Fabrice-TIERCELIN commited on
Commit
d796535
·
verified ·
1 Parent(s): f3dc75a

Upload 2 files

Browse files
sgm/modules/autoencoding/lpips/loss/LICENSE ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2018, Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, Oliver Wang
2
+ All rights reserved.
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are met:
6
+
7
+ * Redistributions of source code must retain the above copyright notice, this
8
+ list of conditions and the following disclaimer.
9
+
10
+ * Redistributions in binary form must reproduce the above copyright notice,
11
+ this list of conditions and the following disclaimer in the documentation
12
+ and/or other materials provided with the distribution.
13
+
14
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
17
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
18
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
20
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
21
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
sgm/modules/autoencoding/lpips/loss/lpips.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models"""
2
+
3
+ from collections import namedtuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ from torchvision import models
8
+
9
+ from ..util import get_ckpt_path
10
+
11
+
12
+ class LPIPS(nn.Module):
13
+ # Learned perceptual metric
14
+ def __init__(self, use_dropout=True):
15
+ super().__init__()
16
+ self.scaling_layer = ScalingLayer()
17
+ self.chns = [64, 128, 256, 512, 512] # vg16 features
18
+ self.net = vgg16(pretrained=True, requires_grad=False)
19
+ self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
20
+ self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
21
+ self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
22
+ self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
23
+ self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
24
+ self.load_from_pretrained()
25
+ for param in self.parameters():
26
+ param.requires_grad = False
27
+
28
+ def load_from_pretrained(self, name="vgg_lpips"):
29
+ ckpt = get_ckpt_path(name, "sgm/modules/autoencoding/lpips/loss")
30
+ self.load_state_dict(
31
+ torch.load(ckpt, map_location=torch.device("cpu")), strict=False
32
+ )
33
+ print("loaded pretrained LPIPS loss from {}".format(ckpt))
34
+
35
+ @classmethod
36
+ def from_pretrained(cls, name="vgg_lpips"):
37
+ if name != "vgg_lpips":
38
+ raise NotImplementedError
39
+ model = cls()
40
+ ckpt = get_ckpt_path(name)
41
+ model.load_state_dict(
42
+ torch.load(ckpt, map_location=torch.device("cpu")), strict=False
43
+ )
44
+ return model
45
+
46
+ def forward(self, input, target):
47
+ in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
48
+ outs0, outs1 = self.net(in0_input), self.net(in1_input)
49
+ feats0, feats1, diffs = {}, {}, {}
50
+ lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
51
+ for kk in range(len(self.chns)):
52
+ feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(
53
+ outs1[kk]
54
+ )
55
+ diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
56
+
57
+ res = [
58
+ spatial_average(lins[kk].model(diffs[kk]), keepdim=True)
59
+ for kk in range(len(self.chns))
60
+ ]
61
+ val = res[0]
62
+ for l in range(1, len(self.chns)):
63
+ val += res[l]
64
+ return val
65
+
66
+
67
+ class ScalingLayer(nn.Module):
68
+ def __init__(self):
69
+ super(ScalingLayer, self).__init__()
70
+ self.register_buffer(
71
+ "shift", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None]
72
+ )
73
+ self.register_buffer(
74
+ "scale", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None]
75
+ )
76
+
77
+ def forward(self, inp):
78
+ return (inp - self.shift) / self.scale
79
+
80
+
81
+ class NetLinLayer(nn.Module):
82
+ """A single linear layer which does a 1x1 conv"""
83
+
84
+ def __init__(self, chn_in, chn_out=1, use_dropout=False):
85
+ super(NetLinLayer, self).__init__()
86
+ layers = (
87
+ [
88
+ nn.Dropout(),
89
+ ]
90
+ if (use_dropout)
91
+ else []
92
+ )
93
+ layers += [
94
+ nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),
95
+ ]
96
+ self.model = nn.Sequential(*layers)
97
+
98
+
99
+ class vgg16(torch.nn.Module):
100
+ def __init__(self, requires_grad=False, pretrained=True):
101
+ super(vgg16, self).__init__()
102
+ vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
103
+ self.slice1 = torch.nn.Sequential()
104
+ self.slice2 = torch.nn.Sequential()
105
+ self.slice3 = torch.nn.Sequential()
106
+ self.slice4 = torch.nn.Sequential()
107
+ self.slice5 = torch.nn.Sequential()
108
+ self.N_slices = 5
109
+ for x in range(4):
110
+ self.slice1.add_module(str(x), vgg_pretrained_features[x])
111
+ for x in range(4, 9):
112
+ self.slice2.add_module(str(x), vgg_pretrained_features[x])
113
+ for x in range(9, 16):
114
+ self.slice3.add_module(str(x), vgg_pretrained_features[x])
115
+ for x in range(16, 23):
116
+ self.slice4.add_module(str(x), vgg_pretrained_features[x])
117
+ for x in range(23, 30):
118
+ self.slice5.add_module(str(x), vgg_pretrained_features[x])
119
+ if not requires_grad:
120
+ for param in self.parameters():
121
+ param.requires_grad = False
122
+
123
+ def forward(self, X):
124
+ h = self.slice1(X)
125
+ h_relu1_2 = h
126
+ h = self.slice2(h)
127
+ h_relu2_2 = h
128
+ h = self.slice3(h)
129
+ h_relu3_3 = h
130
+ h = self.slice4(h)
131
+ h_relu4_3 = h
132
+ h = self.slice5(h)
133
+ h_relu5_3 = h
134
+ vgg_outputs = namedtuple(
135
+ "VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"]
136
+ )
137
+ out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
138
+ return out
139
+
140
+
141
+ def normalize_tensor(x, eps=1e-10):
142
+ norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
143
+ return x / (norm_factor + eps)
144
+
145
+
146
+ def spatial_average(x, keepdim=True):
147
+ return x.mean([2, 3], keepdim=keepdim)