Spaces:
Sleeping
Sleeping
setup
Browse files
setup
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pip install gradio openai
|
| 2 |
+
|
| 3 |
+
import openai
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
# Set your LLaMA3 API key
|
| 7 |
+
openai.api_key = 'your-llama3-api-key'
|
| 8 |
+
|
| 9 |
+
def ai_developer_agent(prompt, specialization="general"):
|
| 10 |
+
"""
|
| 11 |
+
Function to interact with the LLaMA3 API and get a response based on the prompt and specialization.
|
| 12 |
+
|
| 13 |
+
:param prompt: The input text to the AI agent.
|
| 14 |
+
:param specialization: The area of specialization for the AI agent.
|
| 15 |
+
:return: The response from the AI agent.
|
| 16 |
+
"""
|
| 17 |
+
try:
|
| 18 |
+
specialized_prompt = (
|
| 19 |
+
f"You are an AI developer assistant specializing in {specialization}. "
|
| 20 |
+
"Answer the following query or provide the requested code snippet:\n\n{prompt}"
|
| 21 |
+
)
|
| 22 |
+
response = openai.Completion.create(
|
| 23 |
+
engine="text-davinci-003",
|
| 24 |
+
prompt=specialized_prompt,
|
| 25 |
+
max_tokens=300,
|
| 26 |
+
n=1,
|
| 27 |
+
stop=None,
|
| 28 |
+
temperature=0.7
|
| 29 |
+
)
|
| 30 |
+
return response.choices[0].text.strip()
|
| 31 |
+
except Exception as e:
|
| 32 |
+
return str(e)
|
| 33 |
+
|
| 34 |
+
def determine_specialization(query):
|
| 35 |
+
"""
|
| 36 |
+
Function to determine the specialization based on the query content.
|
| 37 |
+
|
| 38 |
+
:param query: The input query from the user.
|
| 39 |
+
:return: The determined area of specialization.
|
| 40 |
+
"""
|
| 41 |
+
if "frontend" in query.lower():
|
| 42 |
+
return "frontend development"
|
| 43 |
+
elif "backend" in query.lower():
|
| 44 |
+
return "backend development"
|
| 45 |
+
elif "debug" in query.lower():
|
| 46 |
+
return "debugging"
|
| 47 |
+
elif "deploy" in query.lower():
|
| 48 |
+
return "deployment"
|
| 49 |
+
else:
|
| 50 |
+
return "general development"
|
| 51 |
+
|
| 52 |
+
def interact(query):
|
| 53 |
+
specialization = determine_specialization(query)
|
| 54 |
+
response = ai_developer_agent(query, specialization)
|
| 55 |
+
return response
|
| 56 |
+
|
| 57 |
+
iface = gr.Interface(
|
| 58 |
+
fn=interact,
|
| 59 |
+
inputs="text",
|
| 60 |
+
outputs="text",
|
| 61 |
+
title="AI Developer Agent",
|
| 62 |
+
description="Ask the AI developer assistant anything about frontend, backend, debugging, or deployment."
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
if __name__ == "__main__":
|
| 66 |
+
iface.launch()
|
| 67 |
+
|
| 68 |
+
python ai_developer_agent.py
|
| 69 |
+
|
| 70 |
+
from flask import Flask, jsonify, request
|
| 71 |
+
|
| 72 |
+
app = Flask(__name__)
|
| 73 |
+
|
| 74 |
+
@app.route('/api', methods=['GET'])
|
| 75 |
+
def get_api():
|
| 76 |
+
data = {"message": "Hello, World!"}
|
| 77 |
+
return jsonify(data)
|
| 78 |
+
|
| 79 |
+
@app.route('/api', methods=['POST'])
|
| 80 |
+
def post_api():
|
| 81 |
+
data = request.get_json()
|
| 82 |
+
return jsonify(data), 201
|
| 83 |
+
|
| 84 |
+
if __name__ == '__main__':
|
| 85 |
+
app.run(debug=True)
|
| 86 |
+
|
| 87 |
+
import pdb
|
| 88 |
+
|
| 89 |
+
def add(a, b):
|
| 90 |
+
pdb.set_trace() # This will pause execution and open the debugger
|
| 91 |
+
return a + b
|
| 92 |
+
|
| 93 |
+
result = add(3, 5)
|
| 94 |
+
print(result)
|
| 95 |
+
|