{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyO1VO72OnfZKnMuw+/kiYmE"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":1,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"EXYzSD3hgu1G","executionInfo":{"status":"ok","timestamp":1744090621843,"user_tz":-330,"elapsed":2189,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"097abde1-a021-4aca-9a1e-0350639ab87a"},"outputs":[{"output_type":"stream","name":"stdout","text":["Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"]}],"source":["from google.colab import drive\n","drive.mount('/content/drive')"]},{"cell_type":"code","source":["import pandas as pd\n","\n","# Load the Online Retail dataset\n","delivery_path = \"/content/drive/My Drive/Colab Notebooks/IPLPrediction/deliveries.csv\"\n","matches_path = \"/content/drive/My Drive/Colab Notebooks/IPLPrediction/matches.csv\"\n","delivery_df = pd.read_csv(delivery_path)\n","matches_df = pd.read_csv(matches_path)\n","delivery_df.head()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":400},"id":"Qcd9bi3EhDbT","executionInfo":{"status":"ok","timestamp":1744090624196,"user_tz":-330,"elapsed":2355,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"920c7af9-ec79-4afa-c11b-083143bc39e0"},"execution_count":2,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" match_id inning batting_team bowling_team over \\\n","0 335982 1 Kolkata Knight Riders Royal Challengers Bangalore 0 \n","1 335982 1 Kolkata Knight Riders Royal Challengers Bangalore 0 \n","2 335982 1 Kolkata Knight Riders Royal Challengers Bangalore 0 \n","3 335982 1 Kolkata Knight Riders Royal Challengers Bangalore 0 \n","4 335982 1 Kolkata Knight Riders Royal Challengers Bangalore 0 \n","\n"," ball batter bowler non_striker batsman_runs extra_runs \\\n","0 1 SC Ganguly P Kumar BB McCullum 0 1 \n","1 2 BB McCullum P Kumar SC Ganguly 0 0 \n","2 3 BB McCullum P Kumar SC Ganguly 0 1 \n","3 4 BB McCullum P Kumar SC Ganguly 0 0 \n","4 5 BB McCullum P Kumar SC Ganguly 0 0 \n","\n"," total_runs extras_type is_wicket player_dismissed dismissal_kind fielder \n","0 1 legbyes 0 NaN NaN NaN \n","1 0 NaN 0 NaN NaN NaN \n","2 1 wides 0 NaN NaN NaN \n","3 0 NaN 0 NaN NaN NaN \n","4 0 NaN 0 NaN NaN NaN "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
match_idinningbatting_teambowling_teamoverballbatterbowlernon_strikerbatsman_runsextra_runstotal_runsextras_typeis_wicketplayer_dismisseddismissal_kindfielder
03359821Kolkata Knight RidersRoyal Challengers Bangalore01SC GangulyP KumarBB McCullum011legbyes0NaNNaNNaN
13359821Kolkata Knight RidersRoyal Challengers Bangalore02BB McCullumP KumarSC Ganguly000NaN0NaNNaNNaN
23359821Kolkata Knight RidersRoyal Challengers Bangalore03BB McCullumP KumarSC Ganguly011wides0NaNNaNNaN
33359821Kolkata Knight RidersRoyal Challengers Bangalore04BB McCullumP KumarSC Ganguly000NaN0NaNNaNNaN
43359821Kolkata Knight RidersRoyal Challengers Bangalore05BB McCullumP KumarSC Ganguly000NaN0NaNNaNNaN
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"delivery_df"}},"metadata":{},"execution_count":2}]},{"cell_type":"code","source":["matches_df.head()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":417},"id":"UfT1RzMMhDYy","executionInfo":{"status":"ok","timestamp":1744090624431,"user_tz":-330,"elapsed":232,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"8465c341-c2b7-48df-c218-2473d01217c8"},"execution_count":3,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" id season city date match_type player_of_match \\\n","0 335982 2007/08 Bangalore 2008-04-18 League BB McCullum \n","1 335983 2007/08 Chandigarh 2008-04-19 League MEK Hussey \n","2 335984 2007/08 Delhi 2008-04-19 League MF Maharoof \n","3 335985 2007/08 Mumbai 2008-04-20 League MV Boucher \n","4 335986 2007/08 Kolkata 2008-04-20 League DJ Hussey \n","\n"," venue team1 \\\n","0 M Chinnaswamy Stadium Royal Challengers Bangalore \n","1 Punjab Cricket Association Stadium, Mohali Kings XI Punjab \n","2 Feroz Shah Kotla Delhi Daredevils \n","3 Wankhede Stadium Mumbai Indians \n","4 Eden Gardens Kolkata Knight Riders \n","\n"," team2 toss_winner toss_decision \\\n","0 Kolkata Knight Riders Royal Challengers Bangalore field \n","1 Chennai Super Kings Chennai Super Kings bat \n","2 Rajasthan Royals Rajasthan Royals bat \n","3 Royal Challengers Bangalore Mumbai Indians bat \n","4 Deccan Chargers Deccan Chargers bat \n","\n"," winner result result_margin target_runs \\\n","0 Kolkata Knight Riders runs 140.0 223.0 \n","1 Chennai Super Kings runs 33.0 241.0 \n","2 Delhi Daredevils wickets 9.0 130.0 \n","3 Royal Challengers Bangalore wickets 5.0 166.0 \n","4 Kolkata Knight Riders wickets 5.0 111.0 \n","\n"," target_overs super_over method umpire1 umpire2 \n","0 20.0 N NaN Asad Rauf RE Koertzen \n","1 20.0 N NaN MR Benson SL Shastri \n","2 20.0 N NaN Aleem Dar GA Pratapkumar \n","3 20.0 N NaN SJ Davis DJ Harper \n","4 20.0 N NaN BF Bowden K Hariharan "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
idseasoncitydatematch_typeplayer_of_matchvenueteam1team2toss_winnertoss_decisionwinnerresultresult_margintarget_runstarget_overssuper_overmethodumpire1umpire2
03359822007/08Bangalore2008-04-18LeagueBB McCullumM Chinnaswamy StadiumRoyal Challengers BangaloreKolkata Knight RidersRoyal Challengers BangalorefieldKolkata Knight Ridersruns140.0223.020.0NNaNAsad RaufRE Koertzen
13359832007/08Chandigarh2008-04-19LeagueMEK HusseyPunjab Cricket Association Stadium, MohaliKings XI PunjabChennai Super KingsChennai Super KingsbatChennai Super Kingsruns33.0241.020.0NNaNMR BensonSL Shastri
23359842007/08Delhi2008-04-19LeagueMF MaharoofFeroz Shah KotlaDelhi DaredevilsRajasthan RoyalsRajasthan RoyalsbatDelhi Daredevilswickets9.0130.020.0NNaNAleem DarGA Pratapkumar
33359852007/08Mumbai2008-04-20LeagueMV BoucherWankhede StadiumMumbai IndiansRoyal Challengers BangaloreMumbai IndiansbatRoyal Challengers Bangalorewickets5.0166.020.0NNaNSJ DavisDJ Harper
43359862007/08Kolkata2008-04-20LeagueDJ HusseyEden GardensKolkata Knight RidersDeccan ChargersDeccan ChargersbatKolkata Knight Riderswickets5.0111.020.0NNaNBF BowdenK Hariharan
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"matches_df","summary":"{\n \"name\": \"matches_df\",\n \"rows\": 1095,\n \"fields\": [\n {\n \"column\": \"id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 367740,\n \"min\": 335982,\n \"max\": 1426312,\n \"num_unique_values\": 1095,\n \"samples\": [\n 980933,\n 419130,\n 392213\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"season\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 17,\n \"samples\": [\n \"2007/08\",\n \"2009\",\n \"2013\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"city\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 36,\n \"samples\": [\n \"Mohali\",\n \"Johannesburg\",\n \"Abu Dhabi\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"date\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 823,\n \"samples\": [\n \"2021-04-23\",\n \"2012-04-06\",\n \"2009-05-12\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"match_type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"Semi Final\",\n \"Elimination Final\",\n \"League\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"player_of_match\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 