Fabrice-TIERCELIN commited on
Commit
22d45a3
·
verified ·
1 Parent(s): 3e69253

Pre-downscale factor

Browse files
Files changed (1) hide show
  1. gradio_demo.py +16 -10
gradio_demo.py CHANGED
@@ -125,6 +125,7 @@ def stage2_process(
125
  a_prompt,
126
  n_prompt,
127
  num_samples,
 
128
  upscale,
129
  edm_steps,
130
  s_stage1,
@@ -152,6 +153,9 @@ def stage2_process(
152
  gr.Warning('Set this space to GPU config to make it work.')
153
  return None, None, None
154
  input_image = noisy_image if denoise_image is None else denoise_image
 
 
 
155
  torch.cuda.set_device(SUPIR_device)
156
  event_id = str(time.time_ns())
157
  event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
@@ -320,18 +324,18 @@ with gr.Blocks(title="SUPIR") as interface:
320
  gr.HTML(title_html)
321
 
322
  input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
323
- prompt = gr.Textbox(label="Image description for LlaVa", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3, visible=False)
324
- upscale = gr.Radio([1, 2, 3, 4, 5, 6, 7, 8], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
325
- a_prompt = gr.Textbox(label="Image description (optional)",
326
- info="Help the AI understand what the image represents; describe as much as possible",
327
- value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
328
- 'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
329
- 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
330
- 'hyper sharpness, perfect without deformations.',
331
- lines=3)
332
  with gr.Group():
 
 
 
 
 
 
 
 
 
333
  a_prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
334
- output_format = gr.Radio(["png", "webp", "jpeg", "gif", "bmp"], label="Image format for result", info="File extention", value="png", interactive=True)
335
 
336
  with gr.Accordion("Pre-denoising (optional)", open=False):
337
  gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
@@ -355,6 +359,7 @@ with gr.Blocks(title="SUPIR") as interface:
355
  edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
356
  num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=4 if not args.use_image_slider else 1
357
  , value=1, step=1)
 
358
  with gr.Row():
359
  with gr.Column():
360
  model_select = gr.Radio(["v0-Q", "v0-F"], label="Model Selection", info="Q=Quality, F=Fidelity", value="v0-Q",
@@ -444,6 +449,7 @@ with gr.Blocks(title="SUPIR") as interface:
444
  a_prompt,
445
  n_prompt,
446
  num_samples,
 
447
  upscale,
448
  edm_steps,
449
  s_stage1,
 
125
  a_prompt,
126
  n_prompt,
127
  num_samples,
128
+ downscale,
129
  upscale,
130
  edm_steps,
131
  s_stage1,
 
153
  gr.Warning('Set this space to GPU config to make it work.')
154
  return None, None, None
155
  input_image = noisy_image if denoise_image is None else denoise_image
156
+ if 1 < downscale:
157
+ input_height, input_width, input_channel = np.array(input_image).shape
158
+ input_image = input_image.resize((input_width // downscale, input_height // downscale), Image.LANCZOS)
159
  torch.cuda.set_device(SUPIR_device)
160
  event_id = str(time.time_ns())
161
  event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
 
324
  gr.HTML(title_html)
325
 
326
  input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
 
 
 
 
 
 
 
 
 
327
  with gr.Group():
328
+ prompt = gr.Textbox(label="Image description for LlaVa", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3, visible=False)
329
+ upscale = gr.Radio([1, 2, 3, 4, 5, 6, 7, 8], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
330
+ a_prompt = gr.Textbox(label="Image description",
331
+ info="Help the AI understand what the image represents; describe as much as possible",
332
+ value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
333
+ 'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
334
+ 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
335
+ 'hyper sharpness, perfect without deformations.',
336
+ lines=3)
337
  a_prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
338
+ output_format = gr.Radio(["png", "webp", "jpeg", "gif", "bmp"], label="Image format for result", info="File extention", value="png", interactive=True)
339
 
340
  with gr.Accordion("Pre-denoising (optional)", open=False):
341
  gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
 
359
  edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
360
  num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=4 if not args.use_image_slider else 1
361
  , value=1, step=1)
362
+ downscale = gr.Radio([1, 2, 3, 4, 5, 6, 7, 8], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
363
  with gr.Row():
364
  with gr.Column():
365
  model_select = gr.Radio(["v0-Q", "v0-F"], label="Model Selection", info="Q=Quality, F=Fidelity", value="v0-Q",
 
449
  a_prompt,
450
  n_prompt,
451
  num_samples,
452
+ downscale,
453
  upscale,
454
  edm_steps,
455
  s_stage1,