(data_frame=result, x=x_axis, y=y_axis)
                    st.plotly_chart(fig)

                elif graph_type == 'bar':
                    x_axis = st.selectbox('X Axis', options=result.columns.tolist())
                    y_axis = st.selectbox('Y Axis', options=result.columns.tolist())
                    color = st.selectbox('Color Information', options=[None] + result.columns.tolist())
                    fig = px.bar(data_frame=result, x=x_axis, y=y_axis, color=color)
                    st.plotly_chart(fig)

                elif graph_type == 'pie':
                    values = st.selectbox("Numerical Values", options=result.columns.tolist())
                    names = st.selectbox('Labels', options=result.columns.tolist())
                    fig = px.pie(data_frame=result, names=names, values=values)
                    st.plotly_chart(fig)

                elif graph_type == 'scatter':
                    x_axis = st.selectbox('X Axis', options=result.columns.tolist())
                    y_axis = st.selectbox('Y Axis', options=result.columns.tolist())
                    size = st.selectbox('Size Column', options=[None] + result.columns.tolist())
                    color = st.selectbox('Color Information', options=[None] + result.columns.tolist())
                    fig = px.scatter(data_frame=result, x=x_axis, y=y_axis, color=color, size=size)
                    st.plotly_chart(fig)

                elif graph_type == 'sunburst':
                    path = st.multiselect('Path', options=result.columns.tolist())
                    fig = px.sunburst(data_frame=result, path=path, values='newcol')
                    st.plotly_chart(fig)

        #_________________ Machine Learning_______________ #

        st.subheader(":orange[Basic Machine Learning]",divider='green')
        ml_task = st.selectbox("Select ML Task", ["None", "SVM", "Logistic Regression", "Decision Tree", "K-Nearest Neighbors"])

        if ml_task != "None":
            target_col = st.selectbox("Select Target Column", data.columns)
            feature_cols = st.multiselect("Select Feature Columns", data.columns)

            if target_col and feature_cols:
                X = data[feature_cols]
                y = data[target_col]

                # Handle Preprocessing (Categorical and Numeric Data)
                numeric_features = X.select_dtypes(include=['int64', 'float64']).columns
                categorical_features = X.select_dtypes(include=['object']).columns

                numeric_transformer = Pipeline(steps=[
                    ('imputer', SimpleImputer(strategy='mean')),  # Handle missing data
                    ('scaler', StandardScaler())  # Normalize numerical data
                ])

                categorical_transformer = Pipeline(steps=[
                    ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),  # Handle missing data
                    ('onehot', OneHotEncoder(handle_unknown='ignore'))  # One-Hot Encode categorical features
                ])

                preprocessor = ColumnTransformer(
                    transformers=[
                        ('num', numeric_transformer, numeric_features),
                        ('cat', categorical_transformer, categorical_features)
                    ]
                )

                # Create model pipeline based on selected task
                if ml_task == "SVM":
                    model = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', SVC())])
                elif ml_task == "Logistic Regression":
                    model = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', LogisticRegression())])
                elif ml_task == "Decision Tree":
                    model = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', DecisionTreeClassifier())])
                elif ml_task == "K-Nearest Neighbors":
                    model = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', KNeighborsClassifier())])

                # Split the data
                X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

                # Train the model
                model.fit(X_train, y_train)
                y_pred = model.predict(X_test)

                # Evaluate the model
                accuracy = accuracy_score(y_test, y_pred)
                st.write(f"Model Accuracy: {accuracy * 100:.2f}%")
                
    except Exception as e:
        st.error(f"An error occurred: {e}")