from langchain_community.vectorstores import FAISS from modules.vectorstore.base import VectorStoreBase import os class FaissVectorStore(VectorStoreBase): def __init__(self, config): self.config = config self._init_vector_db() def _init_vector_db(self): self.faiss = FAISS( embedding_function=None, index=0, index_to_docstore_id={}, docstore={} ) def create_database(self, document_chunks, embedding_model): self.vectorstore = self.faiss.from_documents( documents=document_chunks, embedding=embedding_model ) self.vectorstore.save_local( os.path.join( self.config["vectorstore"]["db_path"], "db_" + self.config["vectorstore"]["db_option"] + "_" + self.config["vectorstore"]["model"], ) ) def load_database(self, embedding_model): self.vectorstore = self.faiss.load_local( os.path.join( self.config["vectorstore"]["db_path"], "db_" + self.config["vectorstore"]["db_option"] + "_" + self.config["vectorstore"]["model"], ), embedding_model, allow_dangerous_deserialization=True, ) return self.vectorstore def as_retriever(self): return self.vectorstore.as_retriever()