%%writefile main.py # import libraries import os from dotenv import load_dotenv import pinecone from langchain.document_loaders import PyPDFDirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import PineconeVectorStore from langchain.prompts import PromptTemplate from langchain.chains.question_answering import load_qa_chain from ctransformers import CTransformers load_dotenv() embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2', model_kwargs = {'device':'cpu'}) os.environ['PINECONE_API_KEY'] = 'afb0bb4d-3c15-461b-91a4-fb12fb1f25f2' index_name = 'harisonvecot' vectorstore = PineconeVectorStore(index_name=index_name,embedding=embeddings) # Create the vector index from documents def create_index(documents): vectorstore.add_documents(documents) # Retrieve query from Pinecone def retrieve_query(query, k=2): matching_results = vectorstore.similarity_search(query, k=k) return matching_results # Custom prompt template custom_prompt_template = ''' use the following pieces of information to answer the user's questions. If you don't know the answer, please just say that you don't know the answer, don't try to make up an answer. Content : {context} Question : {question} only return the helpful answer below and nothing else. ''' def set_custom_prompt(): prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question']) return prompt # Load LLM model llm_model = CTransformers(model_name='TheBloke/Llama-2-7B-Chat-GGML', model_type = 'llama', max_new_token = 512, temperature=0.5) # Create retrieval QA chain def retrieval_qa_chain(): prompt = set_custom_prompt() chain = load_qa_chain(llm_model, chain_type='stuff', prompt=prompt) return chain # Search answers from Vector DB def retrieve_answer(query): doc_search = retrieve_query(query) chain = retrieval_qa_chain() response = chain.run(input_documents=doc_search, question=query) return response queries = st.text_input('write a medical questions ?') # Example usage submit = st.button('submit') # Read and process documents # doc = read_doc('documents/') # documents = chunk_data(docs=doc) # create_index(documents) if submit : if queries : # Query and get answer #our_query = 'What is cause of Eczema?' answer = retrieve_answer(queries) st.write(answer)