"""Evaluate text2sql spider model predictions.""" import json import os import re import signal import sys import traceback from pathlib import Path from typing import Any import click import pandas as pd from rich.console import Console from tqdm.auto import tqdm sys.path.append(os.path.join(os.path.dirname(__file__), ".")) # from metrics.spider import evaluation as spider_evaluation # type: ignore # noqa: E402 from metrics.test_suite_sql_eval import ( # type: ignore # noqa: E402 evaluation as test_suite_evaluation, ) from data_utils import read_tables_json # type: ignore # noqa: E402 from metric_utils import ( # type: ignore # noqa: E402 correct_casing, edit_distance, ) console = Console(soft_wrap=True) LEVELS = ["easy", "medium", "hard", "duckdb", "ddl", "all"] PARTIAL_TYPES = [ "select", "select(no AGG)", "where", "where(no OP)", "group(no Having)", "group", "order", "and/or", "IUEN", "keywords", ] TIMEOUT_SECONDS = 30 def timeout_handler(signum: int, frame: Any) -> None: raise TimeoutError("Function execution timed out.") def print_scores(scores: dict, model_name: str, metric_type: str = "exec") -> None: """Print scores.""" def print_formated_s( row_name: str, l: list[str], element_format: str = "{}", sep: str = "\t" ) -> None: template = "{}" + sep + sep.join([element_format] * len(l)) console.print(template.format(row_name, *l)) # Add empty scores for each level if not present for level in LEVELS: if level not in scores: scores[level] = {} scores[level]["count"] = 0 scores[level]["exec"] = 0 scores[level]["exact"] = 0 print_formated_s("", LEVELS) counts = [scores[level]["count"] for level in LEVELS] print_formated_s("count", counts) console.print(f">====================== {model_name} =====================") if metric_type == "exec": console.print( ">===================== EXECUTION ACCURACY =====================" ) exec_scores = [scores[level]["exec"] for level in LEVELS] print_formated_s("execution", exec_scores, element_format="{:.3f}") elif metric_type == "exact": console.print( "\n>====================== EXACT MATCHING ACCURACY =====================" ) exact_scores = [scores[level]["exact"] for level in LEVELS] print_formated_s("exact match", exact_scores, element_format="{:.3f}") def compute_exact_match_metric( predictions: list, references: list, gold_dbs: list, kmaps: dict, db_dir: str, categories, ) -> dict: """Compute exact match metric.""" exact_match = {} exact_match["all"] = {} exact_match["all"]["count"] = 0 exact_match["all"]["exact"] = 0 for prediction, reference, gold_db, category in tqdm( zip(predictions, references, gold_dbs, categories), total=len(predictions) ): if category not in exact_match: exact_match[category] = {} exact_match[category]["count"] = 0 exact_match[category]["exact"] = 0 exact_match["all"]["count"] += 1 exact_match[category]["count"] += 1 try: match = int(prediction.trim() == reference.trim()) exact_match[category]["exact"] += match exact_match["all"]["exact"] += match except Exception: pass return exact_match def compute_test_suite_metric( predictions: list, references: list, gold_dbs: list, setup_sqls: list, validate_sqls: list, kmaps: dict, db_dir: str, categories: list[str] = None, ) -> tuple[Any, list[int | None]]: """Compute test suite execution metric.""" evaluator = test_suite_evaluation.Evaluator( db_dir=db_dir, kmaps=kmaps, etype="exec", plug_value=False, keep_distinct=False, progress_bar_for_each_datapoint=False, ) # Only used for Sparc/CoSQL turn_scores: dict[str, list] = {"exec": [], "exact": []} by_row_metrics: list[int | None] = [] for prediction, reference, gold_db, setup_sql, validate_sql, category in