291,\n \"samples\": [\n \"PD Collingwood\",\n \"DR Sams\",\n \"CH Gayle\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"venue\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 58,\n \"samples\": [\n \"M Chinnaswamy Stadium\",\n \"Sawai Mansingh Stadium\",\n \"Saurashtra Cricket Association Stadium\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team1\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 19,\n \"samples\": [\n \"Royal Challengers Bangalore\",\n \"Rajasthan Royals\",\n \"Gujarat Lions\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team2\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 19,\n \"samples\": [\n \"Kolkata Knight Riders\",\n \"Kings XI Punjab\",\n \"Rising Pune Supergiants\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"toss_winner\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 19,\n \"samples\": [\n \"Royal Challengers Bangalore\",\n \"Kings XI Punjab\",\n \"Gujarat Lions\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"toss_decision\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"bat\",\n \"field\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"winner\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 19,\n \"samples\": [\n \"Kolkata Knight Riders\",\n \"Kings XI Punjab\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"result\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"wickets\",\n \"no result\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"result_margin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 21.787443729011244,\n \"min\": 1.0,\n \"max\": 146.0,\n \"num_unique_values\": 98,\n \"samples\": [\n 59.0,\n 39.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"target_runs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 33.42704825769166,\n \"min\": 43.0,\n \"max\": 288.0,\n \"num_unique_values\": 170,\n \"samples\": [\n 249.0,\n 144.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"target_overs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.5811083157739763,\n \"min\": 5.0,\n \"max\": 20.0,\n \"num_unique_values\": 15,\n \"samples\": [\n 12.0,\n 11.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"super_over\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"Y\",\n \"N\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"method\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"D/L\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"umpire1\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 62,\n \"samples\": [\n \"Navdeep Singh\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"umpire2\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 62,\n \"samples\": [\n \"AY Dandekar\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":3}]},{"cell_type":"code","source":["print(\"Deliveries Shape:\", delivery_df.shape)\n","print(\"Matches Shape:\", matches_df.shape)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"r4lkuvJChDWb","executionInfo":{"status":"ok","timestamp":1744090624449,"user_tz":-330,"elapsed":14,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"bb01f5a5-59d2-4d68-bfe4-592d8d907c0d"},"execution_count":4,"outputs":[{"output_type":"stream","name":"stdout","text":["Deliveries Shape: (260920, 17)\n","Matches Shape: (1095, 20)\n"]}]},{"cell_type":"markdown","source":["**Exploratory Data Analysis**"],"metadata":{"id":"2AvneuSbouFi"}},{"cell_type":"code","source":["import matplotlib.pyplot as plt\n","import seaborn as sns\n","\n","# Convert date column to datetime\n","matches_df['date'] = pd.to_datetime(matches_df['date'])\n","\n","# Extract year from date for consistency\n","matches_df['year'] = matches_df['date'].dt.year\n","\n","# Top teams with most wins\n","top_teams = matches_df['winner'].value_counts().head(10)\n","\n","# Toss decision impact\n","toss_decision_result = matches_df.groupby(['toss_decision', 'winner']).size().unstack(fill_value=0)\n","\n","# Matches per city\n","matches_per_city = matches_df['city'].value_counts().head(10)\n","\n","#Top 10 Teams with Most Wins\n","# Visualizations\n","plt.figure(figsize=(14, 6))\n","sns.barplot(x=top_teams.index, y=top_teams.values)\n","plt.title(\"🏆 Top 10 Teams with Most Wins in IPL\")\n","plt.ylabel(\"Number of Wins\")\n","plt.xlabel(\"Teams\")\n","plt.xticks(rotation=45)\n","plt.tight_layout()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":566},"id":"mr5sUGjxhDUE","executionInfo":{"status":"ok","timestamp":1744090627338,"user_tz":-330,"elapsed":2885,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"b7322896-0462-4341-ae72-ae06c248ca46"},"execution_count":5,"outputs":[{"output_type":"stream","name":"stderr","text":[":27: UserWarning: Glyph 127942 (\\N{TROPHY}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 127942 (\\N{TROPHY}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABW4AAAJOCAYAAAAnP56mAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA7idJREFUeJzs3XmcjeX/x/H3GWNm7Lth7CH7vi/ZZcmaQoiQLRLKmiVaRJTskrXsQlJIlux7KGQLKY0lZuwzzHx+f/jN/Z0TyjBjDvN6Ph7zeMy57+vc8zlzrnOf+7zPdV+3y8xMAAAAAAAAAACP4RXbBQAAAAAAAAAA3BHcAgAAAAAAAICHIbgFAAAAAAAAAA9DcAsAAAAAAAAAHobgFgAAAAAAAAA8DMEtAAAAAAAAAHgYglsAAAAAAAAA8DAEtwAAAAAAAADgYQhuAQAAAAAAAMDDENwCAAAA/yFr1qx65ZVX7rttnTp1YragJ0xU/r/RpVKlSqpUqdIj/ZsAAABRQXALAADwD5UqVZLL5frPn3feeSfGa/n+++/Vtm1b5c+fX/HixVPWrFnv2TY8PFzDhw9XtmzZ5Ofnp4IFC2rOnDn/uv0TJ07c12N1uVw6ceJE9D64x9iBAwf0zjvvxMj/JOL//eqrr951/dtvv+20OX/+fLT/fUkaP368pk+f/p/twsLClDRpUtWvX/+OdZ988olcLpdatWp1x7qBAwfK5XLp8OHD0VGuR5g+fbpcLpd27tzpLHvnnXfcXkMJEyZU3rx51b9/f126dOlf7wsAAOAd2wUAAADEhP3796tIkSLy8fG56/rQ0FAdPHhQ2bNnv2Pd22+/7Raa7dixQ6NHj1a/fv2UJ08eZ3nBggWjv/B/mD17tubNm6eiRYsqICDgX9u+/fbb+vDDD9WuXTuVKFFCX3/9tZo1ayaXy6WmTZve9T5p0qTRF1984bZs5MiR+uOPP/TJJ5/c0TauOnTokLy8/jfm4cCBAxo8eLAqVar0r2H6g/Lz89NXX32l8ePH39GH58yZIz8/P924cSPa/26E8ePHK3Xq1P85CjZevHgqXbq0Nm/efMe6TZs2ydvbW5s2bbrrurRp0+rpp5+WdOf/91H4/vvvH9nfmjBhghInTqwrV67o+++/1/vvv681a9Zo06ZNcrlcj6wOAADweCG4BQAATyQzU8mSJbVx48a7ri9durTM7K7rqlev7nbbz89Po0ePVvXq1R/5qdUffPCBJk+erPjx46tOnTr65Zdf7truzz//1MiRI9W5c2eNHTtWkvTqq6+qYsWK6tmzp1588UXFixfvjvslSpRILVq0cFs2d+5cXbx48Y7lcZmvr+8j/Xs1a9bU0qVLtXz5crfRrJs3b9bx48fVqFEjffXVV4+0pnspX768Vq1apYMHD7p9sbFp0yY1btxYs2fPVmBgoNKlSydJunXrlrZt26Znn33Wafuo/7+S7vmlTkx44YUXlDp1aklSx44d1ahRIy1atEhbt25VmTJlHlkdAADg8cJUCQAAAA9o/Pjxypcvn3x9fRUQEKDOnTsrKCjIrU2lSpWUP39+7dq1S2XLllWCBAmULVs2TZw48b7+RkBAgOLHj/+f7b7++mvdvHlTr732mrPM5XKpU6dO+uOPP7Rly5YoPbZ/CgkJ0aBBg5QjRw75+voqU6ZM6tWrl0JCQtzaTZs2TVWqVFHatGnl6+urvHnzasKECXdsL2Ie2HXr1ql48eJKkCCBChQooHXr1kmSFi1apAIFCsjPz0/FihXTTz/95Hb/wMBAtW7dWhkzZpSvr6/Sp0+v+vXr/+vUBUuXLpXL5dK+ffucZV999ZVcLpeef/55t7Z58uRRkyZN3OqNGH06ffp0vfjii5KkypUrO6fBR9QeYePGjSpZsqT8/Pz01FNPaebMmfes7Z8yZMigChUqaPbs2W7LZ82apQIFCih//vx3vd+CBQtUrFgxJUiQQKlTp1aLFi30559/urX5r/9d1qxZtX//fv3444/OY/u3LyzKly8vSW4ja3/77TcFBgaqS5cu8vPzc1u3Z88eXb161blfxN+MPLo3YuqATZs2qUePHkqTJo0SJUqkhg0b6ty5c25/f+fOnapRo4ZSp07tvL7atGlzz3oj/HOO23Xr1snlcmn+/Pl6//33lTFjRvn5+alq1ao6evTof24vKqpUqSJJOn78eLRuFwAAPFkIbgEAAB7AO++8o86dOysgIEAjR45Uo0aNNGnSJD377LO6efOmW9uLFy+qdu3aKlasmIYPH66MGTOqU6dOmjp1arTV89NPPylRokRuIx4lqWTJks76BxUeHq569eppxIgRqlu3rsaMGaMGDRrok08+cQs3pdunhGfJkkX9+vXTyJEjlSlTJr322msaN27cHds9evSomjVrprp162ro0KG6ePGi6tatq1mzZql79+5q0aKFBg8erGPHjqlx48YKDw937tuoUSMtXrxYrVu31vjx49W1a1ddvnxZv//++z0fR/ny5eVyubR+/Xpn2YYNG+Tl5eU2MvvcuXP69