from typing import Tuple import numpy as np import PIL import streamlit as st import torch import torch.nn.functional as F from briarmbg import BriaRMBG from PIL import Image from torchvision.transforms.functional import normalize def resize_image(image): image = image.convert("RGB") model_input_size = (1024, 1024) image = image.resize(model_input_size, Image.BILINEAR) return image def process(image): # prepare input orig_image = Image.open(image) w, h = orig_image.size image = resize_image(orig_image) im_np = np.array(image) im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) im_tensor = torch.unsqueeze(im_tensor, 0) im_tensor = torch.divide(im_tensor, 255.0) im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) if torch.cuda.is_available(): im_tensor = im_tensor.cuda() net = BriaRMBG.from_pretrained("briaai/RMBG-1.4") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net.to(device) result = net(im_tensor) # post process result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) # image to pil im_array = (result * 255).cpu().data.numpy().astype(np.uint8) pil_im = Image.fromarray(np.squeeze(im_array)) # paste the mask on the original image new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) new_im.paste(orig_image, mask=pil_im) # new_orig_image = orig_image.convert('RGBA') return new_im def main(): st.set_page_config(page_title="bg-remove", page_icon="⛺️", layout="wide") st.markdown( """