from icevision.all import * import icedata import PIL, requests import torch from torchvision import transforms import gradio as gr # Download the dataset url = "https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip" dest_dir = "fridge" data_dir = icedata.load_data(url, dest_dir) # Create the parser parser = parsers.VOCBBoxParser(annotations_dir=data_dir / "odFridgeObjects/annotations", images_dir=data_dir / "odFridgeObjects/images") # Parse annotations to create records train_records, valid_records = parser.parse() class_map = parser.class_map extra_args = {} model_type = models.torchvision.retinanet backbone = model_type.backbones.resnet50_fpn # Instantiate the model model = model_type.model(backbone=backbone(pretrained=True), num_classes=len(parser.class_map), **extra_args) # Transforms # size is set to 384 because EfficientDet requires its inputs to be divisible by 128 image_size = 384 train_tfms = tfms.A.Adapter([*tfms.A.aug_tfms(size=image_size, presize=512), tfms.A.Normalize()]) valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(image_size), tfms.A.Normalize()]) # Datasets train_ds = Dataset(train_records, train_tfms) valid_ds = Dataset(valid_records, valid_tfms) # Data Loaders train_dl = model_type.train_dl(train_ds, batch_size=8, num_workers=4, shuffle=True) valid_dl = model_type.valid_dl(valid_ds, batch_size=8, num_workers=4, shuffle=False) metrics = [COCOMetric(metric_type=COCOMetricType.bbox)] learn = model_type.fastai.learner(dls=[train_dl, valid_dl], model=model, metrics=metrics) learn = learn.load('model') import os for root, dirs, files in os.walk(r'sample_images/'): for filename in files: print(filename) examples = ["sample_images/"+file for file in files] article="
" enable_queue=True examples = [['sample_images/3.jpg'],['sample_images/15.jpg'],['sample_images/9.jpg']] #examples = [["sample_images/"+file] for file in files] #def show_preds(input_image, display_label, display_bbox, detection_threshold): def show_preds(input_image): #if detection_threshold==0: detection_threshold=0.5 img = PIL.Image.fromarray(input_image, 'RGB') pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=0.5, display_label=True, display_bbox=True, return_img=True, font_size=16, label_color="#FF59D6") #pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=detection_threshold, # display_label=display_label, display_bbox=display_bbox, return_img=True, # font_size=16, label_color="#FF59D6") return pred_dict['img'] # display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True) display_chkbox_label = gr.inputs.Checkbox(label="Label", default=True) display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True) detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold") outputs = gr.outputs.Image(type="pil") # Option 1: Get an image from local drive #gr_interface = gr.Interface(fn=show_preds, inputs=["image", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - Fridge Object', article=article, examples=examples) # Option 1: Get an image from local drive gr_interface = gr.Interface(fn=show_preds, inputs=["image"], outputs=outputs, title='IceApp - Fridge Object', article=article, examples=examples) # # Option 2: Grab an image from a webcam # gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False) # # Option 3: Continuous image stream from the webcam # gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True) gr_interface.launch(inline=False, share=False, debug=True)