ddfVaFChbtup0KFCurataskqV+/fvriiy/0xRdfuP3vjx49qhdeeEHVq1fXyJEjlSJFCr3yyivav3//f/y3/6dZs2b65ptvdOXKFUm3R6ouWLBAzZo1u2v76dOnq3HjxooXL56GDh2qdu3aadGiRSpfvrzbFwr/9b8bNWqUMmbMqNy5czuP7e23375nnaVLl5a3t7fb/3DTpk1KlCiRSpQooeLFi7sFtxG/Rw5u7+X111/X3r17NWjQIHXq1EnffPONunTp4qw/e/asnn32WZ04cUJ9+vTRmDFj1Lx5c23duvU/t30vH374oRYvXqy33npLffv21datW9W8efMH3t7dHDt2TJKUKlWqaN0uAAB4whgAAMAT6Oeff7Zy5crdc32pUqXsyJEj97WtBQsWmCRbu3atmZmdPXvWfHx87Nlnn7WwsDCn3dixY02STZ061VlWsWJFk2QjR450loWEhFjhwoUtbdq0Fhoaet+P6bnnnrMsWbLcc91TTz11x/KrV6+aJOvTp88D/50vvvjCvLy8bMOGDW7tJk6caJJs06ZNzrJr167dsb0aNWrcUVuWLFlMkm3evNlZtnLlSpNkCRIksJMnTzrLJ02a5Pb/v3jxokmyjz766L4fU4R8+fJZ48aNndtFixa1F1980STZwYMHzcxs0aJFJsn27t3rVm+rVq2c2//sE3d7bOvXr3eWnT171nx9fe3NN9/8zxolWefOne3ChQvm4+NjX3zxhZmZffvtt+ZyuezEiRM2aNAgk2Tnzp0zM7PQ0FBLmzat5c+f365fv+5sa9myZSbJBg4caGb3/7/Lly+fVaxY8T9rjVCiRAnLnj27c7tDhw5WuXJlMzPr1auXlShRwln3wgsvWMKECe3mzZvOsn/+f6dNm2aSrFq1ahYeHu4s7969u8WLF8+CgoLMzGzx4sUmyXbs2HHftUaoWLGi22Ncu3atSbI8efJYSEiIs/zTTz81Sfbzzz//6/Yiao5cS8TzdOjQITt37pwdP37cJk2aZL6+vubv729Xr169530BAAAYcQsAABBFP/zwg0JDQ9WtWze3Cyq1a9dOSZMm1bfffuvW3tvbWx06dHBu+/j4qEOHDjp79qx27doVLTVdv379rvOE+vn5Oesf1IIFC5QnTx7lzp1b58+fd34iTvdeu3at0zZBggTO78HBwTp//rwqVqyo3377TcHBwW7bzZs3r9v8nqVKlZJ0+zTyzJkz37H8t99+c/6Gj4+P1q1bp4sXL0bpsTzzzDPasGGDJOny5cvau3ev2rdvr9SpUzvLN2zYoOTJk99zOoL7kTdvXj3zzDPO7TRp0ihXrlzOY7gfKVKkUM2aNTVnzhxJty9UV7ZsWWXJkuWOtjt37tTZs2f12muvOc+5JD333HPKnTu30ycf5n/3b8qXL69jx44pMDBQ0u1RtWXLlpUklStXTj/99JOuXbvmrCtVqpS8vf/7chvt27d3u3jXM888o7CwMJ08eVKSlDx5cknSsmXL7hjp/qBat27tNv9txPMYlefun3LlyqU0adIoW7Zs6tChg3LkyKFvv/1WCRMmfOh6AQDAk4vgFgAAIIoiQqNcuXK5Lffx8dFTTz3lrI8QEBCgRIkSuS17+umnJelf52SNigQJEtwx36wk3bhxw1n/oI4cOaL9+/crTZo0bj8Rj+Hs2bNO202bNqlatWpKlCiRkidPrjRp0qhfv36SdEdwGzmclaRkyZJJkjJlynTX5RFBo6+vr4YNG6bly5fL399fFSpU0PDhw53Q8N8888wz+uuvv3T06FFt3rxZLpdLZcqUcQt0N2zYoHLlyrmF8lH1z8cm3Q5ioxqWNmvWTKtWrdLvv/+uJUuW3HOahHv1SUnKnTu3s/5h/nf/JvI8t0FBQdq/f7/KlSsnSSpbtqxu3bql7du36/jx4/rrr7/ua5oE6c7/Y4oUKST9ry9UrFhRjRo10uDBg5U6dWrVr19f06ZNu+tr4X791998EF999ZVWrVqldevW6ejRo/rll19UrFixB94eAACIGwhuAQAAngDp06dXYGCgzMxt+V9//SXpdnj8oMLDw1WgQAGtWrXqrj8RF0Q7duyYqlatqvPnz+vjjz/Wt99+q1WrVql79+7OdiKLFy/eXf/evZZHfmzdunXT4cOHNXToUPn5+WnAgAHKkyfPf87lGxEYrl+/Xhs2bFDRokWVKFEiJ7i9cuWKfvrpJ7fRsg/ifh7D/ahXr558fX3VqlUrhYSEqHHjxg9Vl/Tg/7t/E/F/3bhxo3MhvIjR1KlTp1bOnDm1ceNGZx7c+w1u/+v/6HK5tHDhQm3ZskVdunTRn3/+qTZt2qhYsWLO3MBRFV3PXWQVKlRQtWrVVLFiRWXPnv2BtwMAAOIWglsAAIAoijhV/dChQ27LQ0NDdfz48TtOZT99+rSuXr3qtuzw4cOSpKxZs0ZLTYULF9a1a9d08OBBt+Xbtm1z1j+o7Nmz68KFC6pataqqVat2x0/EKM9vvvlGISEhWrp0qTp06KDatWurWrVqDzXa97/qevPNN/X999/rl19+UWhoqEaOHPmv98mcObMyZ86sDRs2aMOGDU5AW6FCBZ04cUILFixQWFjYPS9MFiHy6fsxKUGCBGrQoIHWrVun6tWrK3Xq1Hdtd68+GbHsn33yv/53UX18adOmdcLZTZs2KW/evM40BtLtUbebNm3Spk2bFC9ePLcpMqJD6dKl9f7772vnzp2aNWuW9u/fr7lz50br3wAAAHjUCG4BAACiqFq1avLx8dHo0aPdRuFNmTJFwcHBeu6559za37p1S5MmTXJuh4aGatKkSUqTJk20nS5dv359xY8fX+PHj3eWmZkmTpyoDBkyOPONPojGjRvrzz//1OTJk+9Yd/36dSeUjhipGPl/EhwcrGnTpj3w376ba9euOVNARMiePbuSJElyX6fIP/PMM1qzZo22b9/uBLeFCxdWkiRJ9OGHHypBggT/+bxETH0RFBT0YA8iCt566y0NGjRIAwYMuGeb4sWLK23atJo4caLb/2D58uU6ePCg0yfv93+XKFGiKD+28uXLa8+ePfr+++/v6G9ly5bVli1btGHDBhUsWFBJkiSJ0rbv5eLFi3eMhI34kuJhpksAAADwBP99RQAAAAC4SZMmjfr27avBgwerZs2aqlevng4dOqTx48erRIkSatGihVv7gIAADRs2TCdOnNDTTz+tefPmac+ePfrss88UP378f/1b+/bt09KlSyVJR48eVXBwsN577z1JUqFChVS3bl1JUsaMGdWtWzd99NFHunnzpkqUKKElS5Zow4YNmjVr1j1P/74fL7/8subPn6+OHTtq7dq1KleunMLCwvTrr79q/vz5WrlypYoXL65nn31WPj4+qlu3rjp06KArV65o8uTJSps2rTNlQ3Q4fPiwqlatqsaNGytv3rzy9vbW4sWLdebMGTVt2vQ/7//MM89o1qxZcrlczin78eLFU9myZbVy5UpVqlTJ7eJUd1O4cGHFixdPw4YNU3BwsHx9fVWlShWlTZs2Wh5jZIUKFVKhQoX+tU38+PE1bNgwtW7dWhUrVtRLL72kM2fO6NNPP1XWrFmd6Sru939XrFgxTZgwQe+9955y5MihtGnTOheju5fy5ctr2rRp2rFjhzp37uy2rmzZsgoODlZwcLBef/31B/xP3GnGjBkaP368GjZsqOzZs+vy5cuaPHmykiZNqtq1a0fb33lUpk6dqhUrVtyx/I033oi2sBsAADw+CG4BAAAewDvvvKM0adJo7Nix6t69u1KmTKn27dvrgw8+uCOMTZEihWbMmKHXX39dkydPlr+/v8aOHat27dr959/ZvXv3HSMtI263atXKCW4l6cMPP1SKFCk0adIkTZ8+XTlz5tSXX355zwta3S8vLy8tWbJEn3zyiWbOnKnFixcrYcKEeuqpp/TGG284FynLlSuXFi5cqP79++utt95SunTp1KlTJ6VJk0Zt2rR5qBoiy5Qpk1566SWtXr1aX3zxhby9vZU7d27Nnz9fjRo1+s/7R4yyzZ07t1KlSuW2fOXKlfc1v226dOk0ceJEDR06VG3btlVYWJjWrl0bI8Ht/XrllVeUMGFCffjhh+rdu7cSJUqkhg0batiwYc60Bff7vxs4cKBOnjyp4cOH6/Lly6pYseJ9BbcR/jniNl++fEqePLmCgoLue37b+1GxYkVt375dc+fO1ZkzZ5QsWTKVLFlSs2bNUrZs2aLt7zwqEyZMuOvyV155heAWAIA4yGUPM8s+AACAh/rll1/UsWNH52JI/1S6dGl9+eWXypEjR4zWUalSJZ0/f16//PJLjP4dAAAAAE8W5rgFAAAAAAAAAA/DVAkAAOCJtXXrVrcr20d25cqVR1sMAAAAAEQBwS0AAHgi5c+fX7du3YrtMgAAAADggTDHLQAAAAAAAAB4GOa4BQAAAAAAAAAPQ3ALAAAAAAAAAB6GOW4lhYeH6/Tp00qSJIlcLldslwMAAAAAAADgCWRmunz5sgICAuTl9e9jagluJZ0+fVqZMmWK7TIAAAAAAAAAxAGnTp1SxowZ/7UNwa2kJEmSSLr9D0uaNGksVwMAAAAAAADgSXTp0iVlypTJySP/DcGt5EyPkDRpUoJbAAAAAAAAADHqfqZr5eJkAAAAAAAAAOBhCG4BAAAAAAAAwMMQ3AIAAAAAAACAhyG4BQAAAAAAAAAPQ3ALAAAAAAAAAB6G4BYAAAAAAAAAPAzBLQAAAAAAAAB4GIJbAAAAAAAAAPAwBLcAAAAAAAAA4GEIbgEAAAAAAADAwxDcAgAAAAAAAICHIbgFAAAAAAAAAA9DcAsAAAAAAAAAHobgFgAAAAAAAAA8DMEtAAAAAAAAAHgY79gu4HFWrOfM2C4B/2HXRy1juwQAAAAAAAAgyhhxCwAAAAAAAAAehuAWAAAAAAAAADwMwS0AAAAAAAAAeBiCWwAAAAAAAADwMLEa3K5fv15169ZVQECAXC6XlixZcs+2HTt2lMvl0qhRo9yWX7hwQc2bN1fSpEmVPHlytW3bVleuXInZwgEAAAAAAAAgBsVqcHv16lUVKlRI48aN+9d2ixcv1tatWxUQEHDHuubNm2v//v1atWqVli1bpvXr16t9+/YxVTIAAAAAAAAAxDjv2PzjtWrVUq1atf61zZ9//qnXX39dK1eu1HPPPee27uDBg1qxYoV27Nih4sWLS5LGjBmj2rVra8SIEXcNegEAAAAAAADA03n0HLfh4eF6+eWX1bNnT+XLl++O9Vu2bFHy5Mmd0FaSqlWrJi8vL23btu1RlgoAAAAAAAAA0SZWR9z+l2HDhsnb21tdu3a96/rAwEClTZvWbZm3t7dSpkypwMDAe243JCREISEhzu1Lly5FT8EAAAAAAAAAEA08dsTtrl279Omnn2r69OlyuVzRuu2hQ4cqWbJkzk+mTJmidfsAAAAAAAAA8DA8NrjdsGGDzp49q8yZM8vb21ve3t46efKk3nzzTWXNmlWSlC5dOp09e9btfrdu3dKFCxeULl26e267b9++Cg4Odn5OnToVkw8FAAAAAAAAAKLEY6dKePnll1WtWjW3ZTVq1NDLL7+s1q1bS5LKlCmjoKAg7dq1S8WKFZMkrVmzRuHh4SpVqtQ9t+3r6ytfX9+YKx4AAAAAAAAAHkKsBrdXrlzR0aNHndvHjx/Xnj17lDJlSmXOnFmpUqVyax8/fnylS5dOuXLlkiTlyZNHNWvWVLt27TRx4kTdvHlTXbp0UdOmTRUQEPBIHwsAAAAAAAAARJdYDW537typypUrO7d79OghSWrVqpWmT59+X9uYNWuWunTpoqpVq8rLy0uNGjXS6NGjY6Jc4J6K9ZwZ2yXgP+z6qGVslwAAAAAAAHDfYjW4rVSpkszsvtufOHHijmUpU6bU7Nmzo7EqAAAAAAAAAIhdHntxMgAAAAAAAACIqwhuAQAAAAAAAMDDENwCAAAAAAAAgIchuAUAAAAAAAAAD0NwCwAAAAAAAAAehuAWAAAAAAAAADwMwS0AAAAAAAAAeBiCWwAAAAAAAADwMAS3AAAAAAAAAOBhCG4BAAAAAAAAwMMQ3AIAAAAAAACAhyG4BQAAAAAAAAAPQ3ALAAAAAAAAAB6G4BYAAAAAAAAAPAzBLQAAAAAAAAB4GO/YLgAAnjTFes6M7RLwH3Z91DK2SwAAAAAA4F8x4hYAAAAAAAAAPAzBLQAAAAAAAAB4GIJbAAAAAAAAAPAwBLcAAAAAAAAA4GEIbgEAAAAAAADAwxDcAgAAAAAAAICHIbgFAAAAAAAAAA9DcAsAAAAAAAAAHobgFgAAAAAAAAA8DMEtAAAAAAAAAHgYglsAAAAAAAAA8DAEtwAAAAAAAADgYQhuAQAAAAAAAMDDENwCAAAAAAAAgIchuAUAAAAAAAAAD0NwCwAAAAAAAAAehuAWAAAAAAAAADwMwS0AAAAAAAAAeBiCWwAAAAAAAADwMAS3AAAAAAAAAOBhCG4BAAAAAAAAwMMQ3AIAAAAAAACAh4nV4Hb9+vWqW7euAgIC5HK5tGTJEmfdzZs31bt3bxUoUECJEiVSQECAWrZsqdOnT7tt48KFC2revLmSJk2q5MmTq23btrpy5cojfiQAAAAAAAAAEH1iNbi9evWqChUqpHHjxt2x7tq1a9q9e7cGDBig3bt3a9GiRTp06JDq1avn1q558+bav3+/Vq1apWXLlmn9+vVq3779o3oIAAAAAAAAABDtvGPzj9eqVUu1atW667pkyZJp1apVbsvGjh2rkiVL6vfff1fmzJl18OBBrVixQjt27FDx4sUlSWPGjFHt2rU1YsQIBQQExPhjAAAAAAAAAIDo9ljNcRscHCyXy6XkyZNLkrZs2aLkyZM7oa0kVatWTV5eXtq2bds9txMSEqJLly65/QAAAAAAAACAp3hsgtsbN26od+/eeumll5Q0aVJJUmBgoNKmTevWztvbWylTplRgYOA9tzV06FAlS5bM+cmUKVOM1g4AAAAAAAAAUfFYBLc3b95U48aNZWaaMGHCQ2+vb9++Cg4Odn5OnToVDVUCAAAAAAAAQPSI1Tlu70dEaHvy5EmtWbPGGW0rSenSpdPZs2fd2t+6dUsXLlxQunTp7rlNX19f+fr6xljNAAAAAAAAAPAwPHrEbURoe+TIEf3www9KlSqV2/oyZcooKChIu3btcpatWbNG4eHhKlWq1KMuFwAAAAAAAACiRayOuL1y5YqOHj