import gradio as gr from transformers import BartTokenizer, BartForConditionalGeneration model_name = "facebook/bart-large-cnn" # Example BART model for demonstration tokenizer = BartTokenizer.from_pretrained(model_name) model = BartForConditionalGeneration.from_pretrained(model_name) def generate_text(prompt): inputs = tokenizer.encode("summarize: " + prompt, return_tensors="pt", max_length=1024, truncation=True) summary_ids = model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) return tokenizer.decode(summary_ids[0], skip_special_tokens=True) interface = gr.Interface(fn=generate_text, inputs=gr.Textbox(lines=5, placeholder="Enter Text Here..."), outputs="text", title="Text Generation with BART", description="Enter text to generate a summary.") if __name__ == "__main__": interface.launch()