Spaces:
Runtime error
Runtime error
Commit
·
800f395
1
Parent(s):
350a724
Update apply.py
Browse files
apply.py
CHANGED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%cd /content
|
2 |
+
!git clone -b dev https://github.com/camenduru/generative-models
|
3 |
+
!pip install -q -r https://github.com/camenduru/stable-video-diffusion-colab/raw/main/requirements.txt
|
4 |
+
!pip install -q -e generative-models
|
5 |
+
!pip install -q -e git+https://github.com/Stability-AI/datapipelines@main#egg=sdata
|
6 |
+
|
7 |
+
!apt -y install -qq aria2
|
8 |
+
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/vdo/stable-video-diffusion-img2vid-xt/resolve/main/svd_xt.safetensors?download=true -d /content/checkpoints -o svd_xt.safetensors
|
9 |
+
|
10 |
+
!mkdir -p /content/scripts/util/detection
|
11 |
+
!ln -s /content/generative-models/scripts/util/detection/p_head_v1.npz /content/scripts/util/detection/p_head_v1.npz
|
12 |
+
!ln -s /content/generative-models/scripts/util/detection/w_head_v1.npz /content/scripts/util/detection/w_head_v1.npz
|
13 |
+
|
14 |
+
import sys
|
15 |
+
sys.path.append("generative-models")
|
16 |
+
|
17 |
+
import os, math, torch, cv2
|
18 |
+
from omegaconf import OmegaConf
|
19 |
+
from glob import glob
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import Optional
|
22 |
+
import numpy as np
|
23 |
+
from einops import rearrange, repeat
|
24 |
+
|
25 |
+
from PIL import Image
|
26 |
+
from torchvision.transforms import ToTensor
|
27 |
+
from torchvision.transforms import functional as TF
|
28 |
+
from sgm.util import instantiate_from_config
|
29 |
+
|
30 |
+
def load_model(config: str, device: str, num_frames: int, num_steps: int):
|
31 |
+
config = OmegaConf.load(config)
|
32 |
+
config.model.params.conditioner_config.params.emb_models[0].params.open_clip_embedding_config.params.init_device = device
|
33 |
+
config.model.params.sampler_config.params.num_steps = num_steps
|
34 |
+
config.model.params.sampler_config.params.guider_config.params.num_frames = (num_frames)
|
35 |
+
with torch.device(device):
|
36 |
+
model = instantiate_from_config(config.model).to(device).eval().requires_grad_(False)
|
37 |
+
return model
|
38 |
+
|
39 |
+
num_frames = 25
|
40 |
+
num_steps = 30
|
41 |
+
model_config = "generative-models/scripts/sampling/configs/svd_xt.yaml"
|
42 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
+
model = load_model(model_config, device, num_frames, num_steps)
|
44 |
+
model.conditioner.cpu()
|
45 |
+
model.first_stage_model.cpu()
|
46 |
+
model.model.to(dtype=torch.float16)
|
47 |
+
torch.cuda.empty_cache()
|
48 |
+
model = model.requires_grad_(False)
|
49 |
+
|
50 |
+
def get_unique_embedder_keys_from_conditioner(conditioner):
|
51 |
+
return list(set([x.input_key for x in conditioner.embedders]))
|
52 |
+
|
53 |
+
def get_batch(keys, value_dict, N, T, device, dtype=None):
|
54 |
+
batch = {}
|
55 |
+
batch_uc = {}
|
56 |
+
for key in keys:
|
57 |
+
if key == "fps_id":
|
58 |
+
batch[key] = (
|
59 |
+
torch.tensor([value_dict["fps_id"]])
|
60 |
+
.to(device, dtype=dtype)
|
61 |
+
.repeat(int(math.prod(N)))
|
62 |
+
)
|
63 |
+
elif key == "motion_bucket_id":
|
64 |
+
batch[key] = (
|
65 |
+
torch.tensor([value_dict["motion_bucket_id"]])
|
66 |
+
.to(device, dtype=dtype)
|
67 |
+
.repeat(int(math.prod(N)))
|
68 |
+
)
|
69 |
+
elif key == "cond_aug":
|
70 |
+
batch[key] = repeat(
|
71 |
+
torch.tensor([value_dict["cond_aug"]]).to(device, dtype=dtype),
|
72 |
+
"1 -> b",
|
73 |
+
b=math.prod(N),
|
74 |
+
)
|
75 |
+
elif key == "cond_frames":
|
76 |
+
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
|
77 |
+
elif key == "cond_frames_without_noise":
|
78 |
+
batch[key] = repeat(
|
79 |
+
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
batch[key] = value_dict[key]
|
83 |
+
if T is not None:
|
84 |
+
batch["num_video_frames"] = T
|
85 |
+
for key in batch.keys():
|
86 |
+
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
|
87 |
+
batch_uc[key] = torch.clone(batch[key])
|
88 |
+
return batch, batch_uc
|
89 |
+
|
90 |
+
def sample(
|
91 |
+
input_path: str = "/content/test_image.png",
|
92 |
+
resize_image: bool = False,
|
93 |
+
num_frames: Optional[int] = None,
|
94 |
+
num_steps: Optional[int] = None,
|
95 |
+
fps_id: int = 6,
|
96 |
+
motion_bucket_id: int = 127,
|
97 |
+
cond_aug: float = 0.02,
|
98 |
+
seed: int = 23,
|
99 |
+
decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
100 |
+
device: str = "cuda",
|
101 |
+
output_folder: Optional[str] = "/content/outputs",
|
102 |
+
):
|
103 |
+
"""
|
104 |
+
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
105 |
+
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
106 |
+
"""
|
107 |
+
torch.manual_seed(seed)
|
108 |
+
|
109 |
+
path = Path(input_path)
|
110 |
+
all_img_paths = []
|
111 |
+
if path.is_file():
|
112 |
+
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
|
113 |
+
all_img_paths = [input_path]
|
114 |
+
else:
|
115 |
+
raise ValueError("Path is not valid image file.")
