from langchain import PromptTemplate #from langchain_core.prompts import PromptTemplate import os from langchain_community.embeddings import HuggingFaceBgeEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.llms.ctransformers import CTransformers #from langchain.chains import RetrievalQA from langchain.chains.retrieval_qa.base import RetrievalQA import chainlit as cl DB_FAISS_PATH = 'vectorstores/' custom_prompt_template = ''' use the following pieces of information to answer the user's questions. If you don't know the answer, please just say that don't know the answer, don't try to make uo an answer. Context : {context} Question : {question} only return the helpful answer below and nothing else. ''' def set_custom_prompt(): """ Prompt template for QA retrieval for vector stores """ # prompt = PromptTemplate(template = custom_prompt_template, # input_variables = ['context','question']) # return prompt prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question']) # Ensure this matches expected inputs return prompt def load_llm(): llm = CTransformers( model = 'TheBloke/Llama-2-7B-Chat-GGML', #model = AutoModel.from_pretrained("TheBloke/Llama-2-7B-Chat-GGML"), model_type = 'llama', max_new_token = 512, temperature = 0.5 ) return llm def retrieval_qa_chain(llm,prompt,db): qa_chain = RetrievalQA.from_chain_type( llm = llm, chain_type = 'stuff', retriever = db.as_retriever(search_kwargs= {'k': 2}), return_source_documents = True, chain_type_kwargs = {'prompt': prompt} ) return qa_chain def qa_bot(): embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2', model_kwargs = {'device':'cpu'}) db = FAISS.load_local(DB_FAISS_PATH, embeddings,allow_dangerous_deserialization=True) llm = load_llm() qa_prompt = set_custom_prompt() qa = retrieval_qa_chain(llm,qa_prompt, db) return qa def final_result(query): qa_result = qa_bot() response = qa_result({'query' : query}) return response import streamlit as st # Initialize the bot bot = qa_bot() def process_query(query): # Here you would include the logic to process the query and return a response response, sources = bot.answer_query(query) # Modify this according to your bot implementation if sources: response += f"\nSources: {', '.join(sources)}" else: response += "\nNo Sources Found" return response # Setting up the Streamlit app st.title('Medical Chatbot') user_input = st.text_input("Hi, welcome to the medical Bot. What is your query?") if user_input: output = process_query(user_input) st.text_area("Response", output, height=300)