Stefan Dumitrescu
Update
f3f70d0
raw
history blame
4.61 kB
import sentencepiece
import streamlit as st
import pandas as pd
import spacy
import roner
example_list = [
"Ana merge în București.",
"""Ana merge în București. Ana merge în București. Ana merge în București. Ana merge în București. Ana merge în București. Ana merge în București."""
]
st.set_page_config(layout="wide")
st.title("Demo for Romanian NER")
model_list = ['dumitrescustefan/bert-base-romanian-ner']
st.sidebar.header("Select NER Model")
model_checkpoint = st.sidebar.radio("", model_list)
st.sidebar.write("For details of models: 'https://huggingface.co/dumitrescustefan/")
st.sidebar.write("")
xlm_agg_strategy_info = "'aggregation_strategy' can be selected as 'simple' or 'none' for 'xlm-roberta' because of the RoBERTa model's tokenization approach."
st.sidebar.header("Select Aggregation Strategy Type")
if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
aggregation = st.sidebar.radio("", ('simple', 'none'))
st.sidebar.write(xlm_agg_strategy_info)
elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english":
aggregation = st.sidebar.radio("", ('simple', 'none'))
st.sidebar.write(xlm_agg_strategy_info)
st.sidebar.write("")
st.sidebar.write("This English NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta.")
else:
aggregation = st.sidebar.radio("", ('first', 'simple', 'average', 'max', 'none'))
st.sidebar.write("Please refer 'https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html' for entity grouping with aggregation_strategy parameter.")
st.subheader("Select Text Input Method")
input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text'))
if input_method == 'Select from Examples':
selected_text = st.selectbox('Select Text from List', example_list, index=0, key=1)
st.subheader("Text to Run")
input_text = st.text_area("Selected Text", selected_text, height=128, max_chars=None, key=2)
elif input_method == "Write or Paste New Text":
st.subheader("Text to Run")
input_text = st.text_area('Write or Paste Text Below', value="", height=128, max_chars=None, key=2)
@st.cache(allow_output_mutation=True)
def setModel(named_persons_only):
ner = roner.NER(named_persons_only=named_persons_only)
return ner
@st.cache(allow_output_mutation=True)
def get_html(html: str):
WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
html = html.replace("\n", " ")
return WRAPPER.format(html)
Run_Button = st.button("Run", key=None)
if Run_Button == True:
ner = setModel(named_persons_only = False)
output = ner(input_text)[0] # only one sentence
# tabular form
data = []
for word in output["words"]:
if word["tag"]!="O":
data.append({
"word": word["text"],
"tag": word["tag"],
"start_char": word["start_char"],
"end_char": word["end_char"],
"span_after": word["span_after"],
})
df = pd.DataFrame.from_dict(data)
st.subheader("Recognized Entities")
st.dataframe(df)
st.subheader("Spacy Style Display")
spacy_display = {}
spacy_display["ents"] = []
spacy_display["text"] = output["text"]
spacy_display["title"] = None
for word in output["words"]:
#spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
spacy_display["ents"].append({"start": word["start_char"], "end": word["end_char"], "label": word["tag"]})
entity_list = ['O', 'PERSON', 'ORG', 'GPE', 'LOC', 'NAT_REL_POL',
'EVENT', 'LANGUAGE', 'WORK_OF_ART', 'DATETIME',
'PERIOD', 'MONEY', 'QUANTITY', 'NUMERIC',
'ORDINAL', 'FACILITY']
colors = {
'O': '#FFF',
'PERSON': '#F00',
'ORG': '#F00',
'GPE': '#F00',
'LOC': '#F00',
'NAT_REL_POL': '#F00',
'EVENT': '#F00',
'LANGUAGE': '#F00',
'WORK_OF_ART': '#F00',
'DATETIME': '#F00',
'PERIOD': '#F00',
'MONEY': '#F00',
'QUANTITY': '#F00',
'NUMERIC': '#F00',
'ORDINAL': '#F00',
'FACILITY': '#F00',
}
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True, options={"ents": entity_list, "colors": colors})
style = "<style>mark.entity { display: inline-block }</style>"
st.write(f"{style}{get_html(html)}", unsafe_allow_html=True)