import gradio as gr title = "BERT" description = "Gradio Demo for BERT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
" examples = [ ['Paris is the [MASK] of France.','bert-base-cased'] ] io1 = gr.Interface.load("huggingface/bert-base-cased") io2 = gr.Interface.load("huggingface/bert-base-uncased") def inference(inputtext, model): if model == "bert-base-cased": outlabel = io1(inputtext) else: outlabel = io2(inputtext) return outlabel gr.Interface( inference, [gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["bert-base-cased","bert-base-uncased"], type="value", default="bert-base-cased", label="model")], [gr.outputs.Label(label="Output")], examples=examples, article=article, title=title, description=description).launch(enable_queue=True,cache_examples=True)