tqdm( zip(predictions, references, gold_dbs, setup_sqls, validate_sqls, categories), total=len(predictions), ): turn_idx = 0 # skip final utterance-query pairs if turn_idx < 0: continue # Register the timeout handler function signal.signal(signal.SIGALRM, timeout_handler) signal.alarm(TIMEOUT_SECONDS) try: ex_metrics = evaluator.evaluate_one( gold_db, reference, prediction, setup_sql, validate_sql, turn_scores, idx=turn_idx, category=category, ) signal.alarm(0) by_row_metrics.append(int(ex_metrics["exec"])) except Exception as e: raise e by_row_metrics.append(None) pass evaluator.finalize() return evaluator.scores, by_row_metrics def compute_metrics( gold_sqls: list[str], pred_sqls: list[str], gold_dbs: list[str], setup_sqls: list[str], validate_sqls: list[str], kmaps: dict, db_schemas: dict, database_dir: str, lowercase_schema_match: bool, model_name: str, categories: list[str] = None, ) -> dict[str, str]: """Compute all metrics for data slice.""" if len(gold_sqls) != len(pred_sqls): raise ValueError( f"Gold {len(gold_sqls)} and pred {len(pred_sqls)} have different number of lines!" ) all_metrics: dict[str, Any] = {} # Execution Accuracy metrics, by_row_metrics = compute_test_suite_metric( pred_sqls, gold_sqls, gold_dbs, setup_sqls, validate_sqls, kmaps, database_dir, categories, ) all_metrics["exec"] = metrics all_metrics["by_row_exec"] = by_row_metrics print_scores(metrics, model_name, "exec") # Exact Match Accuracy metrics = compute_exact_match_metric( pred_sqls, gold_sqls, gold_dbs, kmaps, database_dir, categories ) all_metrics["exact"] = metrics print_scores(metrics, model_name, "exact") # Equality Accuracy per_row_match = [ int(gold.lower() == pred.lower()) for gold, pred in zip(gold_sqls, pred_sqls) ] all_metrics["equality"] = {"equality": sum(per_row_match) / len(gold_sqls)} all_metrics["by_row_equality"] = per_row_match # Edit Distance per_row_edit_dist = [ edit_distance(gold, pred) for gold, pred in zip(gold_sqls, pred_sqls) ] edit_dist = sum(per_row_edit_dist) / len(gold_sqls) all_metrics["edit_distance"] = {"edit_distance": edit_dist} all_metrics["by_row_edit_distance"] = per_row_edit_dist return all_metrics def get_to_print(metrics: dict, key: str, model_name: str, num_rows: int) -> dict: """Get pretty print dictionary of metrics.""" return { "slice": key, "model": model_name, "support": num_rows, "exec": f"{metrics[key]['exec']['all']['exec']:.3f}", "exact": f"{metrics[key]['exact']['all']['exact']:.3f}", "equality": f"{metrics[key]['equality']['equality']:.3f}", "edit_distance": f"{metrics[key]['edit_distance']['edit_distance']:.3f}", } @click.group() def cli() -> None: """Entrypoint.""" pass @cli.command() @click.option("--gold", type=str, required=True) @click.option("--pred", type=str, required=True) @click.option("--tables", type=str, required=True) @click.option("--db", type=str, default="") @click.option("--slice-attribute", type=str, default=None) @click.option("--output-dir", type=str, default="") @click.option("--output-filename", type=str, default="") @click.option( "--correct-sql-casing", type=bool, is_flag=True, default=False, required=False ) @click.option( "--lowercase-schema-match", type=bool, is_flag=True, default=False, required=False ) def evaluate( gold: str, pred: str, tables: str, db: str, slice_attribute: str, output_dir: str, output_filename: str, correct_sql_casing: bool, lowercase_schema_match: bool, ) -> None: """Evaluate SQL. Args: gold: path to gold sql file. pred: path to predicted json lines file. tables: the json path of the table metadata. db: path to database dir. slice_attribute: json attribute in gold data to slice on. output_dir: the prediction output directory output_filename: the prediction output