Spaces:
Sleeping
Sleeping
File size: 4,982 Bytes
cc5b602 6f619d7 ae90620 6386510 677d853 51a7d9e 652620b 6386510 51a7d9e a1a5283 e6367a7 3bce535 51a7d9e 6386510 bd34f0b 0486bff bd34f0b 51a7d9e bd34f0b 51a7d9e da59244 3bce535 652620b 0486bff 3288692 a5e2fed 6f28fd6 3bce535 0486bff 4ed884e 3d7390f 68759b3 4ed884e e29c894 68759b3 4ed884e 652620b 3bce535 652620b ce84a62 652620b 3bce535 c02dde9 6f28fd6 652620b 27dc368 652620b 3bce535 652620b f80f6ce 3bce535 652620b 3bce535 f80f6ce 3bce535 f80f6ce 652620b f80f6ce 6386510 51a7d9e 82b38de 51a7d9e 0486bff 51a7d9e 533a2d3 64b3575 533a2d3 51a7d9e a1a5283 51a7d9e 4ed884e 51a7d9e a1a5283 652620b 51a7d9e bd34f0b 4ed884e bd34f0b 13a11cb bd34f0b 68759b3 bd34f0b 5cc07e4 bd34f0b 51a7d9e 652620b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "AGI-0/Art-v0-3B"
TITLE = """<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>"""
PLACEHOLDER = """
<center>
<p>Hi! How can I help you today?</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto")
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.2,
max_new_tokens: int = 4096,
top_p: float = 1.0,
top_k: int = 1,
penalty: float = 1.1,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = []
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
eos_token_id=[end_of_sentence],
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
found_token = False
for new_text in streamer:
buffer += new_text
if "<|end_reasoning|>" in buffer and not found_token:
# Split at the token
parts = buffer.split("<|end_reasoning|>")
reasoning = parts[0]
rest = parts[1] if len(parts) > 1 else ""
# Format with markdown and continue
buffer = f"<details><summary>Click to see reasoning</summary>\n\n{reasoning}\n\n</details>\n\n{rest}"
found_token = True
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="",
label="",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.2,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=4096,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=50,
step=1,
value=1,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.1,
label="Repetition penalty",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |