|
import streamlit as st |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
def find_similar_images(image): |
|
|
|
return similar_images |
|
|
|
|
|
def app(): |
|
st.title('Image Similarity Search') |
|
|
|
|
|
test_images = ['image1.jpg', 'image2.jpg', 'image3.jpg'] |
|
image_choice = st.selectbox('Select an image:', test_images) |
|
|
|
|
|
image = Image.open(image_choice) |
|
|
|
|
|
st.image(image, caption='Selected Image', use_column_width=True) |
|
|
|
|
|
uploaded_file = st.file_uploader('Upload an image:', type=['jpg', 'png']) |
|
|
|
if uploaded_file is not None: |
|
|
|
uploaded_image = Image.open(uploaded_file) |
|
|
|
|
|
st.image(uploaded_image, caption='Uploaded Image', use_column_width=True) |
|
|
|
|
|
similar_images = find_similar_images(uploaded_image) |
|
|
|
|
|
for i in range(len(similar_images)): |
|
st.image(similar_images[i], caption='Similar Image ' + str(i+1), use_column_width=True) |
|
|
|
|
|
if __name__ == '__main__': |
|
app() |