filename correct_sql_casing: whether to correct casing of SQL keywords lowercase_schema_match: whether to lowercase schema match """ gold_path = Path(gold) pred_path = Path(pred) model_name = pred_path.stem if not output_filename: output_filename = pred_path.stem + "_eval.json" console.print(f"Saving to {Path(output_dir) / output_filename}") Path(output_dir).mkdir(parents=True, exist_ok=True) kmaps = test_suite_evaluation.build_foreign_key_map_from_json(tables) db_schemas = read_tables_json(tables) gold_sqls_dict = json.load(gold_path.open("r", encoding="utf-8")) pred_sqls_dict = [json.loads(l) for l in pred_path.open("r").readlines()] # Data validation assert len(gold_sqls_dict) == len( pred_sqls_dict ), "Sample size doesn't match between pred and gold file" # Keep track of everything full_results = [] for gold_sql, pred_sql in zip(gold_sqls_dict, pred_sqls_dict): merged_res = {**pred_sql, **gold_sql} full_results.append(merged_res) gold_sqls = [ re.sub(r"[\s\t\n]+", " ", p.get("gold", p.get("query", p.get("sql", "")))) for p in gold_sqls_dict ] setup_sqls = [re.sub(r"[\s\t\n]+", " ", p["setup_sql"]) for p in gold_sqls_dict] validate_sqls = [ re.sub(r"[\s\t\n]+", " ", p["validation_sql"]) for p in gold_sqls_dict ] gold_dbs = [p.get("db_id", p.get("db", "")) for p in gold_sqls_dict] pred_sqls = [re.sub(r"[\s\t\n]+", " ", p["pred"]) for p in pred_sqls_dict] categories = [p.get("category", "") for p in gold_sqls_dict] if correct_sql_casing: # One line to correct casing of SQL keywords using correct_casing(sql) gold_sqls = [correct_casing(sql) for sql in gold_sqls] pred_sqls = [correct_casing(sql) for sql in pred_sqls] final_metrics: dict[str, dict[str, Any]] = {} to_print = [] final_metrics["all"] = compute_metrics( gold_sqls=gold_sqls, pred_sqls=pred_sqls, gold_dbs=gold_dbs, setup_sqls=setup_sqls, validate_sqls=validate_sqls, kmaps=kmaps, db_schemas=db_schemas, database_dir=db, lowercase_schema_match=lowercase_schema_match, model_name=model_name + "(all)", categories=categories, ) for k, v in final_metrics["all"].items(): if k.startswith("by_row"): assert len(v) == len(gold_sqls) for dct, val in zip(full_results, v): dct[k[len("by_row_") :]] = val to_print.append(get_to_print(final_metrics, "all", model_name, len(gold_sqls))) # TODO: could be way more efficient if we subsliced the results but...whatever if slice_attribute: for unq_value in sorted(set([g[slice_attribute] for g in gold_sqls_dict])): idx_set = [ i for i, g in enumerate(gold_sqls_dict) if g[slice_attribute] == unq_value ] print(f"Processing {unq_value} with {len(idx_set)} samples") final_metrics[unq_value] = compute_metrics( gold_sqls=[gold_sqls[i] for i in idx_set], pred_sqls=[pred_sqls[i] for i in idx_set], gold_dbs=[gold_dbs[i] for i in idx_set], setup_sqls=[setup_sqls[i] for i in idx_set], validate_sqls=[validate_sqls[i] for i in idx_set], kmaps=kmaps, db_schemas=db_schemas, database_dir=db, lowercase_schema_match=lowercase_schema_match, model_name=model_name + f"({unq_value})", categories=[categories[i] for i in idx_set], ) to_print.append( get_to_print(final_metrics, unq_value, model_name, len(idx_set)) ) df = pd.DataFrame(to_print) console.print(df.to_csv(sep=",", index=False)) console.print("******") console.print(f"Saved metrics to {Path(output_dir) / output_filename}") json.dump(final_metrics, open(Path(output_dir) / output_filename, "w"), indent=4) output_filename = str(output_filename).replace("_eval.json", "_fd.jsonl") console.print(f"Saved dump to {Path(output_dir) / output_filename}") with open(Path(output_dir) / output_filename, "w") as f: for dct in full_results: f.write(json.dumps(dct) + "\n") if __name__ == "__main__": cli()