Fabrice-TIERCELIN
commited on
Fix function
Browse files- gradio_demo.py +39 -38
gradio_demo.py
CHANGED
@@ -180,7 +180,7 @@ def stage2_process(
|
|
180 |
input_image = upscale_image(input_image, upscale, unit_resolution=32,
|
181 |
min_size=min_size)
|
182 |
|
183 |
-
|
184 |
model,
|
185 |
edm_steps,
|
186 |
s_stage1,
|
@@ -199,43 +199,8 @@ def stage2_process(
|
|
199 |
spt_linear_s_stage2
|
200 |
)
|
201 |
|
202 |
-
|
203 |
-
0, 255).astype(np.uint8)
|
204 |
-
results = [x_samples[i] for i in range(num_samples)]
|
205 |
-
|
206 |
-
if args.log_history:
|
207 |
-
os.makedirs(f'./history/{event_id[:5]}/{event_id[5:]}', exist_ok=True)
|
208 |
-
with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
|
209 |
-
f.write(str(event_dict))
|
210 |
-
f.close()
|
211 |
-
Image.fromarray(input_image).save(f'./history/{event_id[:5]}/{event_id[5:]}/LQ.png')
|
212 |
-
for i, result in enumerate(results):
|
213 |
-
Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
|
214 |
-
|
215 |
-
# All the results have the same size
|
216 |
-
result_height, result_width, result_channel = np.array(results[0]).shape
|
217 |
-
|
218 |
-
print('<<== stage2_process')
|
219 |
-
end = time.time()
|
220 |
-
secondes = int(end - start)
|
221 |
-
minutes = math.floor(secondes / 60)
|
222 |
-
secondes = secondes - (minutes * 60)
|
223 |
-
hours = math.floor(minutes / 60)
|
224 |
-
minutes = minutes - (hours * 60)
|
225 |
-
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
|
226 |
-
"The new image resolution is " + str(result_width) + \
|
227 |
-
" pixels large and " + str(result_height) + \
|
228 |
-
" pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels. " + \
|
229 |
-
"The image(s) has(ve) been generated in " + \
|
230 |
-
((str(hours) + " h, ") if hours != 0 else "") + \
|
231 |
-
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
|
232 |
-
str(secondes) + " sec."
|
233 |
-
print(information)
|
234 |
|
235 |
-
# Only one image can be shown in the slider
|
236 |
-
return [noisy_image] + [results[0]], gr.update(format = output_format, value = [noisy_image] + results), gr.update(value = information, visible = True), event_id
|
237 |
-
|
238 |
-
@spaces.GPU(duration=600)
|
239 |
def restore(
|
240 |
model,
|
241 |
edm_steps,
|
@@ -269,12 +234,48 @@ def restore(
|
|
269 |
model.ae_dtype = convert_dtype(ae_dtype)
|
270 |
model.model.dtype = convert_dtype(diff_dtype)
|
271 |
|
272 |
-
|
273 |
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
|
274 |
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
|
275 |
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
|
276 |
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
def load_and_reset(param_setting):
|
279 |
print('load_and_reset ==>>')
|
280 |
if torch.cuda.device_count() == 0:
|
|
|
180 |
input_image = upscale_image(input_image, upscale, unit_resolution=32,
|
181 |
min_size=min_size)
|
182 |
|
183 |
+
result_slider, result_gallery, restore_information, event_id = restore(
|
184 |
model,
|
185 |
edm_steps,
|
186 |
s_stage1,
|
|
|
199 |
spt_linear_s_stage2
|
200 |
)
|
201 |
|
202 |
+
return result_slider, result_gallery, restore_information, event_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
|
|
|
|
|
|
|
|
204 |
def restore(
|
205 |
model,
|
206 |
edm_steps,
|
|
|
234 |
model.ae_dtype = convert_dtype(ae_dtype)
|
235 |
model.model.dtype = convert_dtype(diff_dtype)
|
236 |
|
237 |
+
samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
|
238 |
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
|
239 |
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
|
240 |
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
|
241 |
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
|
242 |
|
243 |
+
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
|
244 |
+
0, 255).astype(np.uint8)
|
245 |
+
results = [x_samples[i] for i in range(num_samples)]
|
246 |
+
|
247 |
+
if args.log_history:
|
248 |
+
os.makedirs(f'./history/{event_id[:5]}/{event_id[5:]}', exist_ok=True)
|
249 |
+
with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
|
250 |
+
f.write(str(event_dict))
|
251 |
+
f.close()
|
252 |
+
Image.fromarray(input_image).save(f'./history/{event_id[:5]}/{event_id[5:]}/LQ.png')
|
253 |
+
for i, result in enumerate(results):
|
254 |
+
Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
|
255 |
+
|
256 |
+
# All the results have the same size
|
257 |
+
result_height, result_width, result_channel = np.array(results[0]).shape
|
258 |
+
|
259 |
+
print('<<== stage2_process')
|
260 |
+
end = time.time()
|
261 |
+
secondes = int(end - start)
|
262 |
+
minutes = math.floor(secondes / 60)
|
263 |
+
secondes = secondes - (minutes * 60)
|
264 |
+
hours = math.floor(minutes / 60)
|
265 |
+
minutes = minutes - (hours * 60)
|
266 |
+
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
|
267 |
+
"The new image resolution is " + str(result_width) + \
|
268 |
+
" pixels large and " + str(result_height) + \
|
269 |
+
" pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels. " + \
|
270 |
+
"The image(s) has(ve) been generated in " + \
|
271 |
+
((str(hours) + " h, ") if hours != 0 else "") + \
|
272 |
+
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
|
273 |
+
str(secondes) + " sec."
|
274 |
+
print(information)
|
275 |
+
|
276 |
+
# Only one image can be shown in the slider
|
277 |
+
return [noisy_image] + [results[0]], gr.update(format = output_format, value = [noisy_image] + results), gr.update(value = information, visible = True), event_id
|
278 |
+
|
279 |
def load_and_reset(param_setting):
|
280 |
print('load_and_reset ==>>')
|
281 |
if torch.cuda.device_count() == 0:
|