|
116 |
+
elif path.is_dir():
|
117 |
+
all_img_paths = sorted(
|
118 |
+
[
|
119 |
+
f
|
120 |
+
for f in path.iterdir()
|
121 |
+
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
|
122 |
+
]
|
123 |
+
)
|
124 |
+
if len(all_img_paths) == 0:
|
125 |
+
raise ValueError("Folder does not contain any images.")
|
126 |
+
else:
|
127 |
+
raise ValueError
|
128 |
+
all_out_paths = []
|
129 |
+
for input_img_path in all_img_paths:
|
130 |
+
with Image.open(input_img_path) as image:
|
131 |
+
if image.mode == "RGBA":
|
132 |
+
image = image.convert("RGB")
|
133 |
+
if resize_image and image.size != (1024, 576):
|
134 |
+
print(f"Resizing {image.size} to (1024, 576)")
|
135 |
+
image = TF.resize(TF.resize(image, 1024), (576, 1024))
|
136 |
+
w, h = image.size
|
137 |
+
if h % 64 != 0 or w % 64 != 0:
|
138 |
+
width, height = map(lambda x: x - x % 64, (w, h))
|
139 |
+
image = image.resize((width, height))
|
140 |
+
print(
|
141 |
+
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
142 |
+
)
|
143 |
+
image = ToTensor()(image)
|
144 |
+
image = image * 2.0 - 1.0
|
145 |
+
|
146 |
+
image = image.unsqueeze(0).to(device)
|
147 |
+
H, W = image.shape[2:]
|
148 |
+
assert image.shape[1] == 3
|
149 |
+
F = 8
|
150 |
+
C = 4
|
151 |
+
shape = (num_frames, C, H // F, W // F)
|
152 |
+
if (H, W) != (576, 1024):
|
153 |
+
print(
|
154 |
+
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
|
155 |
+
)
|
156 |
+
if motion_bucket_id > 255:
|
157 |
+
print(
|
158 |
+
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
159 |
+
)
|
160 |
+
if fps_id < 5:
|
161 |
+
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
162 |
+
if fps_id > 30:
|
163 |
+
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
164 |
+
|
165 |
+
value_dict = {}
|
166 |
+
value_dict["motion_bucket_id"] = motion_bucket_id
|
167 |
+
value_dict["fps_id"] = fps_id
|
168 |
+
value_dict["cond_aug"] = cond_aug
|
169 |
+
value_dict["cond_frames_without_noise"] = image
|
170 |
+
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
171 |
+
value_dict["cond_aug"] = cond_aug
|
172 |
+
# low vram mode
|
173 |
+
model.conditioner.cpu()
|
174 |
+
model.first_stage_model.cpu()
|
175 |
+
torch.cuda.empty_cache()
|
176 |
+
model.sampler.verbose = True
|
177 |
+
|
178 |
+
with torch.no_grad():
|
179 |
+
with torch.autocast(device):
|
180 |
+
model.conditioner.to(device)
|
181 |
+
batch, batch_uc = get_batch(
|
182 |
+
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
183 |
+
value_dict,
|
184 |
+
[1, num_frames],
|
185 |
+
T=num_frames,
|
186 |
+
device=device,
|
187 |
+
)
|
188 |
+
c, uc = model.conditioner.get_unconditional_conditioning(
|
189 |
+
batch,
|
190 |
+
batch_uc=batch_uc,
|
191 |
+
force_uc_zero_embeddings=[
|
192 |
+
"cond_frames",
|
193 |
+
"cond_frames_without_noise",
|
194 |
+
],
|
195 |
+
)
|
196 |
+
model.conditioner.cpu()
|
197 |
+
torch.cuda.empty_cache()
|
198 |
+
|
199 |
+
# from here, dtype is fp16
|
200 |
+
for k in ["crossattn", "concat"]:
|
201 |
+
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
202 |
+
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
203 |
+
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
204 |
+
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
205 |
+
for k in uc.keys():
|
206 |
+
uc[k] = uc[k].to(dtype=torch.float16)
|
207 |
+
c[k] = c[k].to(dtype=torch.float16)
|
208 |
+
|
209 |
+
randn = torch.randn(shape, device=device, dtype=torch.float16)
|
210 |
+
additional_model_inputs = {}
|
211 |
+
additional_model_inputs["image_only_indicator"] = torch.zeros(2, num_frames).to(device)
|
212 |
+
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
213 |
+
|
214 |
+
