File size: 8,662 Bytes
9d85ee2
 
8a02493
 
 
 
 
 
 
 
eed20cf
8a02493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d85ee2
 
 
8a02493
e676bd8
8a02493
e676bd8
 
8a02493
 
e676bd8
 
 
 
 
 
8a02493
 
 
 
 
3e3e17d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941081c
 
3e3e17d
 
 
eed20cf
74e4942
8a02493
 
 
 
 
3155f54
 
 
65f6dc4
3155f54
65f6dc4
 
 
8a02493
 
3155f54
 
 
 
8a02493
eed20cf
 
 
 
 
 
 
 
8a02493
 
 
 
65f6dc4
 
 
 
 
 
 
e676bd8
3155f54
e676bd8
3155f54
 
 
e676bd8
3155f54
e67d080
 
e676bd8
8a02493
 
 
 
ea82efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155f54
d515eda
4447566
fce4f27
 
 
4447566
58bf923
d515eda
58bf923
fce4f27
58bf923
 
 
 
fce4f27
58bf923
 
 
 
 
d515eda
3155f54
3e3e17d
 
 
 
 
 
 
 
 
 
 
 
3155f54
 
 
 
 
 
 
 
 
 
 
eed20cf
3155f54
3843f4e
e676bd8
 
e67d080
 
e676bd8
3155f54
 
 
 
 
 
 
 
8a02493
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os

import numpy as np
import unicodedata
import diff_match_patch as dmp_module
from enum import Enum
import gradio as gr
from datasets import load_dataset
import pandas as pd
from jiwer import process_words, wer_default
from nltk import ngrams


class Action(Enum):
    INSERTION = 1
    DELETION = -1
    EQUAL = 0


def compare_string(text1: str, text2: str) -> list:
    text1_normalized = unicodedata.normalize("NFKC", text1)
    text2_normalized = unicodedata.normalize("NFKC", text2)

    dmp = dmp_module.diff_match_patch()
    diff = dmp.diff_main(text1_normalized, text2_normalized)
    dmp.diff_cleanupSemantic(diff)

    return diff


def style_text(diff):
    fullText = ""
    for action, text in diff:
        if action == Action.INSERTION.value:
            fullText += f"<span style='background-color:Lightgreen'>{text}</span>"
        elif action == Action.DELETION.value:
            fullText += f"<span style='background-color:#FFCCCB'><s>{text}</s></span>"
        elif action == Action.EQUAL.value:
            fullText += f"{text}"
        else:
            raise Exception("Not Implemented")
    fullText = fullText.replace("](", "]\(").replace("~", "\~")
    return fullText


dataset = load_dataset(
    "distil-whisper/tedlium-long-form", split="validation", num_proc=os.cpu_count()
)

csv_v2 = pd.read_csv("assets/large-v2.csv")

norm_target = csv_v2["Norm Target"]
norm_pred_v2 = csv_v2["Norm Pred"]

norm_target = [norm_target[i] for i in range(len(norm_target))]
norm_pred_v2 = [norm_pred_v2[i] for i in range(len(norm_pred_v2))]

csv_v2 = pd.read_csv("assets/large-32-2.csv")

norm_pred_32_2 = csv_v2["Norm Pred"]
norm_pred_32_2 = [norm_pred_32_2[i] for i in range(len(norm_pred_32_2))]

target_dtype = np.int16
max_range = np.iinfo(target_dtype).max


def get_statistics(model="large-v2", round_dp=2, ngram_degree=5):
    text1 = norm_target
    if model == "large-v2":
        text2 = norm_pred_v2
    elif model == "large-32-2":
        text2 = norm_pred_32_2
    else:
        raise ValueError(
            f"Got unknown model {model}, should be one of `'large-v2'` or `'large-32-2'`."
        )

    wer_output = process_words(text1, text2, wer_default, wer_default)
    wer_percentage = round(100 * wer_output.wer, round_dp)
    ier_percentage = round(
        100 * wer_output.insertions / sum([len(ref) for ref in wer_output.references]), round_dp
    )

    all_ngrams = list(ngrams(" ".join(text2).split(), ngram_degree))

    unique_ngrams = []
    for ngram in all_ngrams:
        if ngram not in unique_ngrams:
            unique_ngrams.append(ngram)

    repeated_ngrams = len(all_ngrams) - len(unique_ngrams)

    return wer_percentage, ier_percentage, repeated_ngrams


def get_overall_table():
    large_v2 = get_statistics(model="large-v2")
    large_32_2 = get_statistics(model="large-32-2")
    # format the rows
    table = [large_v2, large_32_2]
    # format the model names
    table[0] = ["Whisper", *table[0]]
    table[1] = ["Distil-Whisper", *table[1]]
    return table


def get_visualisation(idx, model="large-v2", round_dp=2, ngram_degree=5):
    idx -= 1
    audio = dataset[idx]["audio"]
    array = (audio["array"] * max_range).astype(np.int16)
    sampling_rate = audio["sampling_rate"]

