import gradio as gr from transformers import pipeline # Load the pipeline for text generation pipe = pipeline( "text-generation", model="Ar4ikov/gpt2-650k-stable-diffusion-prompt-generator", tokenizer="gpt2" ) # Initialize a list to store the history of generated prompts history = [] # Function to generate text based on input prompt and record the history def generate_text(prompt): generated_text = pipe(prompt, max_length=77)[0]["generated_text"] # Append the generated prompt and its result to the history list history.append({"prompt": prompt, "generated_text": generated_text}) return generated_text # Create a Gradio interface with history recording iface = gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=5, label="Prompt"), outputs=gr.Textbox(label="Output", show_copy_button=True), title="AI Art Prompt Generator", description="Art Prompt Generator is a user-friendly interface designed to optimize input for AI Art Generator or Creator. For faster generation speeds, it's recommended to load the model locally with GPUs, as the online demo at Hugging Face Spaces utilizes CPU, resulting in slower processing times.", api_name="predict" ) # Launch the interface iface.launch(show_api=True)