3q3D5+/Lj27NmjlClTKn369HrhhRe0e/duLVu2TGFhYc68tSlTppSPj4/y5MmjmjVrql27dpo4caJu3rypLl26qGnTpgoICIithwUAAAAAAAAADyVWg9udO3eqcuXKzu0ePXpIklq1aqV33nlHS5culSQVLlzY7X5r165VpUqVJEmzZs1Sly5dVLVqVXl5ealRo0YaPXr0I6kfAAAAAAAAAGJCrAa3lSpVkpndc/2/rYuQMmVKzZ49OzrLAgAAAAAAAIBY5dFz3AIAAAAAAABAXERwCwAAAAAAAAAehuAWAAAAAAAAADxMrM5xCwDAk6xYz5mxXQL+w66PWsZ2CQAAAABwV4y4BQAAAAAAAAAPQ3ALAAAAAAAAAB6G4BYAAAAAAAAAPAzBLQAAAAAAAAB4GIJbAAAAAAAAAPAwBLcAAAAAAAAA4GEIbgEAAAAAAADAwxDcAgAAAAAAAICH8Y7tAgAAAOKCYj1nxnYJ+A+7PmoZ2yUAAAAADkbcAgAAAAAAAICHIbgFAAAAAAAAAA9DcAsAAAAAAAAAHobgFgAAAAAAAAA8DMEtAAAAAAAAAHgYglsAAAAAAAAA8DAEtwAAAAAAAADgYQhuAQAAAAAAAMDDENwCAAAAAAAAgIchuAUAAAAAAAAAD0NwCwAAAAAAAAAehuAWAAAAAAAAADwMwS0AAAAAAAAAeBiCWwAAAAAAAADwMAS3AAAAAAAAAOBhCG4BAAAAAAAAwMMQ3AIAAAAAAACAhyG4BQAAAAAAAAAPQ3ALAAAAAAAAAB6G4BYAAAAAAAAAPAzBLQAAAAAAAAB4GIJbAAAAAAAAAPAwBLcAAAAAAAAA4GEIbgEAAAAAAADAw8RqcLt+/XrVrVtXAQEBcrlcWrJkidt6M9PAgQOVPn16JUiQQNWqVdORI0fc2ly4cEHNmzdX0qRJlTx5crVt21ZXrlx5hI8CAAAAAAAAAKJXrAa3V69eVaFChTRu3Li7rh8+fLhGjx6tiRMnatu2bUqUKJFq1KihGzduOG2aN2+u/fv3a9WqVVq2bJnWr1+v9u3bP6qHAAAAAAAAAADRzjs2/3itWrVUq1atu64zM40aNUr9+/dX/fr1JUkzZ86Uv7+/lixZoqZNm+rgwYNasWKFduzYoeLFi0uSxowZo9q1a2vEiBEKCAh4ZI8FAAAAAAAAAKKLx85xe/z4cQUGBqpatWrOsmTJkqlUqVLasmWLJGnLli1Knjy5E9pKUrVq1eTl5aVt27Y98poBAAAAAAAAIDrE6ojbfxMYGChJ8vf3d1vu7+/vrAsMDFTatGnd1nt7eytlypROm7sJCQlRSEiIc/vSpUvRVTYAAAAAAAAAPDSPHXEbk4YOHapkyZI5P5kyZYrtkgAAAAAAAADA4bHBbbp06SRJZ86ccVt+5swZZ126dOl09uxZt/W3bt3ShQsXnDZ307dvXwUHBzs/p06diubqAQAAAAAAAODBeWxwmy1bNqVLl06rV692ll26dEnbtm1TmTJlJEllypRRUFCQdu3a5bRZs2aNwsPDVapUqXtu29fXV0mTJnX7AQAAAAAAAABPEatz3F65ckVHjx51bh8/flx79uxRypQplTlzZnXr1k3vvfeecubMqWzZsmnAgAEKCAhQgwYNJEl58uRRzZo11a5dO02cOFE3b95Uly5d1LRpUwUEBMTSowIAAAAAAACAhxPl4PbUqVNyuVzKmDGjJGn79u2aPXu28ubNq/bt20dpWzt37lTlypWd2z169JAktWrVStOnT1evXr109epVtW/fXkFBQSpfvrxWrFghPz8/5z6zZs1Sly5dVLVqVXl5ealRo0YaPXp0VB8WAAAAAAAAAHiMKAe3zZo1U/v27fXyyy8rMDBQ1atXV758+TRr1iwFBgZq4MCB972tSpUqyczuud7lcmnIkCEaMmTIPdukTJlSs2fPjtJjAAAAAAAAAABPFuU5bn/55ReVLFlSkjR//nzlz59fmzdv1qxZszR9+vTorg8AAAAAAAAA4pwoB7c3b96Ur6+vJOmHH35QvXr1JEm5c+fWX3/9Fb3VAQAAAAAAAEAcFOXgNl++fJo4caI2bNigVatWqWbNmpKk06dPK1WqVNFeIAAAAAAAAADENVEObocNG6ZJkyapUqVKeumll1SoUCFJ0tKlS50pFAAAAAAAAAAADy7KFyerVKmSzp8/r0uXLilFihTO8vbt2ythwoTRWhwAAAAAAAAAxEVRDm4lKV68eG6hrSRlzZo1OuoBAAAAAAAAgDgvylMlnDlzRi+//LICAgLk7e2tePHiuf0AAAAAAAAAAB5OlEfcvvLKK/r99981YMAApU+fXi6XKybqAgAAAAAAAIA4K8rB7caNG7VhwwYVLlw4BsoBAAAAAAAAAER5qoRMmTLJzGKiFgAAAAAAAACAHiC4HTVqlPr06aMTJ07EQDkAAAAAAAAAgChPldCkSRNdu3ZN2bNnV8KECRU/fny39RcuXIi24gAAAAAAAAAgLopycDtq1KgYKAMAAAAAAAAAECHKwW2rVq1iog4AAAAAAAAAwP+7r+D20qVLSpo0qfP7v4loBwAAAAAAAAB4MPcV3KZIkUJ//fWX0qZNq+TJk8vlct3RxszkcrkUFhYW7UUCAAAAAAAAQFxyX8HtmjVrlDJlSuf3uwW3AAAAAAAAAIDocV/BbcWKFXX8+HFly5ZNlSpViuGSAAAAAAAAACBu87rfhtmzZ1e2bNnUpk0bffnll/rjjz9isi4AAAAAAAAAiLPua8StdHuKhHXr1mndunWaM2eOQkND9dRTT6lKlSqqXLmyKleuLH9//5isFQAAAAAAAADihPsObitVquRMk3Djxg1t3rzZCXJnzJihmzdvKnfu3Nq/f39M1QoAAAAAAAAAccJ9B7eR+fn5qUqVKipfvrwqV66s5cuXa9KkSfr111+juz4AAAAAAAAAiHOiFNyGhoZq69atWrt2rdatW6dt27YpU6ZMqlChgsaOHauKFSvGVJ0AAAAAAAAAEGfcd3BbpUoVbdu2TdmyZVPFihXVoUMHzZ49W+nTp4/J+gAAAIAnSrGeM2O7BPyHXR+1fCR/h77weHhU/QEAgH+67+B2w4YNSp8+vapUqaJKlSqpYsWKSpUqVUzWBgAAAAAAAABxktf9NgwKCtJnn32mhAkTatiwYQoICFCBAgXUpUsXLVy4UOfOnYvJOgEAAAAAAAAgzrjvEbeJEiVSzZo1VbNmTUnS5cuXtXHjRq1du1bDhw9X8+bNlTNnTv3yyy8xViwAAAAAAAAAxAX3PeL2nxIlSqSUKVMqZcqUSpEihby9vXXw4MHorA0AAAAAAAAA4qT7HnEbHh6unTt3at26dVq7dq02bdqkq1evKkOGDKpcubLGjRunypUrx2StAAAAAAAAABAn3Hdwmzx5cl29elXp0qVT5cqV9cknn6hSpUrKnj17TNYHAAAAAAAAAHHOfQe3H330kSpXrqynn346JusBAAAAAAAAgDjvvoPbDh06xGQdAAAAAAAAAID/98AXJwMAAAAAAAAAxAyCWwAAAAAAAADwMAS3AAAAAAAAAOBh7iu4LVq0qC5evChJGjJkiK5duxajRQEAAAAAAABAXHZfwe3Bgwd19epVSdLgwYN15cqVGC0KAAAAAAAAAOIy7/tpVLhwYbVu3Vrly5eXmWnEiBFKnDjxXdsOHDgwWgsEAAAAAAAAgLjmvkbcTp8+XalSpdKyZcvkcrm0fPlyLV68+I6fJUuWRGtxYWFhGjBggLJly6YECRIoe/bsevfdd2VmThsz08CBA5U+fXolSJBA1apV05EjR6K1DgAAAAAAAAB4lO5rxG2uXLk0d+5cSZKXl5dWr16ttGnTxmhhkjRs2DBNmDBBM2bMUL58+bRz5061bt1ayZIlU9euXSVJw4cP1+jRozVjxgxly5ZNAwYMUI0aNXTgwAH5+fnFeI0AAAAAAAAAEN3uK7iNLDw8PCbquKvNmzerfv36eu655yRJWbNm1Zw5c7R9+3ZJt0fbjho1Sv3791f9+vUlSTNnzpS/v7+WLFmipk2bPrJaAQAAAAAAACC63NdUCf907Ngxvf7666pWrZqqVaumrl276tixY9Fdm8qWLavVq1fr8OHDkqS9e/dq48aNqlWrliTp+PHjCgwMVLVq1Zz7JEuWTKVKldKWLVvuud2QkBBdunTJ7QcAAAAAAAAAPEWUg9uVK1cqb9682r59uwoWLKiCBQtq27Ztypcvn1atWhWtxfXp00dNmzZV7ty5FT9+fBUpUkTdunVT8+bNJUmBgYGSJH9/f7f7+fv7O+vuZujQoUqWLJnzkylTpmitGwAAAAAAAAAeRpSnSujTp4+6d++uDz/88I7lvXv3VvXq1aOtuPnz52vWrFmaPXu28uXLpz179qhbt24KCAhQq1atHni7ffv2VY8ePZzbly5dIrwFAAAAAAAA4DGiHNwePHhQ8+fPv2N5mzZtNGrUqOioydGzZ09n1K0kFShQQCdPntTQoUPVqlUrpUuXTpJ05swZpU+f3rnfmTNnVLhw4Xtu19fXV76+vtFaKwAAAAAAAABElyhPlZAmTRrt2bPnjuV79uxR2rRpo6Mmx7Vr1+Tl5V5ivHjxnAukZcuWTenSpdPq1aud9ZcuXdK2bdtUpkyZaK0FAAAAAAAAAB6VKI+4bdeundq3b6/ffvtNZcuWlSRt2rRJw4YNc5t+IDrUrVtX77//vjJnzqx8+fLpp59+0scff6w2bdpIklwul7p166b33ntPOXPmVLZs2TRgwAAFBASoQYMG0VoLAAAAAAAAADwqUQ5uBwwYoCRJkmjkyJHq27evJCkgIEDvvPOOunbtGq3FjRkzRgMGDNBrr72ms2fPKiAgQB06dNDAgQOdNr169dLVq1fVvn17BQUFqXz58lqxYoX8/PyitRYAAAAAAAAAeFSiHNy6XC51795d3bt31+XLlyVJSZIkifbCIrY7atSof5071+VyaciQIRoyZEiM1AAAAAAAAAAAj1qUg9vIYiqwBQAAAAAAAIC4LMoXJwMAAAAAAAAAxCyCWwAAAAAAAADwMAS3AAAAAAAAAOBhohTc3rx5U1WrVtWRI0diqh4AAAAAAAAAiPOiFNzGjx9f+/bti6laAAAAAAAAAAB6gKkSWrRooSlTpsRELQAAAAAAAAAASd5RvcOtW7c0depU/fDDDypWrJgSJUrktv7jjz+OtuIAAAAAAAAAIC6KcnD7yy+/qGjRopKkw4cPu61zuVzRUxUAAAAAAAAAxGFRDm7Xrl0bE3UAAAAAAAAAAP5flOe4jXD06FGtXLlS169flySZWbQVBQAAAAAAAABxWZSD27///ltVq1bV008/rdq1a+uvv/6SJLVt21ZvvvlmtBcIAAAAAAAAAHFNlIPb7t27K378+Pr999+VMGFCZ3mTJk20YsWKaC0OAAAAAAAAAOKiKM9x+/3332vlypXKmDGj2/KcOXPq5MmT0VYYAAAAAAAAAMRVUR5xe/XqVbeRthEuXLggX1/faCkKAAAAAAAAAOKyKAe3zzzzjGbOnOncdrlcCg8P1/Dhw1W5cuVoLQ4AAAAAAAAA4qIoT5UwfPhwVa1aVTt37lRoaKh69eql/fv368KFC9q0aVNM1AgAAAAAAAAAcUqUR9zmz59fhw8fVvny5VW/fn1dvXpVzz//vH766Sdlz549JmoEAAAAAAAAgDglyiNuJSlZsmR6++23o7sWAAAAAAAAAIAeMLi9ePGipkyZooMHD0qS8ubNq9atWytlypTRWhwAAAAAAAAAxEVRniph/fr1ypo1q0aPHq2LFy/q4sWLGj16tLJly6b169fHRI0AAAAAAAAAEKdEecRt586d1aRJE02YMEHx4sWTJIWFhem1115T586d9fPPP0d7kQAAAAAAAAAQl0R5xO3Ro0f15ptvOqGtJMWLF089evTQ0aNHo7U4AAAAAAAAAIiLohzcFi1a1JnbNrKDBw+qUKFC0VIUAAAAAAAAAMRl9zVVwr59+5zfu3btqjfeeENHjx5V6dKlJUlbt27VuHHj9OGHH8ZMlQAAAAAAAAAQh9xXcFu4cGG5XC6ZmbOsV69ed7Rr1qyZmjRpEn3VAQAAAAAQBxTrOTO2S8B/2PVRy9guAUAcc1/B7fHjx2O6DgAAAAAAAADA/7uv4DZLliwxXQcAAAAAAAAA4P/dV3D7T6dPn9bGjRt19uxZhYeHu63r2rVrtBQGAAAAAAAAAHFVlIPb6dOnq0OHDvLx8VGqVKnkcrmcdS6Xi+AWAAAAAAAAAB5SlIPbAQMGaODAgerbt6+8vLxioiYAAAAAAAAAiNOinLxeu3ZNTZs2JbQFAAAAAAAAgBgS5fS1bdu2WrBgQUzUAgAAAAAAAADQA0yVMHToUNWpU0crVqxQgQIFFD9+fLf1H3/8cbQVBwAAAAAAAABx0QMFtytXrlSuXLkk6Y6LkwEAAAAAAAAAHk6Ug9uRI0dq6tSpeuWVV2KgHAAAAAAAAABAlOe49fX1Vbly5WKiFgAAAAAAAACAHiC4feONNzRmzJiYqOWu/vzzT7Vo0UKpUqVSggQJVKBAAe3cudNZb2YaOHCg0qdPrwQJEqhatWo6cuTII6sPAAAAAAAAAKJblKdK2L59u9asWaNly5YpX758d1ycbNGiRdFW3MWLF1WuXDlVrlxZy5cvV5o0aXTkyBGlSJHCaTN8+HCNHj1aM2bMULZs2TRgwADVqFFDBw4ckJ+fX7TVAgAAAAAAAACPSpSD2+TJk+v555+PiVruMGzYMGXKlEnTpk1zlmXLls353cw0atQo9e/fX/Xr15ckzZw5U/7+/lqyZImaNm36SOoEAAAAAAAAgOgU5eA2coga05YuXaoaNWroxRdf1I8//qgMGTLotddeU7t27SRJx48fV2BgoKpVq+bcJ1myZCpVqpS2bNlCcAsAAAAAAADgsRTlOW4fpd9++00TJkxQzpw5tXLlSnXq1Eldu3bVjBkzJEmBgYGSJH9/f7f7+fv7O+vuJiQkRJcuXXL7AQAAAAAAAABPEeURt9myZZPL5brn+t9+++2hCoosPDxcxYsX1wcffCBJKlKkiH755RdNnDhRrVq1euDtDh06VIMHD46uMgEAAAAAAAAgWkU5uO3WrZvb7Zs3b+qnn37SihUr1LNnz+iqS5KUPn165c2b121Znjx59NVXX0mS0qVLJ0k6c+aM0qdP77Q5c+aMChcufM/t9u3bVz169HBuX7p0SZkyZYrGygEAAAAAAADgwUU5uH3jjTfuunzcuHHauXPnQxcUWbly5XTo0CG3ZYcPH1aWLFkk3R79my5dOq1evdoJai9duqRt27apU6dO99yur6+vfH19o7VWAAAAAAAAAIgu0TbHba1atZyRsNGle/fu2rp1qz744AMdPXpUs2fP1meffabOnTtLklwul7p166b33ntPS5cu1c8//6yWLVsqICBADRo0iNZaAAAAAAAAAOBRifKI23tZuHChUqZMGV2bkySVKFFCixcvVt++fTVkyBBly5ZNo0aNUvPmzZ02vXr10tWrV9W+fXsFBQWpfPnyWrFihfz8/KK1FgAAAAAAAAB4VKIc3BYpUsTt4mRmpsDAQJ07d07jx4+P1uIkqU6dOqpTp84917tcLg0ZMkRDhgyJ9r8NAAAAAAAAALEhysHtP6cg8PLyUpo0aVSpUiXlzp07uuoCAAAAAAAAgDgrysHtoEGDYqIOAAAAAAAAAMD/i7aLkwEAAAAAAAAAosd9j7j18vJym9v2blwul27duvXQRQEAAAAAAABAXHbfwe3ixYvvuW7Lli0aPXq0wsPDo6UoAAAAAAAAAIjL7ju4rV+//h3LDh06pD59+uibb75R8+bNNWTIkGgtDgAAAAAAAADiogea4/b06dNq166dChQooFu3bmnPnj2aMWOGsmTJEt31AQAAAAAAAECcE6XgNjg4WL1791aOHDm0f/9+rV69Wt98843y588fU/UBAAAAAAAAQJxz31MlDB8+XMOGDVO6dOk0Z86cu06dAAAAAAAAAAB4ePcd3Pbp00cJEiRQjhw5NGPGDM2YMeOu7RYtWhRtxQEAAAAAAABAXHTfwW3Lli3lcrlishYAAAAAAAAAgKIQ3E6fPj0GywAAAAAAAAAARIjSxckAAAAAAAAAADGP4BYAAAAAAAAAPAzBLQAAAAAAAAB4GIJbAAAAAAAAAPAwBLcAAAAAAAAA4GEIbgEAAAAAAADAwxDcAgAAAAAAAICHIbgFAAAAAAAAAA9DcAsAAAAAAAAAHobgFgAAAAAAAAA8DMEtAAAAAAAAAHgY79guAAAAAAAAALcV6zkztkvAf9j1UcvYLgFxBCNuAQAAAAAAAMDDENwCAAAAAAAAgIchuAUAAAAAAAAAD0NwCwAAAAAAAAAehuAWAAAAAAAAADwMwS0AAAAAAAAAeBiCWwAAAAAAAADwMAS3AAAAAAAAAOBhCG4BAAAAAAAAwMMQ3AIAAAAAAACAhyG4BQAAAAAAAAAPQ3ALAAAAAAAAAB6G4BYAAAAAAAAAPAzBLQAAAAAAAAB4mMcquP3www/lcrnUrVs3Z9mNGzfUuXNnpUqVSokTJ1ajRo105syZ2CsSAAAAAAAAAB7SYxPc7tixQ5MmTVLBggXdlnfv3l3ffPONFixYoB9//FGnT5/W888/H0tVAgAAAAAAAMDDeyyC2ytXrqh58+aaPHmyUqRI4SwPDg7WlClT9PHHH6tKlSoqVqyYpk2bps2bN2vr1q2xWDEAAAAAAAAAPLjHIrjt3LmznnvuOVWrVs1t+a5du3Tz5k235blz51bmzJm1ZcuWe24vJCREly5dcvsBAAAAAAAAAE/hHdsF/Je5c+dq9+7d2rFjxx3rAgMD5ePjo+TJk7st9/f3V2Bg4D23OXToUA0ePDi6SwUAAAAAAACAaOHRI25PnTqlN954Q7NmzZKfn1+0bbdv374KDg52fk6dOhVt2wYAAAAAAACAh+XRwe2uXbt09uxZFS1aVN7e3vL29taPP/6o0aNHy9vbW/7+/goNDVVQUJDb/c6cOaN06dLdc7u+vr5KmjSp2w8AAAAAAAAAeAqPniqhatWq+vnnn92WtW7dWrlz51bv3r2VKVMmxY8fX6tXr1ajRo0kSYcOHdLvv/+uMmXKxEbJAAAAAAAAAPDQPDq4TZIkifLnz++2LFGiREqVKpWzvG3bturRo4dSpkyppEmT6vXXX1eZMmVUunTp2CgZAAAAAAAAAB6aRwe39+OTTz6Rl5eXGjVqpJCQENWoUUPjx4+P7bIAAAAAAAAA4IE9dsHtunXr3G77+flp3LhxGjduXOwUBAAAAAAAAADRzKMvTgYAAAAAAAAAcRHBLQAAAAAAAAB4GIJbAAAAAAAAAPAwBLcAAAAAAAAA4GEIbgEAAAAAAADAwxDcAgAAAAAAAICHIbgFAAAAAAAAAA9DcAsAAAAAAAAAHobgFgAAAAAAAAA8DMEtAAAAAAAAAHgYglsAAAAAAAAA8DAEtwAAAAAAAADgYQhuAQAAAAAAAMDDENwCAAAAAAAAgIchuAUAAAAAAAAAD0NwCwAAAAAAAAAehuAWAAAAAAAAADwMwS0AAAAAAAAAeBiCWwAAAAAAAADwMAS3AAAAAAAAAOBhvGO7AAAAAAAAAAB3KtZzZmyXgP+w66OWMbZtRtwCAAAAAAAAgIchuAUAAAAAAAAAD0NwCwAAAAAAAAAehuAWAAAAAAAAADwMwS0AAAAAAAAAeBiCWwAAAAAAAADwMAS3AAAAAAAAAOBhCG4BAAAAAAAAwMMQ3AIAAAAAAACAhyG4BQAAAAAAAAAPQ3ALAAAAAAAAAB6G4BYAAAAAAAAAPAzBLQAAAAAAAAB4GIJbAAAAAAAAAPAwBLcAAAAAAAAA4GEIbgEAAAAAAADAw3h0cDt06FCVKFFCSZIkUdq0adWgQQMdOnTIrc2NGzfUuXNnpUqVSokTJ1ajRo105syZWKoYAAAAAAAAAB6eRwe3P/74ozp37qytW7dq1apVunnzpp599lldvXrVadO9e3d98803WrBggX788UedPn1azz//fCxWDQAAAAAAAAAPxzu2C/g3K1ascLs9ffp0pU2bVrt27VKFChUUHBysKVOmaPbs2apSpYokadq0acqTJ4+2bt2q0qVLx0bZAAAAAAAAAPBQPHrE7T8FBwdLklKmTClJ2rVrl27evKlq1ao5bXLnzq3MmTNry5YtsVIjAAAAAAAAADwsjx5xG1l4eLi6deumcuXKKX/+/JKkwMBA+fj4KHny5G5t/f39FRgYeM9thYSEKCQkxLl96dKlGKkZAAAAAAAAAB7EYzPitnPnzvrll180d+7ch97W0KFDlSxZMucnU6ZM0VAhAAAAAAAAAESPxyK47dKli5YtW6a1a9cqY8aMzvJ06dIpNDRUQUFBbu3PnDmjdOnS3XN7ffv2VXBwsPNz6tSpmCodAAAAAAAAAKLMo4NbM1OXLl20ePFirVmzRtmyZXNbX6xYMcWPH1+rV692lh06dEi///67ypQpc8/t+vr6KmnSpG4/AAAAAAAAAOApPHqO286dO2v27Nn6+uuvlSRJEmfe2mTJkilBggRKliyZ2rZtqx49eihlypRKmjSpXn/9dZUpU0alS5eO5eoBAAAAAAAA4MF4dHA7YcIESVKlSpXclk+bNk2vvPKKJOmTTz6Rl5eXGjVqpJCQENWoUUPjx49/xJUCAAAAAAAAQPTx6ODWzP6zjZ+fn8aNG6dx48Y9gooAAAAAAAAAIOZ59By3AAAAAAAAABAXEdwCAAAAAAAAgIchuAUAAAAAAAAAD0NwCwAAAAAAAAAehuAWAAAAAAAAADwMwS0AAAAAAAAAeBiCWwAAAAAAAADwMAS3AAAAAAAAAOBhCG4BAAAAAAAAwMMQ3AIAAAAAAACAhyG4BQAAAAAAAAAPQ3ALAAAAAAAAAB6G4BYAAAAAAAAAPAzBLQAAAAAAAAB4GIJbAAAAAAAAAPAwBLcAAAAAAAAA4GEIbgEAAAAAAADAwxDcAgAAAAAAAICHIbgFAAAAAAAAAA9DcAsAAAAAAAAAHobgFgAAAAAAAAA8DMEtAAAAAAAAAHgYglsAAAAAAAAA8DAEtwAAAAAAAADgYQhuAQAAAAAAAMDDENwCAAAAAAAAgIchuAUAAAAAAAAAD0NwCwAAAAAAAAAehuAWAAAAAAAAADwMwS0AAAAAAAAAeBiCWwAAAAAAAADwMAS3AAAAAAAAAOBhCG4BAAAAAAAAwMMQ3AIAAAAAAACAhyG4BQAAAAAAAAAPQ3ALAAAAAAAAAB6G4BYAAAAAAAAAPAzBLQAAAAAAAAB4mCcmuB03bpyyZs0qPz8/lSpVStu3b4/tkgAAAAAAAADggTwRwe28efPUo0cPDRo0SLt371ahQoVUo0YNnT17NrZLAwAAAAAAAIAoeyKC248//ljt2rVT69atlTdvXk2cOFEJEybU1KlTY7s0AAAAAAAAAIgy79gu4GGFhoZq165d6tu3r7PMy8tL1apV05YtW+56n5CQEIWEhDi3g4ODJUmXLl2K0t8OC7n+ABXjUYrqc/qg6Aue71H1BYn+8Dhg34AI7BsQGfsGRKAvIDL6AyLQFxCBY0hEFtX+ENHezP6zrcvup5UHO336tDJkyKDNmzerTJkyzvJevXrpxx9/1LZt2+64zzvvvKPBgwc/yjIBAAAAAAAAQJJ06tQpZcyY8V/bPPYjbh9E37591aNHD+d2eHi4Lly4oFSpUsnlcsViZbHn0qVLypQpk06dOqWkSZPGdjmIZfQHRKAvIDL6AyLQFxAZ/QER6AuIQF9AZPQHRKAv3GZmunz5sgICAv6z7WMf3KZOnVrx4sXTmTNn3JafOXNG6dKlu+t9fH195evr67YsefLkMVXiYyVp0qRx+sUDd/QHRKAvIDL6AyLQFxAZ/QER6AuIQF9AZPQHRKAvSMmSJbuvdo/9xcl8fHxUrFgxrV692lkWHh6u1atXu02dAAAAAAAAAACPi8d+xK0k9ejRQ61atVLx4sVVsmRJjRo1SlevXlXr1q1juzQAAAAAAAAAiLInIrht0qSJzp07p4EDByowMFCFCxfWihUr5O/vH9ulPTZ8fX01aNCgO6aQQNxEf0AE+gIioz8gAn0BkdEfEIG+gAj0BURGf0AE+kLUuczMYrsIAAAAAAAAAMD/PPZz3AIAAAAAAADAk4bgFgAAAAAAAAA8DMEtAAAAAAAAAHgYglsAAAAAAAAA8DAEtwAAAACAOGnFihWxXQIAAPdEcAuPZWaxXQIeI+Hh4W636T/4Z58AHtbd+hT7Gs/A6x3Ag1iyZIlq166tCRMmxHYpiEER79WXLl2K5UrwqHBcgPv1OPQVglt4jIg31D/++EOS5HK5YrMcPEbCw8Pl5XV7d7Z9+3ZJ9J+4LnKf+OGHH7Rv375YrgiPu8h96pdfftHWrVv1559/6tatW7FcGSI/N5MmTdKiRYtiuSI8So/DBy54rgYNGmjYsGHq2rWrxo0bx5dxTyAzk8vl0vLly/XSSy9p9+7dsV0SYljk44J58+Zp48aNunbtWixXBU/0uBxDEtzCI0S8oS5btkz169fXl19+Gdsl4TEReWc7aNAgtW7dWnPmzInlqhCbzMzpE3379lXHjh114MABBQUFxW5heGxF7lNvv/22nn/+eb388ssqV66cevXqpUOHDsVyhXFX5Oemd+/eevfdd/Xrr7/q77//juXK8CiEhYU5z//evXt15MgRHTt2LJarwuMiLCxMktSzZ08NHz5cb7zxhmbMmMGXAU+IiBDe5XJp0aJFatKkiUqWLKmbN2+6rceTJfJxQZ8+fdS9e3cdOXJEISEhsVwZPM3jdAzpHdsFANLtN9TFixerRYsW+uCDD1SgQIHYLgmPiYidbb9+/fT5559r3rx5ypUrVyxXhdgUMdr63Xff1bRp0zRv3jyVKlVKfn5+sVwZHlcRferjjz/WlClTNHfuXFWqVElt27bVzJkz1aRJk1iuEKNGjdLUqVP1ww8/qFChQpL+96UwnjzvvvuuypQpo2rVqkmS3nrrLc2fP183btxQ4sSJ9corr2jgwIGxXCU8mZkpXrx4km7v22/evKnw8HB16NBBISEh6tChQyxXiAcVGBiodOnSOfv/Q4cOqVu3bho+fLg6duzotDt69Khy5swZW2UiBty6dUve3rcjruHDh2vatGn69ttvVbhwYWd5WFiY89pH3Baxj3gcjiEZcQuPcPr0aQ0ePFgffvih3njjDeXPn1+hoaH6/vvvdeHCBecbceBu9u/fr2XLlmnBggWqXLmyEiVKpCNHjmjMmDE6dOiQ8806nmyRR8hcuHBB33zzjYYNG6aKFSvq4sWL2rx5s3r27KlPPvkkFqvE4yRiNE5YWJhCQ0O1YcMG9enTR5UqVdLSpUu1cOFCvf/++ypdurRCQ0N1/fr1WK44bhgwYIBmz54t6fZB940bN7Rv3z51795dhQoV0tGjRzVv3jyVL19ebdq00Q8//BDLFSM67d69W998841Gjhypbdu26ccff9S8efM0ffp0ffHFF+rRo4eGDh2q119/PbZLhQeL+EA+aNAgDR06VNmzZ9dnn32m1q1b67XXXtP48eNjuUI8iGnTpqljx47auXOns+zUqVNKlCiROnbsqCtXrmjSpEmqUqWKChQooJdfflnBwcGxWDGiwxtvvKEzZ87I29tbt27dUmhoqLZu3ao33nhDxYsX1+nTp/Xdd9+pfv366tevn3bs2BHbJSMW/fOsil27dnn8MSQjbuERrl69qr///lvPPPOMbt68qREjRujbb7/V9u3b9dRTT+mrr75Svnz5YrtMeIh/fgN248YNHT9+XMmSJdO+ffs0efJk/fDDDzp//rzef/99rV69mv7zhIt8qsv69euVNm1axY8fX4GBgVq8eLEWLlyo48ePKyQkRNeuXdO5c+f0wQcfxHLV8GSR9zMXL15U6tSpdebMGVWqVEkbN25U8+bNNWLECHXo0EGhoaH67LPPVKxYMZUpUyaWK3+yHTlyRJs2bdLGjRuVMGFCNWjQQH5+fjp37py2bNmi7Nmza8KECfLx8VGBAgW0YcMGXbx4UVWqVHH2EXi8FS1aVIMHD9aYMWM0dOhQ+fv7q1WrVqpSpYokqUaNGsqaNasaNGigfPnyuY2wAyK7fPmyli9frv79++uFF16QJLVu3VoBAQHq2rWrfHx81Lp1a0bnPUa8vLx08uRJjR07Vl26dFHx4sWVM2dOnTlzRnXr1tXvv/+ubNmyqWTJknr77bdVvXp1NWjQQI0aNYrt0vGADh06pJUrV2rNmjVas2aN0qRJo6CgIAUGBurw4cOaOnWqlixZomvXrsnLy0ubN2/WuXPnVLBgQfn4+HjUqEo8GhHHgyNGjFDnzp1148YNffHFFx59DMkRLDxCtmzZlCtXLtWrV09PPfWUtm