    text1 = norm_target[idx]
    if model == "large-v2":
        text2 = norm_pred_v2[idx]
    elif model == "large-32-2":
        text2 = norm_pred_32_2[idx]
    else:
        raise ValueError(
            f"Got unknown model {model}, should be one of `'large-v2'` or `'large-32-2'`."
        )

    wer_output = process_words(text1, text2, wer_default, wer_default)
    wer_percentage = round(100 * wer_output.wer, round_dp)
    ier_percentage = round(
        100 * wer_output.insertions / len(wer_output.references[0]), round_dp
    )

    all_ngrams = list(ngrams(text2.split(), ngram_degree))

    unique_ngrams = []
    for ngram in all_ngrams:
        if ngram not in unique_ngrams:
            unique_ngrams.append(ngram)

    repeated_ngrams = len(all_ngrams) - len(unique_ngrams)

    diff = compare_string(text1, text2)
    full_text = style_text(diff)

    return (
        (sampling_rate, array),
        wer_percentage,
        ier_percentage,
        repeated_ngrams,
        full_text,
    )


def get_side_by_side_visualisation(idx):
    large_v2 = get_visualisation(idx, model="large-v2")
    large_32_2 = get_visualisation(idx, model="large-32-2")
    # format the rows
    table = [large_v2[1:-1], large_32_2[1:-1]]
    # format the model names
    table[0] = ["Whisper", *table[0]]
    table[1] = ["Distil-Whisper", *table[1]]
    return large_v2[0], table, large_v2[-1], large_32_2[-1]


if __name__ == "__main__":
    with gr.Blocks() as demo:
        gr.HTML(
            """
                <div style="text-align: center; max-width: 700px; margin: 0 auto;">
                  <div
                    style="
                      display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
                    "
                  >
                    <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                      Whisper Transcription Analysis
                    </h1>
                  </div>
                </div>
            """
        )
        gr.Markdown(
            """
            One of the major claims of the <a href="https://arxiv.org/abs/2311.00430"> Distil-Whisper paper</a> is that 
            that Distil-Whisper hallucinates less than Whisper on long-form audio. To demonstrate this, we analyse the
            transcriptions generated by Whisper <a href="https://huggingface.co/openai/whisper-large-v2"> large-v2</a> 
            and Distil-Whisper <a href="https://huggingface.co/distil-whisper/distil-large-v2"> distil-large-v2</a> on the 
            <a href="https://huggingface.co/datasets/distil-whisper/tedlium-long-form"> TED-LIUM</a> validation set.

            To quantify the amount of repetition and hallucination in the predicted transcriptions, we measure the number 
            of repeated 5-gram word duplicates (5-Dup.) and the insertion error rate (IER). Analysis is performed on the 
            <b>overall level</b>, where statistics are computed over the entire dataset, and also a <b>per-sample level</b> (i.e. an 
            on an individual example basis).
            
            The transcriptions for both models are shown at the bottom of the demo. We compute a text difference for each 
            relative to the ground truth transcriptions. Insertions are displayed in <span style='background-color:Lightgreen'>green</span>,
            and deletions in <span style='background-color:#FFCCCB'><s>red</s></span>. Multiple consecutive words in <span style='background-color:Lightgreen'>green</span>
            indicates that a model has hallucinated, since it has inserted words not present in the ground truth transcription.
            
            Overall, Distil-Whisper has roughly half the number of 5-Dup. and IER. This indicates that it has a lower 
            propensity to hallucinate compared to the Whisper model. Try both models with some of the TED-LIUM examples 
            and view the reduction in hallucinations for yourself!
            """
        )
        gr.Markdown("**Overall statistics:**")
        table = gr.Dataframe(
            value=get_overall_table(),
            headers=[
                "Model",
                "Word Error Rate (WER)",
                "Insertion Error Rate (IER)",
                "Repeated 5-grams",
            ],
            row_count=2,
        )
        gr.Markdown("**Per-sample statistics:**")
        slider = gr.Slider(
            minimum=1, maximum=len(norm_target), step=1, label="Dataset sample"
        )
        btn = gr.Button("Analyse")
        audio_out = gr.Audio(label="Audio input")
        with gr.Column():
            table = gr.Dataframe(
                headers=[
                    "Model",
                    "Word Error Rate (WER)",
                    "Insertion Error Rate (IER)",
                    "Repeated 5-grams",
                ],
                row_count=2,
            )
            with gr.Row():
                gr.Markdown("**Whisper text diff**")
                gr.Markdown("**Distil-Whisper text diff**")
            with gr.Row():
                text_out_v2 = gr.Markdown(label="Text difference")
                text_out_32_2 = gr.Markdown(label="Text difference")

        btn.click(
            fn=get_side_by_side_visualisation,
            inputs=slider,
            outputs=[audio_out, table, text_out_v2, text_out_32_2],
        )
    demo.launch()