for k in additional_model_inputs:
|
215 |
+
if isinstance(additional_model_inputs[k], torch.Tensor):
|
216 |
+
additional_model_inputs[k] = additional_model_inputs[k].to(dtype=torch.float16)
|
217 |
+
|
218 |
+
def denoiser(input, sigma, c):
|
219 |
+
return model.denoiser(model.model, input, sigma, c, **additional_model_inputs)
|
220 |
+
|
221 |
+
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
222 |
+
samples_z.to(dtype=model.first_stage_model.dtype)
|
223 |
+
model.en_and_decode_n_samples_a_time = decoding_t
|
224 |
+
model.first_stage_model.to(device)
|
225 |
+
samples_x = model.decode_first_stage(samples_z)
|
226 |
+
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
227 |
+
model.first_stage_model.cpu()
|
228 |
+
torch.cuda.empty_cache()
|
229 |
+
|
230 |
+
os.makedirs(output_folder, exist_ok=True)
|
231 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
232 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
233 |
+
writer = cv2.VideoWriter(
|
234 |
+
video_path,
|
235 |
+
cv2.VideoWriter_fourcc(*"MP4V"),
|
236 |
+
fps_id + 1,
|
237 |
+
(samples.shape[-1], samples.shape[-2]),
|
238 |
+
)
|
239 |
+
vid = (
|
240 |
+
(rearrange(samples, "t c h w -> t h w c") * 255)
|
241 |
+
.cpu()
|
242 |
+
.numpy()
|
243 |
+
.astype(np.uint8)
|
244 |
+
)
|
245 |
+
for frame in vid:
|
246 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
247 |
+
writer.write(frame)
|
248 |
+
writer.release()
|
249 |
+
all_out_paths.append(video_path)
|
250 |
+
return all_out_paths
|
251 |
+
|
252 |
+
import gradio as gr
|
253 |
+
import random
|
254 |
+
|
255 |
+
def url2imge(input_path: str)->str:
|
256 |
+
return input_path
|
257 |
+
|
258 |
+
def infer(input_path: str, resize_image: bool, n_frames: int, n_steps: int, seed: str, decoding_t: int) -> str:
|
259 |
+
if seed == "random":
|
260 |
+
seed = random.randint(0, 2**32)
|
261 |
+
seed = int(seed)
|
262 |
+
output_paths = sample(
|
263 |
+
input_path=input_path,
|
264 |
+
resize_image=resize_image,
|
265 |
+
num_frames=n_frames,
|
266 |
+
num_steps=n_steps,
|
267 |
+
fps_id=6,
|
268 |
+
motion_bucket_id=127,
|
269 |
+
cond_aug=0.02,
|
270 |
+
seed=seed,
|
271 |
+
decoding_t=decoding_t, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
272 |
+
device=device,
|
273 |
+
)
|
274 |
+
return output_paths[0]
|
275 |
+
|
276 |
+
with gr.Blocks() as demo:
|
277 |
+
with gr.Column():
|
278 |
+
text = gr.Textbox(label="input image url")
|
279 |
+
btn2 = gr.Button("url to imge")
|
280 |
+
image = gr.Image(label="input image", type="filepath")
|
281 |
+
resize_image = gr.Checkbox(label="resize to optimal size", value=True)
|
282 |
+
btn = gr.Button("Run")
|
283 |
+
with gr.Accordion(label="Advanced options", open=False):
|
284 |
+
n_frames = gr.Number(precision=0, label="number of frames", value=num_frames)
|
285 |
+
n_steps = gr.Number(precision=0, label="number of steps", value=num_steps)
|
286 |
+
seed = gr.Text(value="random", label="seed (integer or 'random')",)
|
287 |
+
decoding_t = gr.Number(precision=0, label="number of frames decoded at a time", value=2)
|
288 |
+
with gr.Column():
|
289 |
+
video_out = gr.Video(label="generated video")
|
290 |
+
examples = [["https://img.technews.tw/wp-content/uploads/2023/08/17150937/zac-durant-_6HzPU9Hyfg-unsplash-800x533.jpg"]]
|
291 |
+
inputs = [image, resize_image, n_frames, n_steps, seed, decoding_t]
|
292 |
+
outputs = [video_out]
|
293 |
+
btn.click(infer, inputs=inputs, outputs=outputs)
|
294 |
+
btn2.click(url2imge, inputs=text, outputs=image)
|
295 |
+
gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=infer)
|
296 |
+
demo.queue().launch(debug=True, share=True, inline=False, show_error=True)
|