3bprp16yooKEhXrlzRrFmzYrtEeJCIN9jdu3fLzFSsWDFVqVJFVatWVfny5WVmev/993Xu3Dn5+flpxYoVsVwxYlJ4eLjTJ/r06aOOHTsqceLEKliwoObNm6fGjRsrY8aMev/997Vr1y4VLFiQUdj4V5FD2/bt26ts2bKSpOzZs6thw4aqWbOmxo0b55xKGxwcrIULF2rv3r2xVnNckTNnTg0dOlRp0qTRJ598oq+++kqSNGbMGKVOnVq9evVS1apV9f7772vixInq27evgoKCdPXq1ViuHNEhYhR8rVq11LlzZ4WFhemrr75yGzEXFhamOnXqqH379lq+fLlCQkKYyxJ3dfPmTf3xxx/OVEoR10146623VLFiRXXr1k1jx46N5SpxP1atWiVJatWqlfr376/9+/dr9OjR2rVrl7JkyaLZs2fLz89P9erV00cffaT33ntPVatWVeXKlZ1T6PF4evrppzV16lSlTJlSlSpV0tmzZ5U8eXK99dZb2rx5s/r3769ixYpp8ODB+v7771WuXDldunRJvr6+hLZxTOSRtp999pl69eqlX3/9VcOGDZO/v79HH0Oyl8IjF/GB+PDhw7p8+bLSpEmjzJkza/r06ZozZ44SJEigpk2bKnny5PL29lbp0qXl7+8f22XDA0S+ENnXX3+tIUOGqFOnTnr11Vc1c+ZMrVq1Sv7+/ipbtqzixYunmzdvKlOmTPSfJ1xEnzhz5oxOnjypTz/9VBkzZtSECRP0888/y9vbW3ny5HHanzt3Tjly5IitcvEYiDiQP3r0qM6cOaOJEydKkrp166bffvtNSZIkUcuWLWVmCgoKUqtWrXTr1i21a9cuNsuOM0qVKqU333xTH330kUaPHi0vLy81bNhQGzZs0JkzZ5x9fnh4uL744gtlypRJSZIkieWqER1cLpczP+Fzzz0nb29vBQUF6auvvlLDhg1VpUoVZ3RkihQptG/fPnl7e/PhHG5fyEX8njJlStWuXVuTJk1SrVq1lDlzZpmZEiZMqOzZs+vs2bNauHChunbtSh/yYIsWLdKYMWOUP39+pU+fXo0aNdLNmzc1cuRIjRo1Sj179lTNmjVVs2ZNt/sNHDhQhw4dUuHChWOncDy0iNdy2bJlNXToUPXu3VuVKlXSmjVr9Pzzz6tEiRKKFy+eAgICnPvs3btXWbJkicWqEVsiPjP+8MMPOnPmjBYuXKgiRYpIktatW6fz588rderUkjzwGNKAWLBgwQLLmDGjpUyZ0sqUKWMjRoy4o01wcLANHDjQUqdObYcOHYqFKuFJwsLCnN/nz59vPXr0sKRJk1quXLls5syZFh4e7qy/du2aHTlyxOrUqWNFihSxmzdvxkbJeIQmTpxoqVKlsiJFitx1f3Hp0iX7+eefrVatWlagQAH6BP7T9OnTrUSJEvbss8/alStXzMwsJCTEZsyYYfnz57eAgAArX768lSxZ0ooWLWqhoaFmZnbr1q3YLPuJF/m9YPPmzdaoUSOrUKGCLViwwFkeHBxsCxYscF7vEc9N5PcJPF4iP+//tGLFCqtevbpVqlTJfvjhBzMzu3jxolWsWNGaNGnC8w63/nPjxg27dOmSc/v777+3SpUqWePGje306dNmZnb9+nWrV6+erV692uk/9CPPFRgYaKdOnTIzs8OHDzvL58yZY8WKFbMWLVrY9u3bneXfffedNWvWzPz9/W337t2PvF5Er4jXd3h4uG3cuNHKly9vefLksTNnzjhtgoKC7LvvvrM6depYvnz5nM8BvK7jno0bN1rmzJktWbJktmLFCjO7fXwf4cqVKx55DMlUCXhk7P9PUzt16pQ++OADDRo0SEuWLFGxYsU0Z84c9enTx2m7fPlytW/fXtOmTdP333+vp59+OrbKhoeI+IasX79+6tSpk7Jnz66hQ4fK19dXY8aM0ZQpU5y2S5YsUYcOHRQUFKRt27bJ29ubC9w94WrXrq2nn35ae/fu1enTp+9Y/+233+q1115TeHi4du3aRZ/AvwoNDVVgYKCuXr2qo0ePKlGiRJIkHx8fNWvWTMuWLVOXLl1Uu3ZtderUSdu3b1f8+PF169Yt5kKMAZFPbYv8e5kyZdS9e3elSZNGY8aM0eLFiyXdvuDp2rVrlShRIu3evdt5bhgx93iKfLbN9OnT1blzZ7355ptasGCBpNtz2r7++utyuVyqU6eOSpUqpddee03Xrl3TF198IZfLxVQJcVjk/jNixAjVq1dP5cqV05tvvqnLly+revXqatOmjQIDA1WoUCFnlN6xY8dUoUIFp/+w//BM4eHh8vf3V8aMGXXw4EE1bdpUAwcOlCQ1bdpUb731ln799VeNGTNGu3btkiSFhIQoVapUWrdunTPaDo+XyMcCEa9vl8ulMmXKaOjQoUqVKpUqV66sc+fOSZKOHTumESNGyMvLSz/99JPzOYDXddyTNWtWtWnTRl5eXs5xhI+Pj9OnTpw4ofXr13vcMaTLOJLBI7R7927NmDFD169f15gxY+Tr66u///5bo0eP1rJly/Tss89q6NCh2r9/v1auXKm6desqZ86csV02PMRvv/2m6tWra9iwYc5FJM6cOaP27dvr2LFj6tWrl1q2bKmjR49q9+7datSokeLFi6dbt24xf9UTJPKHsMhOnz6tGjVqKF68ePr666/vOA1q3bp1qlChgry8vOgTcHO3PhUUFKQ5c+Zo0KBBql69ujPX+r0+wEecvo3oFfm5mThxorZu3arw8HA988wzevXVV+VyubRx40aNGjVK58+f11tvvaU6dero3LlzSp06tdup9Xj8RH699e7dWzNmzFD9+vV19uxZnThxQg0aNNCgQYMk3Z7jctiwYTp69Kjee+89NWvWjP09HG+//bamTZum119/XU8//bSaN2+uJk2aaMiQIcqSJYsOHTqkb775RseOHVPy5Mn17rvvOuEO+w/PFbGPuHLlisLCwtSzZ08dOHBAtWrV0ttvvy1Jmjt3rkaOHKl8+fKpW7duKly4sEJCQuTr6xvL1eNBRD4umDFjhnbt2qV48eKpWrVqeu655xQeHq7NmzerT58+CgoK0tq1a5UmTRodOXJE2bNn530hDvnn8X1oaKh8fHx08eJFjR8/XpMnT1azZs3cLlgdFhamv//+W2nSpPGsY8jYG+yLuOb69evWtm1bS5s2rZUuXdpt3blz52zAgAFWokQJ69Gjh5nF/nB0eJ6zZ8/aU089ZV988YWZmXOay4ULFyxDhgxWqFAhmz59utt9OG35yRL5dMdFixbZ0KFDbcyYMbZmzRozMzt9+rTlzZvXihcvbidPnjSzO/cl/3bKLeKeyP3hwIEDduDAATtx4oSZ3Z52Zdy4cVagQAFr27at0y7itCk8Or169bI0adJY7969rWXLlla4cGHr3Lmz8/reuHGjvfjii5YnTx778ccfnftxLPFkmDx5smXPnt22bdtmZmZffPGF+fj4WObMma1nz55Ou/nz51vv3r2d1zX7e5iZLVu2zJ5++mnbtGmTmZlt2LDBfHx8zM/Pz6pVq2ZHjhy56/2YVunxsGXLFmvRooWZmf3xxx/WpUsXK1WqlL333ntOm7lz51r27NmtQ4cOduPGjdgqFdGoV69eljFjRmvSpIm1adPGfHx8nM+IYWFhtnHjRqtQoYKlSpXKLly44NyP94W4IfLz/Omnn1q7du2sZMmSNnPmTDt16pRduXLF3n33XcubN6+9/fbbTtvIx42edAxJcIsYF7nDHz9+3F577TVLmzatffTRR27tzp8/b2+++aZVqFDBzp49+6jLhIe525vq33//bfnz57f27dub2e2+FRHM1qtXzwoUKGBVqlRxDsw9aWeL6NWzZ0/LlCmT1atXz55//nlLnjy5TZ061czM/vzzT8ufP7+VLFnSjh07FsuVwpNF3kf07dvXnnrqKcuYMaMlTZrUhgwZYufPn7cbN27YmDFjrFChQtauXbtYrDbumj59uuXMmdN27NhhZrfnyffx8bGsWbNaq1atnOdx9erV1q9fP76we8xVq1bNNm/e7LZsyJAhNnDgQDMzW7JkiaVIkcI+/PBD69Gjh6VIkcLeeeedO7bDh3OY3d7Pr1y50saNG2dmZsuXL7cUKVLYl19+aQcOHLAECRJYixYtbO/evbFcKR7U4sWLzeVyOfuNP//8015//fU7wtuFCxfab7/9FltlIhpNmTLFsmTJ4sxdvGDBAnO5XOZyuWzMmDFmdvs9YPXq1daxY0eOC+Kw3r17m7+/v7377rs2cOBAS5YsmbVp08ZCQ0MtMDDQ3nvvPcuXL5916dIltkv9VwS3iDERH6Qivq2OOIA+fvy4tW/f3sqUKWOjRo1yu8/ff/9t586de7SFwuNE/rB16NAhO3v2rPNN6XfffWfe3t5uH9Ju3bplzZs3t6+//tpy5MhhHTp0eOQ1I2ZFPuBauHChZciQwTlA//zzz83b29tmzJjhtDl9+rSlTp3a2rRp88hrxeMhcmg7YsQIS506ta1atcq2b99u48ePt2TJklnnzp3t+vXrdvnyZRszZoylT5/ehg4dGotVxw2RLzRiZjZ69Gjr3bu3mf0vtPv444/tvffes2TJktlrr712xxd1fEh7fA0cOPCOEXGhoaF2/PhxO3XqlOXNm9e5qO2OHTssRYoUljBhQvvkk09ioVp4mrtdTCw4ONh+//13CwoKsvLly9v7779vZrcHjeTOndtcLpd17949VurFg/nnPr9ly5ZWv359u3jxopmZ/fXXX/b6669buXLlrF+/frFQIaJL5IE6ZrffD4YMGWLjx483M7NvvvnGkiVLZp9++qm9/fbb5nK5nDMwI/cTjgvinvXr11v27NmdL/537NhhLpfLvvzyS6fN+fPnrVevXtasWTOPHvRFcIsYEdHpf/jhB+vcubO98MILNnbsWPvrr7/MzOzo0aPWvn17K126tPOtGPBP/fr1s6xZs1qOHDnsxRdftP3795vZ7VMmvby8rGbNmvbyyy9buXLlLHfu3GZm1rVrV6tSpYpH73hx/yJPfRHxJdAHH3xgL730kpmZffXVV5YkSRKbNGmSmZldunTJ9u3bZ2a334g5SMM/RfQPs9sBYVhYmNWrV8/69u3r1u6rr74yHx8f+/zzz83s9lXqFy5cSJ96hNauXev8fvLkSTtz5owVLlzYhg8fbmZmx44ds4CAAEuSJIkNGjTIzDjT4kkybNgwW7p0qduy7777znLlymV//vmnmZlt27bNXnzxRZs9ezavTbhdGfz333+34OBgCwoKcpadPHnScufObcuWLTOz2/v1N954w37++Wf6z2PiXgODpk+fbvny5bODBw86bQMDA61NmzZWrVo1O3/+/KMvFtHi77//dn5fvXq1XblyxU6ePGlHjx6148ePW+7cuZ3BYOvWrXNG3s6bNy+2SoaHWL16tZUrV87MzObMmWOJEyd2Av9Lly7Zxo0bzez2tIt3+9LPk9x5dRcgGrhcLi1evFj169eXy+VSggQJtGDBAnXs2FF//vmnsmfPrl69eqlIkSIaN26cJk2aFNslI5bZ7S+SnNvLly/XtGnTNHbsWL366qu6fv26GjdurP379+vVV1/V5s2b5e/vrxs3bqhAgQLat2+fpNtXgsyRI0dsPQxEo8WLF+utt95Sz549Jcm5iECCBAnk7++vJUuWqFWrVho+fLjat28vSVq5cqUWLlyooKAgpUqVSvHixVNYWFisPQZ4lrfeeksvv/yy1qxZI+n2lYhv3LihP/74w7nwwM2bNxUeHq7nn39eHTt21KRJk3Tt2jUlT57cueAhfSrm7dy5Uw0aNNC6deskSZkzZ9bhw4cVFBSkBg0aSJKuXr2q8uXLa8qUKc5VxGP7qr+IPjt27FDjxo31/fffO8sSJ06sq1evauHChQoMDNTgwYOVLFkyNW3alNdmHDZ+/HidPn1aPj4+kqT+/fvr2WefVfHixVWzZk2tX79ekuTr66tz585p4cKFWrBggZo2bapt27YpX758zsVs4dlcLpe2bdum5557Ttu2bdP169clSa1atZKfn5/69OnjtPX399fQoUP15ZdfKlWqVLFVMh7Chg0bVLlyZf35559688031aZNG125ckWZM2dW9uzZdeTIESVIkEAvvfSSJClp0qRq166d5s2bp+effz6Wq8ejFB4efsey4OBgnT17VosXL1bHjh01bNgwderUSdLti1aPHz9ev//+u1KkSCGXy3XPCxB7hFgOjvGE+Oc8Yjt37rQcOXLY5MmTzez2RPEpU6a0jBkzWtWqVe2PP/4ws9unwXfr1s2OHz/+qEuGB5s9e7YNGjTIxo4d6yzbsGGD1alTx/LkyWN79uwxM3M7lfLvv/92Ll5z4MCBR14zol9gYKANGzbM8uXLZ926dXOWz5492xInTmzx48e3CRMmOMsvX75sNWrUcGsLRPbbb79ZsWLFrHr16vbDDz84y3v27Gn+/v529OhRM/vfSJ5BgwbZs88+Gyu1xnXHjh2zQoUKOfNSmpnt2bPHcubMaW+//bYdPnzYatWq5XZqGyPmHl93G+ESHh5ubdu2tSRJktiKFSvM7Pb7QsS1EjJmzGhFixZ1LhboqaNkELO++eYby5kzp7Vt29YuXbpkX331laVKlcrmzJlj48aNs5dfftnix49vs2bNMjOzVatWWerUqa1AgQJWsWJF+s9jJOLz5uzZs6127dqWLFkye/nll23atGlmdntEfoUKFWzVqlVmxnvCk2DlypVWt25dy5Qpk6VIkeKOCw+vWrXKXC6XLV261P744w+rU6eOc1aeGRcYjIsWL15s69evN7Pb/aRy5crmcrns448/dtpcv37d6tSpY02bNn1s9v0Et3ho3bt3dy4YEWHFihXWrFkzM7s9p2327Nmtbdu2Nm3aNEuXLp3VrVvXfv/9dzPj6txxXbVq1Wz+/PnO7QMHDlipUqUsUaJE9umnn7q13bhxo9WrV8/y5ctnu3btcpafPHnSBg0aZE899ZT99NNPj6p0xKCIA61r167ZyJEjLX/+/Na/f39nfd++fc3lctnMmTNt165dtnfvXnv22WetSJEizn0flzdiPBoRH+BOnjxpRYsWtapVq9r3339vZren73n22WetRIkSztXFQ0JCrHr16tayZctYqzmuuNdFpIYNG2apU6e2EydOmNnteSr79u1rWbNmtQwZMljJkiUJXZ4AkZ//v/76y/lyP0KrVq0sSZIktnz