from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyPDFLoader , DirectoryLoader from langchain_community.embeddings import HuggingFaceBgeEmbeddings from langchain_community.vectorstores import FAISS DATA_PATH = "data/" DB_FAISS_PATH = 'vectorstores/' # create a vector database def create_vector_db(): loader = DirectoryLoader(DATA_PATH,glob='*.pdf',loader_cls=PyPDFLoader) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size = 500, chunk_overlap = 50) texts = text_splitter.split_documents(documents) embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2', model_kwargs = {'device':'cpu'}) db = FAISS.from_documents(texts,embeddings) db.save_local('vectorstores/') if __name__ == '__main__': create_vector_db()