from langchain.document_loaders import PyPDFLoader, DirectoryLoader from langchain import PromptTemplate from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from langchain.llms import CTransformers import chainlit as cl from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings import yaml import logging from dotenv import load_dotenv from modules.llm_tutor import LLMTutor from modules.constants import * from modules.helpers import get_sources logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # Console Handler console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") console_handler.setFormatter(formatter) logger.addHandler(console_handler) # File Handler log_file_path = "log_file.log" # Change this to your desired log file path file_handler = logging.FileHandler(log_file_path) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) # Adding option to select the chat profile @cl.set_chat_profiles async def chat_profile(): return [ cl.ChatProfile( name="Llama", markdown_description="Use the local LLM: **Tiny Llama**.", ), # cl.ChatProfile( # name="Mistral", # markdown_description="Use the local LLM: **Mistral**.", # ), cl.ChatProfile( name="gpt-3.5-turbo-1106", markdown_description="Use OpenAI API for **gpt-3.5-turbo-1106**.", ), cl.ChatProfile( name="gpt-4", markdown_description="Use OpenAI API for **gpt-4**.", ), ] @cl.author_rename def rename(orig_author: str): rename_dict = {"Chatbot": "AI Tutor"} return rename_dict.get(orig_author, orig_author) # chainlit code @cl.on_chat_start async def start(): with open("code/config.yml", "r") as f: config = yaml.safe_load(f) print(config) logger.info("Config file loaded") logger.info(f"Config: {config}") logger.info("Creating llm_tutor instance") chat_profile = cl.user_session.get("chat_profile") if chat_profile is not None: if chat_profile.lower() in ["gpt-3.5-turbo-1106", "gpt-4"]: config["llm_params"]["llm_loader"] = "openai" config["llm_params"]["openai_params"]["model"] = chat_profile.lower() elif chat_profile.lower() == "llama": config["llm_params"]["llm_loader"] = "local_llm" config["llm_params"]["local_llm_params"]["model"] = LLAMA_PATH config["llm_params"]["local_llm_params"]["model_type"] = "llama" elif chat_profile.lower() == "mistral": config["llm_params"]["llm_loader"] = "local_llm" config["llm_params"]["local_llm_params"]["model"] = MISTRAL_PATH config["llm_params"]["local_llm_params"]["model_type"] = "mistral" else: pass llm_tutor = LLMTutor(config, logger=logger) chain = llm_tutor.qa_bot() model = config["llm_params"]["local_llm_params"]["model"] msg = cl.Message(content=f"Starting the bot {model}...") await msg.send() msg.content = f"Hey, What Can I Help You With?\n\nYou can me ask me questions about the course logistics, course content, about the final project, or anything else! You can find me at {model}" await msg.update() cl.user_session.set("chain", chain) @cl.on_message async def main(message): user = cl.user_session.get("user") chain = cl.user_session.get("chain") # cb = cl.AsyncLangchainCallbackHandler( # stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"] # ) # cb.answer_reached = True # res=await chain.acall(message, callbacks=[cb]) res = await chain.acall(message.content) print(f"response: {res}") try: answer = res["answer"] except: answer = res["result"] print(f"answer: {answer}") answer_with_sources, source_elements = get_sources(res, answer) await cl.Message(content=answer_with_sources, elements=source_elements).send()