5cjMzO3PmjP3000+2bNky53XNh/O4bdSoUVa2bFlr166dde7c2e0Ln5s3b1rfvn3N29vbOUb8+++/7c8//7zjtHt4pojnKfJUGGZm8+fPtw4dOliSJEnshRdesCFDhljBggXtgw8+iI0yEU2effZZt9dwly5dzOVyWf78+Z0v2MPCwiw8PNyuX79unTt3NpfLZdmzZ7dChQpxXBDHRD6G+PXXXy1x4sTWtGlTZ17bFStWWMmSJa148eK2YsUKmzZtmtWoUcPy5ct3x5QrnozgFg9t/vz5tnv3bjNz30EeOnTIwsPDrUGDBvbyyy87y4sXL26JEiWyOnXq2M2bN9mpxmHnzp2zMWPG3HERknnz5lmpUqUsV65cTsAfYdOmTVa2bFnniwGz2wfcv/32m50+ffqR1I2YFXmfMGXKFGvbtq35+/ubr6+v9erVy1nXqVMny5gxoyVOnNhKlixpVapUcQ7WGGWBu4kc3hYpUsSqVKnizKO6fv16q1mzpvn5+VmpUqWsQIEClj9/fj4APELHjh1z+2B+4sQJq1ChgtvI+kuXLtnRo0dtw4YNhHZPmL59+1rBggUtderU9uabb7qdjdWqVStLnDixE95Gxv4+7or8YXvkyJFWuXJlS5UqlTPvfUS4c/nyZatcubJ169btjv3F4/CBPS6LPLKyZcuW1qBBA2vdurVdu3bNzG7v//fv32+NGjWyunXrmsvlsjRp0tjVq1d5334MBQcH28yZM92OBb777jubMmWKNWzY0EqUKGF79+41s//t+0NCQmz79u22YsUKjgvimMiv8X79+lm3bt0sW7ZsFj9+fKtZs6bTV9asWWN16tSxtGnTWtmyZa158+aP3WdGgls8sFOnTrl19O+++8569erltqP966+/LG/evLZgwQIzu70zbt68uY0dO9a5sATirsgXjBg2bJh99NFHzu1FixZZhQoVrHLlyneEt/v27bvjquN4/P3zw9PAgQMtRYoU9sUXX9jcuXOtSZMmljNnTrcrP+/du9e2bNliBw4ccO7PwRoiu9eH8hMnTliRIkWsUqVKzilVV65csenTp9vQoUNt3LhxTl+iT8W87777zlwul7Vs2dKmTp3qLO/atasVKlTonvd7XA64cafIr80pU6ZYxowZbcqUKfbpp59akiRJrHHjxvbzzz87bSJG3kaMlOe5h5l7Pxg9erRlypTJSpUq5VwQOeI4sWHDhtaiRYtYqREPZ/HixZYoUSJ78803bcyYMZYjRw7LnTu3nTlzxtmPXLt2zQ4dOmQDBw50who83oYPH+524dhvv/3WnnvuOStRooTbhWYXLlxoly9fdm7z3hD3fPLJJ5Y8eXLbsmWL7d+/33744Qfz9/e3OnXquPWVkydPWkhIyGN5tgXBLR7ItGnTLEWKFLZhwwbnDXPWrFnmcrmsX79+zovgwoULVrp0aWvZsqUdPHjQ+vXrZ0WKFLHAwMDYLB8eYM6cOVarVi0LDQ214OBg6969u/n5+TlXejQzW7BggVWuXNmqVKlip06dumMbjJJ4cly4cMHt9tmzZ6106dLOPNlmt+c2fOeddyxjxozWr1+/u26HPoHIIveHX375xTZs2GAXLlxwRuocP37cihQpYpUrV7Y1a9bcdRt8AIgZd7t676xZs+yNN96wpEmTWvXq1W3ChAl26NAhy5s3r33++eexVSpi2MaNG+29995z5iA1M9u+fbv5+/vbiy++aL/88ouzvHXr1pY8eXI7dOhQbJQKD/Fv7/WjR4+2YsWKWfPmzZ1ji9DQUCtTpox16dLlUZWIhxD5+T1//ryVKFHCRo4caWa3r5uSKVMm69ChQ2yVh0fg+vXr9t5771miRIncpmT87rvvrG7dulagQAFbvHix1axZ04oXL87xfxzzzwFczZo1c6Y2i1i2detWS5o0qT333HO2efPmO7bxuA3+IrjFAytatKjlzp3bNm7c6HywnTt3rnl7e1ufPn3s1q1bFh4ebqNHj7aCBQuav7+/Zc6c2W1uUsQ9ETvJV155xW3uyNOnT9vAgQMtSZIkbhclW7BggVWtWtUKFChgZ8+efeT1IuZ16tTJGjRoYGb/6x/Xr1+3XLly2dtvv+3W9u+//7aSJUtaggQJOGjHv/rn6VM5cuSwNGnSWN68ee2jjz5y5tE8fvy4FS1a1KpXr27ffPNNbJUbp0T+gHXu3Dk7d+6c2/rjx49bly5drGzZspYiRQpLnTo1cw0/gcLCwuzw4cPmcrnM5XLZ6NGjzex/r93t27dbunTprEmTJs7cpKGhoVa2bFlr2bIlH9TjqMjP++LFi23o0KE2bdo0Zz5Ds9vTJuTJk8eyZMlijRo1siZNmliePHm4roaHGz58uP34449m9r/n+dSpU5YjRw4LCgqyv/76yzJkyOB2/Ldo0aJYqRXR627788DAQPvkk08sWbJkbte5WL16tTVp0sQyZcpk1atXZ0qrOGzlypUWFhZmjRo1ssaNG5vZ7QEXEX3ik08+MR8fH2vRooXbl8CPI4JbRFnkqRBKly5tuXPntvXr1zujbGfPnm3e3t7Ws2dPM7v94jl8+LBt2LDhjgtOIO6JeGOuV6+edezY0W3d6dOnrX///neEtzNnzrQuXbow8u0JtXfvXucN9urVq2Z2+5T11q1bW6NGjezYsWNu7V9//XUrX768tWvXjg/u+E/vvfeepU+f3lauXGlmZo0aNbKMGTNa7969nZH8J06csAwZMljXrl1js9Q4IfIHqyFDhljRokUtR44cVrJkSVu9erUzhU5ISIhdv37dRo4c6cw9HHGKPB5fkZ//iP3+qlWrzNfX155//nnnODGi3Y4dO8zlcrl9aG/atKm1adOGY4I4KHL/6dWrl2XIkMEqVqxozzzzjJUpU8aWLl3qrB87dqzlzp3bnn76aZs7dy5zX3q4a9euWb169czHx8e2bNniLL9x44aVL1/exo4da1myZLEOHTo4+47ff//d6tWrZytWrIitshENIh/LHzp0yPbv3++8Xq9evWojRoy4I7y9du2anTx5kmnS4pjIfaVfv37m7e1twcHB9uWXX5rL5XLmwY94r5g4caLVr1/f/P39H/szLghuEWURL4Rjx47ZypUrzeVyWenSpd0uFBIR3vbp04dgBXfVqFEjZ67SyG+2EeFt0qRJ3aZNiMAHtSfHP78ZnzFjhqVNm9aZl2716tWWIkUK69Spk+3fv9/Mbh/ANWrUyCZOnOjcn30M7uXXX3+1ihUr2pIlS8zs9pVlkyRJYrVq1bojvP3rr7/YvzxCgwcPtlSpUtmUKVNs7ty5VqdOHcuQIYNNnz79jgtW/vHHH9aiRQvr2rWrhYWF8Zp/AkydOtVGjRplV65cMbPbp796eXlZp06d7pib9ODBg85r88yZM1anTh23uW8R93z66aeWJUsW5/TXjz/+2Hx8fOzpp5+2efPmOe3eeecd6969u7PPYN/h2c6cOWMtWrSwhAkTOs/t1atXnYsT1qtXz6197969rUiRIlw35QnRp08fS58+vaVJk8YyZsxoo0ePtrNnz1pISIiNGDHCUqRI4TZtQgRe13HPsWPHbODAgbZq1Sozu/1l/2uvvWYJEiSwRYsW2YULFywoKMjq1q1r8+bNs/nz55vL5bLDhw/HcuUPjuAWD2Tx4sXm6+trAwYMsGbNmlmOHDns6aefvmPaBJfLZYMHD47lauEJli5dapUrV3Zu16xZ09555x0zM2dajQinT5+2AQMGmMvlsoULFz7yWhE71q1bZ2XKlLF8+fLZ6dOnzczsm2++sQwZMljZsmWtYsWKVrx4ccuXL5+zn+G0KET2zzmvLly4YF999ZVdvnzZNm7caOnSpbOJEyea2e1R/xkzZrQOHTo4QZEZXw7FtPDwcDt//rwVLVrUpkyZ4rauXbt2li5dOjt48KCZuX+p98EHH1ixYsV4zT8BwsLCrHbt2laoUCH77LPPnPB22bJl5uXlZa+99tpdr4UQ0R8i5qhG3BE5mAkJCbFXXnnFmVpj6dKllixZMuvbt6/Vq1fPnnrqKbeRt3zJ6/kiPzfHjh2zxo0bW+rUqZ3pL3799VcrWrSoVapUyT788EObP3++dejQwZImTWp79uyJrbLxkP457UnatGltyZIltmvXLuvRo4flzp3b+vbta0FBQRYcHGyffPKJuVwu5ryP4xYtWmQul8uyZMniTKNkdntalbfeesu8vb0tZ86cljlzZsuTJ4+FhITY2rVrLXv27HbmzJnYK/whEdwiys6fP2958+a1d99911kWFBRkxYoVs6effto2bNjgHFwvXLjQDhw4EFulwoP8+OOPljx5cnvuuefs1q1bVq5cOXv//ffv2f7IkSP2+eefc+rLE2rPnj22aNEiW7dunfMBPTw83DZv3mzPPPOM5cqVywlvd+zYYRMmTLAOHTpY//79nT5BwIZ7iXwRgohT7zt06GDt2rVz+k/nzp0tf/781qlTJ8LAR+z06dOWOXNmZ27C69evO+uKFi1q7du3d25HPDfvvPOO5c2b14KDgx9tsXhod3t9hYaGWvPmza1YsWI2adIkt/DWx8fHXnrpJfv777/ve3t4cv3zAobHjx+3kydP2rFjx+zAgQOWLVs2+/TTT83MbPr06ebt7W3JkiVzO32ePuPZIp6fJUuWWMWKFa127drmcrksWbJktnHjRjMz27dvn7Vu3dpy5cplhQsXtueee87tavF4fE2fPt3Gjx/vXIAuwrBhwyxTpkzOWVOBgYE2d+5cPhvGcbt377aWLVuaj4+PMw1a5H385s2bbebMmTZr1iynr/To0cNKlSp1x8WwHycEt4iyoKAgy507t82ZM8fM/jdH2YULFyxr1qxWoUIFW716NaEK7rBp0yZLnz691axZ06pUqWIlS5a05s2bW8OGDa1Vq1bWunVra9iwoVWtWtXt6tK8QT9Zpk6dapkyZbIcOXJYvHjxrFWrVm6nrtwtvP3nhy76BCKLPGpj9+7d5nK5bNy4cW5tGjdubC+99JIzj3Ljxo3t22+/dfoWH+xjxrZt22zatGm2YMEC++2335zlpUqVsjp16ji3I+bPb9y48R0XHvzjjz+sQYMGtnv37kdTNGLEkSNH3I4NQ0NDrWnTplasWDGbPHmy89pcuHChlS9fnhGScOsDQ4cOtYCAANu7d6+z7LPPPrMKFSrY5cuXzczs66+/toYNG9q4ceP4HPKY2bx5s8WPH98+++wzO3LkiP3www9Wr149S5QokRPeXr9+3a5evWqXL192+8IPj6+zZ89a1qxZzeVy2euvv25m7sf4DRo0sGeeeeaO+/E5IG6413HA3r17rUGDBpY0aVLbuXOnmd0e0PPP9keOHLF27dpZihQp3N47HkdeAqLAzJQsWTJ5e3vr+++/lyTFjx9ft27dUrJkyVSgQAFt2LBBffr0UWhoaCxXC09TtmxZzZ8/X3/88YfWrl2rbNmyOf3n+vXrCgkJkY+Pj7JkyaLGjRs79/P29o7FqhGdJk+erI4dO2ro0KHasWOHBgwYoFmzZmn37t1OmzJlyujDDz+Uv7+/qlevrr/++ksul8ttO/QJRDAzeXndPpwZP368pk+fLj8/P73++usaPXq00y579uzau3evmjRpopIlS2rfvn2qUaOGXC6XwsPD7+hjeHhTp05V/fr19emnn6px48bq0qWLtm3bJkkaMGCAjhw5oo4dO0qSfHx8JEl//PGHkidP7radDBkyaNasWSpSpMgjrR/RZ+7cuapdu7a+/fZbhYeHS7p9/Dh9+nT5+/vr3Xff1ezZs3X58mU1atRIGzZskJeXl9MWcVPEvv3o0aM6deqUJkyYoIIFC7qtP3LkiH766SeFhobq888/V+7cudWpUyfFixdPYWFhsVU6oujAgQMqXry4WrdurRw5cqhq1aoaN26cKlWqpOeee067du2Sn5+fEiZMqMSJE8vPzy+2S0Y0SJ06tRYtWqQKFSpo+fLlCgwMlLe3t8xMklSoUCElTJjwjvcCPgc8+cLDw533gJ07d2rnzp3asWOHJKlgwYIaMmSIqlev7uwf4sWL59ZPrly5op9//lmXLl3SunXr3N47HkuxHBzDw0WMQLp48aKFhoa6zV+bIUMGGzJkiFv7Hj162ObNm+348eOPulQ8JsLCwmzDhg2WO3duq1279r+25dvUJ0vEvNfTp093lh05csTixYtn3bt3dxvxGDFtwtNPP23NmjWLjXLxmOnXr5+lTZvWZs2aZZMnT7ZmzZpZ4sSJbfjw4U6bAQMGWMeOHa1Dhw5MuRHDJk+ebPHjx7d58+ZZSEiIzZgxw7y8vGzUqFFmdvvsnQkTJliWLFmscOHC1qJFCytTpozlyZPHbd/PSOjH07p162zo0KH23nvv2ebNm+3atWtWuXJlK1OmjC1dutTtdXfgwAFLmjSp5ciRwxYvXmxmPO/4n8WLF5vL5bL06dM7F6KJsHv3bqtbt66lTJnScubMaXnz5nX2H/Shx8uECRMsUaJEzrQpEc/f0qVLzeVymcvlsm3btsVmiXhI/xwNGXH75s2btnfvXsufP78VKlTIjhw5YhcvXrQbN25Y+fLlrXHjxrFRLmJR5P13//79LVeuXJYlSxbLkSOHDRo0yFm3b98+e/HFFy0gIMBtmrQIEaP0nwQEt/hPX3/9tVWuXNkKFixow4cPtyNHjtjNmzftvffes/Tp01uzZs1s3Lhx1r59e0uUKJFzhW7EXf98Y/5nABsR3vr7+1v16tWd5RGnynKw/WTq37+/JU6c2MaPH+8cmNevX99cLpc1b97c6tata2PHjrXvv//euc8/T60F7uavv/6yYsWKuX0pcOrUKRswYIAlSJDACQv/iS+HYsbChQvN5XI5F4Izuz03XdKkSa1FixZuF5fat2+ftWnTxlq3bm09e/YkUH8CTJ482VKkSGHlypUzX19fe+qpp+yrr76ya9euWcWKFa106dK2dOlS571+48aN9uqrr9rbb7/N8467at++vblcLvvwww/v+BD+008/2YIFC2zChAnsPx5jJ0+etEKFClnv3r3d5qHcu3evNWzY0Dp27OhcuBKPn8ifDadOnWo9evSwdu3a2datW53l+/bts4IFC1rKlCmtePHi1rJlSytQoIAzLSOfD+Oed99919KmTWs//vijnT171rp3724ul8veeustp82+ffusSpUqbtNvPYkIbvGvtm/fbokTJ7aBAwda69atrVChQta0