Spaces:
Running
Running
File size: 1,057 Bytes
977063a b9dc6d6 977063a 3a1fd8c 42f819f 3a1fd8c 42f819f 5051da6 acfff07 5051da6 3a1fd8c 93f5976 3a1fd8c f9d0ccd b9dc6d6 42f819f 7a91b08 b9dc6d6 5051da6 49c6a0b 5051da6 3a1fd8c 977063a b9dc6d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import gradio as gr
from evaluation_logic import run_evaluation, AVAILABLE_PROMPT_FORMATS
def gradio_run_evaluation(inference_api, model_name, prompt_format):
output = []
for result in run_evaluation(inference_api, str(model_name).strip(), prompt_format):
output.append(result)
yield "\n".join(output)
with gr.Blocks() as demo:
gr.Markdown("# DuckDB SQL Evaluation App")
inference_api = gr.Dropdown(
label="Inference API",
choices=['openrouter', 'inference_api'],
value="openrouter"
)
model_name = gr.Textbox(label="Model Name (e.g., qwen/qwen-2.5-72b-instruct)")
prompt_format = gr.Dropdown(
label="Prompt Format",
choices=['duckdbinst', 'duckdbinstgraniteshort'], #AVAILABLE_PROMPT_FORMATS,
value="duckdbinstgraniteshort"
)
start_btn = gr.Button("Start Evaluation")
output = gr.Textbox(label="Output", lines=20)
start_btn.click(fn=gradio_run_evaluation, inputs=[inference_api, model_name, prompt_format], outputs=output)
demo.queue().launch() |