from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader from langchain_core.prompts import PromptTemplate from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.chains import RetrievalQA import chainlit as cl from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings import yaml import logging from dotenv import load_dotenv from modules.chat.llm_tutor import LLMTutor from modules.config.constants import * from modules.chat.helpers import get_sources from modules.chat_processor.chat_processor import ChatProcessor global logger # Initialize logger logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") # Console Handler console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(formatter) logger.addHandler(console_handler) @cl.set_starters async def set_starters(): return [ cl.Starter( label="recording on CNNs?", message="Where can I find the recording for the lecture on Transfromers?", icon="/public/adv-screen-recorder-svgrepo-com.svg", ), cl.Starter( label="where's the slides?", message="When are the lectures? I can't find the schedule.", icon="/public/alarmy-svgrepo-com.svg", ), cl.Starter( label="Due Date?", message="When is the final project due?", icon="/public/calendar-samsung-17-svgrepo-com.svg", ), cl.Starter( label="Explain backprop.", message="I didnt understand the math behind backprop, could you explain it?", icon="/public/acastusphoton-svgrepo-com.svg", ), ] # Adding option to select the chat profile @cl.set_chat_profiles async def chat_profile(): return [ # cl.ChatProfile( # name="Mistral", # markdown_description="Use the local LLM: **Mistral**.", # ), cl.ChatProfile( name="gpt-3.5-turbo-1106", markdown_description="Use OpenAI API for **gpt-3.5-turbo-1106**.", ), cl.ChatProfile( name="gpt-4", markdown_description="Use OpenAI API for **gpt-4**.", ), cl.ChatProfile( name="Llama", markdown_description="Use the local LLM: **Tiny Llama**.", ), ] @cl.author_rename def rename(orig_author: str): rename_dict = {"Chatbot": "AI Tutor"} return rename_dict.get(orig_author, orig_author) # chainlit code @cl.on_chat_start async def start(): with open("modules/config/config.yml", "r") as f: config = yaml.safe_load(f) # Ensure log directory exists log_directory = config["log_dir"] if not os.path.exists(log_directory): os.makedirs(log_directory) # File Handler log_file_path = ( f"{log_directory}/tutor.log" # Change this to your desired log file path ) file_handler = logging.FileHandler(log_file_path, mode="w") file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) logger.info("Config file loaded") logger.info(f"Config: {config}") logger.info("Creating llm_tutor instance") chat_profile = cl.user_session.get("chat_profile") if chat_profile is not None: if chat_profile.lower() in ["gpt-3.5-turbo-1106", "gpt-4"]: config["llm_params"]["llm_loader"] = "openai" config["llm_params"]["openai_params"]["model"] = chat_profile.lower() elif chat_profile.lower() == "llama": config["llm_params"]["llm_loader"] = "local_llm" config["llm_params"]["local_llm_params"]["model"] = LLAMA_PATH config["llm_params"]["local_llm_params"]["model_type"] = "llama" elif chat_profile.lower() == "mistral": config["llm_params"]["llm_loader"] = "local_llm" config["llm_params"]["local_llm_params"]["model"] = MISTRAL_PATH config["llm_params"]["local_llm_params"]["model_type"] = "mistral" else: pass llm_tutor = LLMTutor(config, logger=logger) chain = llm_tutor.qa_bot() # msg = cl.Message(content=f"Starting the bot {chat_profile}...") # await msg.send() # msg.content = opening_message # await msg.update() tags = [chat_profile, config["vectorstore"]["db_option"]] chat_processor = ChatProcessor(config, tags=tags) cl.user_session.set("chain", chain) cl.user_session.set("counter", 0) cl.user_session.set("chat_processor", chat_processor) @cl.on_chat_end async def on_chat_end(): await cl.Message(content="Sorry, I have to go now. Goodbye!").send() @cl.on_message async def main(message): global logger user = cl.user_session.get("user") chain = cl.user_session.get("chain") counter = cl.user_session.get("counter") counter += 1 cl.user_session.set("counter", counter) # if counter >= 3: # Ensure the counter condition is checked # await cl.Message(content="Your credits are up!").send() # await on_chat_end() # Call the on_chat_end function to handle the end of the chat # return # Exit the function to stop further processing # else: cb = cl.AsyncLangchainCallbackHandler() # TODO: fix streaming here cb.answer_reached = True processor = cl.user_session.get("chat_processor") res = await processor.rag(message.content, chain, cb) try: answer = res["answer"] except: answer = res["result"] answer_with_sources, source_elements, sources_dict = get_sources(res, answer) processor._process(message.content, answer, sources_dict) await cl.Message(content=answer_with_sources, elements=source_elements).send()