aVM7ePCghYWF2eLFi61YsWJWokQJK126tNuV/YDPPvvsX9dv3LjRMmfObCVLlnxEFSG29e7d27JmzWrjx4+3OnXqWIECBWzFihX2yy+/WP/+/e2ll14yHx8fy5s3r02dOtW5Hx/C8G/OnTtnqVKluuPCFidPnrRSpUqZy+VyLl5jxsF/TPvss88sUaJENnjwYOfigw0aNDCXy2V169a1Z555xt5++2378ssv73p/AvXH1+eff27x48e3JUuW2I0bN+zw4cNWunRpK1asmN28edMuXLhgFSpUsHLlytmIESNs9+7dVqdOHbcPYezv4657jcgzM2vRooUlSpTIvvrqK+eL/ruh/3i2iPff7du327Rp02zUqFHOSNoPPvjAypQpY2+++ab9/fffdunSJevXr589++yzT8youbiud+/eljFjRmvcuLE1b97c4sWLZ/PmzXPW792716pUqWJJkya1n3/+2VnOcUHc88svv1jNmjWdC5AtW7bMkidPbq1atbL48eNbr169nLZHjx594ufFJ7jFHSIOeI4dO2ZDhgyxoUOHOuvmzp1rzzzzjDVu3NhtgucnaRg6HlzkHebHH39sLpfrPy8ms3r1aqtfv/4Tv7ON6yJ/kHrrrbcsceLEli5dujv6x61bt2zLli327rvv8uELd3W3fUVoaKi98sor1rhxYzty5Ijbuk6dOlnVqlUtY8aMNnfu3EdVZpw3btw4y5Ahg73zzjtWq1YtK1iwoG3dutV+++03+/zzz61Tp06WLFkyCwgIsA8++MDMCNQfd2vWrDGXy2V9+vQxs/89n9OmTbOUKVM6F6EMCgqyFi1aWI4cOSxDhgxWtmxZRlTBbd/++eefW/v27e3VV1+1ESNGOMubNWtmSZMmtUWLFv1reAvPtnDhQkuRIoU1bNjQihUrZkWKFLFBgwZZeHi4DRw40EqUKGHe3t5WuHBhS5o0KQODnhBTpkyxTJkyOReTWr58ublcLvP19bXJkyc77fbu3Wv58uWzokWLOheh43Ni3HPp0iX79NNP7fLly/bjjz9ahgwZbMKECRYWFmYtWrQwl8tl7dq1c7vPk9xPCG7hHCQHBwc7y44ePWrFixe39OnT27vvvuvWfu7cuVa+fHlr1qyZbdq06ZHWisfDhg0b7J133rHvvvsuSvd7kne2cA9vBw0aZBkyZLBPP/3Uzp07d9c2d7uNuC3yPuLw4cN24MAB5/acOXMsV65c1rt3bzt06JCZ3T7oa9iwoX322Wf24osvWosWLezGjRuEQzEo8nM0ZswYS548uaVKlcq5Knhkv//+u40ePZrX+RNix44dVqJECXvhhRds2bJlzvIPP/zQMmXKZH/88YfTPyJG4+7YscNtnkOgZ8+elj59euvRo4f179/fXC6XderUyVnfokULS5kypc2aNYs+8xj6+eefLUOGDM5UOnv27DE/Pz/r3bu3md1+Dzl79qx98cUXtnDhQvvtt99is1w8hMivzytXrtiHH35on3/+uZndnrs4SZIk9tlnn1mfPn3Mz8/PZs2a5bTft2+fFS5c2LJly8bgsDjgXseBN27cMDOzbt26WevWrZ2ptvr162c1atSw6tWrx5n8gOAWZnZ7fsBatWrZuHHjnGUff/yxZcmSxapWrWpHjx51az9//nwrUKCAtW7d2nlBAWa3R9AGBARY6tSpnUnC48oOFf8T8ZyHh4e7Pf//HHmbJUsW+/jjj+38+fOPvEY8vvr06WMZMmQwf39/K1u2rB07dszMzCZNmmT58+e34sWLOyN5ChUqZGa3L55ZqlQpQsJHIPJrfsqUKZY+fXrr37+/nThxwln+z8CF5+XxFvFlyLZt26xChQr23HPP2Y4dO+y7776zBAkS2Pz58522dzsm4PmPuyLvC9avX29PPfWUMzBk0aJF5ufnZxMmTHC7T82aNe3ZZ599pHXiwfzzi9JvvvnGSpQoYWZmv/32m2XJksXat2/vrI98ejweX99995299dZb9uKLLzrXtThw4IAdP37cjh07Znny5HGmsNq4caNzAbqvv/7a2cbu3butTJkyhPdPsMuXL7vdXrp0qY0fP9527NhhQUFBZnY7vK1YsaI1adLEzMyuXbtmDRs2dAv640LW4CVA0qVLl+Tr66t58+Zp8uTJkqTu3bvrrbfe0rlz5zR69GgdO3bMaf/iiy9q8ODBGjRokHx9fWOrbHig9OnTq3Hjxrp69apWrVolSfLy8lJ4eHgsV4ZHJTQ0VF5et99eQkJCnN8lKV68eAoLC5MkffTRR2rcuLHGjh2r8ePHKzg4OFbqheeLvP9YtGiR5s2bp7Fjx2rKlCkKCwtT9erVtWfPHrVv315jx47VSy+9JG9vb1WvXl3btm2TJJ07d0558+Z1+h9iTuR9fps2bdSvXz9NmzZNkyZN0u+//y5J8vb2drtPvHjxHnmdiD4ul0uSVLJkSQ0fPlyXL1/Wa6+9poYNG2r8+PF68cUXdevWLUlye0+IwPMf9/Tr10+hoaHy9vZ2+saff/6ptGnTqmzZslq8eLFatmypTz/9VB07dtSlS5e0fPlySdLy5cud3/F42L59uwL/r737Dotiyf4G/h2iEgRFBTEhICImUBQVFNM1YwCzKCIgmBOCIopZAXNAggqCASMG5Joz5oiCOWAWUCQKAnPeP3inl1Hcu79ddQjn8zz7LNNhbo3dXV11uvrUhw8gItSsWROvX79G+/bt0a1bNwQEBAAALly4gMjISLx7907GpWX/i9DQULi6uqJy5cqwtLSEqqoqAKBhw4bQ09PDixcvUKFCBdjY2AAAVFRUMHnyZISFhaFnz57C95iZmeHs2bOoV6+eTH4H+71mzJiBuXPnIjU1FQDg7u4OJycnLFu2DAMGDMDChQuRmJgIZWVlODg4YO/evejduzesrKzw7NkzDBo0CABARMW2K8ocWUeOWcnx4MEDGjFiBLVt21ZqUqmVK1eSmZkZTZgwQRjVxBjRz59uvX79miZNmkS1atWitWvX/uP2rOyIiYmhzZs3ExGRi4sLtWnT5h9HV40ZM4bs7Oz49XX2jyIjI2nDhg20bt06YVlubi5ZWlpSvXr1is2p/ebNG5o1axZpamrS/fv3/2Rxy72i1/769eupTp06NH78eGHCMlZ2Xbt2jdq1a0empqZ04sQJYTm3AxhRYQ5LHR0dsrKyEvIbExXmSe7Tpw+FhISQmpqa8Do9EdGJEydo1KhRUn0RPp9KrqJtupiYGBKJRHT+/Hm6ffs2KSoqkoKCAk2aNElqnwkTJlCvXr2EkXas9Nm3bx+pqqpKTThGJH0+HDp0iEQiEZ04cYKePn1KvXv3FkZTEnHanPLC1dWVWrRoQT4+PnT69Gnq0qULXb16lXJycsjX15dat25NY8aModevXxMRUXh4OA0ePJimTp0q3DfK09s6IiIiWQePWcnx4MEDLF26FM+ePcOoUaPg4uICAFi1ahV27tyJRo0awcfHB3p6erItKJM5sVgsPN0KDAzEkydPkJCQgMmTJ6N169bIy8vDsmXLcOTIEUyYMAETJkwAUPhUTDIyh5U9gwYNws2bN2FkZIQbN27gzJkzaNy4cbHbFhQUCKOsJOcFnx/sZ9LT09GgQQN8/PgRHh4eWLZsmXC+fPv2DZ07d0ZSUhK2bt0KCwsLiEQiZGZmwsPDAxcuXEBERARMTU1l/TPKjKL3gKK+v4aLbufr64vLly8jKiqKr/NS7vPnz6hSpUqx6yTnwI0bNzB9+nRUqlQJ48ePR/fu3f9wKVlJ9e3bN5w/fx7u7u6oWLEizp8/D0VFRdy+fRtDhgzBkydP4OfnB3d3dwDA169fYWdnh+rVqyM0NJTrj1IkOTkZBw8exJcvX4TjuW3bNjg5OWH+/PkYOnQovn37hpCQEGzatAkXLlxAo0aNZFxq9n8lFouRlZUFe3t7NGvWDAsWLPi32zs7O2PLli2oV68e1NXVcf36dSgqKv6h0rKSwsvLC+fOnUPDhg2Rn5+PsLAwYd2aNWuwc+dOmJmZYfbs2ahVq5ZU3zE/P/+Ht7fKMg7clkP/dJL/LHi7ZMkSHDt2DLt374a2tvafKi4r4Tw8PBAREQEHBwd8+vQJ+/fvx6hRo7BixQo8e/YMgYGBOHLkCEaOHImZM2fKurjsDzA1NUVcXBzmz5+POXPmAPh5wL5oUIeDtuxnJOdGYmIiBg8ejKysLBw+fBh6enrCury8PDRu3BimpqbYtWuXsG9ycjLy8/NRo0YNGf6CsqXotRocHIzExEQAwJw5c1ChQoUfti/uOufrvfSKjY1Fjx49EBMTAysrq2K3kRzfa9euYebMmcjJycHKlSvRunXrP1xaVtIU7YfExMRg+vTpqFOnDqKjo6GoqIjdu3dj6NChcHNzg6WlJSpXroyVK1ciKSkJN2/ehIKCAtcfpcSjR4/QsGFD1KxZEwsWLICjoyMAIDs7GyEhIZg1axaqVq0KDQ0NEBEiIiJgZmYm41Kz/1ZqaiqMjY2xcuVKDB8+/If1kraApA44ffo0AMDa2hry8vLlLhBXXr19+xYpKSlo3Lgx5OXl4enpidDQUFSvXh2XL1+Gurq6sO2aNWuwe/du1KpVC6tXrxba8uXyHvBHx/cymZsxY4bUBBE/8+DBAxo5ciS1bduWQkJChOWfPn36ncVjpczx48dJT09PeD35ypUrJBKJaOfOncI2iYmJ5OzsTEOGDOFX4cu4nJwc+vz5M/Xv35969uxJJiYmtHnzZmFSgqKvNPLrjezf+f78KFp3JCYmkpGREbVu3Vp4fUqyPi8vT+q1Ka5zfr2ix2b27NlUqVIl6tWrF1WtWpXMzMwoLi6u2P2KHgs+LqVbQUEBde/enXR1dYVJSIsjOc4XLlyg8ePHc73PpK79ZcuW0cCBA6lBgwYkEomoXbt2woTHYWFh1LFjR9LU1CQrKyuytbUtl6/GlnZfvnwhT09PUlRUpIULFxKR9Dnw+PFjOnnyJF25coU+fvwoq2KyX+TVq1ekpKRE+/btI6Li7/WJiYk0dOjQHyY35+u6fNi5cyd16tSJmjZtKhWTmjdvHhkYGJCXlxclJydL7bNo0SIaM2ZMuW9DcOC2nJk0aRLduXOHiP654/TgwQNydHQkExMTCgsL+xPFY6VMVFQUde7cmYiIduzYQerq6hQQEEBEROnp6UJA9+3bt8L5xh32sqVobrrvDRkyhIyNjWnz5s1Ss4ZKArmMFadowywkJISmTZtGQ4cOpevXrwvrJMHbNm3a0Js3b4hIum7hDsDv9/HjR7Kzs6ObN29SQUEBpaamUosWLcjExITu3r0r6+Kx3+DYsWN09uxZIip8UNe/f3+qXr36fxS8lSjvHS9WyN/fn9TV1enYsWN048YNWr16NTVo0IBat24tBHSSk5Pp9evX9PnzZ6mHc6x0SU5OJk9PT5KTkxMCNQUFBVwXlDFisZhSU1OpadOmZGtrS2/fvpVaJ3HhwgXq0qULB+rLoS1btpCmpiZt27ZNeMhf9Nzw9PSkFi1a0Ny5c38YLCjZrjzXG+Vg+jUGFA4nBwqHmzdr1gzHjh3Dzp07kZOT89N9jI2NMW3aNLRv3x7W1tZ/qqisFJCcT58+fUJaWhpOnToFNzc3LFu2DGPHjgVQOONvYGAgkpOToaurC5FIBLFYXP5eayij7t+/DwBCPqqgoCA4Ojpi2bJluHDhAgAIeYlWrlyJiIgIvH79Gp06dRJmAWWsOJJX6mfOnAkfHx8kJydDLBajY8eOiIiIQHp6OurUqYMTJ07gy5cvsLa2RnJyslTdwjPU/17r169Hq1atkJKSgmrVqkFOTg6ampo4f/48VFRUMGzYMMTFxcm6mOwXEYvFSEtLw/Dhw/H8+XMAgLKyMiIjI2FpaYl+/frh8uXLxe77/T2/XMz8zP6tnJwcXL9+HRMnTkTXrl3RokULjBs3Dv7+/nj79i169uyJvLw8VK1aFbVq1ULlypWF9Cr8GnXJJekbPH78GLdv3xbaglWrVoWXlxemTp2KIUOGYO/evZCTk+P+QBkjEomgqamJgQMHIioqCmFhYfj48aOwDihMkbF69WrUqlUL1apVk2Vx2R8WGxuLOXPmYPny5Rg+fDiaNGkCoLDeKCgoAAAsW7YMXbp0wZEjR7Bu3TokJycL+0vuAeW6DSHLqDGTHWdnZxKJRBQZGfnDqwrfy83N/UOlYiXVz55upaenU5MmTUgkEknN/JuTk0O9e/emkSNH8gjbMmjRokVkZmZGZ86cISIiHx8fqly5MvXv35+MjY2pffv2tGPHDmF7BwcHql+/Punr65O5uTnXKewfbd68mWrXri2M2r948SKJRCJSVVWlDRs2UFpaGhERPX/+nIYMGcIjbP+wR48eUdOmTUlVVVUYXSu5T2RlZZGFhQVpaWnR06dPZVlM9otI7uM2Njbk4+NDRP8a1Z6bm/sfjbxl5Vdx7cDu3btTz549f1ju5uZGIpGITExMeHRtKSI5xlFRUVS/fn2qX78+Va9enUaOHCm8ZZWenk7Tp0+nChUq0LZt22RZXPY/Ku5tu6LXuaOjI8nJydGECRPo6tWrlJGRQWfOnKHOnTuTqampcG1zH7HskxxjPz8/6tKly0/Tbhat7728vKhWrVq0adOmP1LG0oIDt+VM0Qpy7NixpKKiQjt27PjH4C0rv4qeM9u2bSNvb2/auHEjnTt3joiI9uzZQw0bNqRevXrRjRs3aN++fdS9e3dq3Lgx35jLqEOHDlHv3r3pr7/+oj179pCrqytdvHiRiIiuXbtGI0aMIHNzc9q+fbuwz7Fjx+jw4cNCZ587ZOxnsrKyaO3atRQcHExERAcOHKBKlSrRjh07yNPTk9TU1CgkJIRSU1Ol9uPg7e/xswd3z549IwMDA7KysqL3798T0b/q+szMTBo9ejQfkzJCcg44OjqSpaXlD+slwVttbW26fPnyny4eKyU2btwopNMKCAggCwsLOnTokFQbccOGDdS/f38aN24c1x+lzNGjR6lSpUoUFBREnz9/pqioKBKJRDRkyBD6/PkzERFlZGSQm5sbaWlpUXp6uoxLzP4bDg4OdOzYsWLXFb2Wp0+fTlpaWsJD98aNG1OvXr04V3U5U/TBb79+/aSWfb/Nq1evhJjUhg0b+Bz5jojo/7/XwMosKjKDc0FBgdRrRi4uLtixYwc2bdoEW1tbKCsry7CkrKShIjM2enl5Yd26dbCwsEBiYiLk5OTg5OQEDw8PHDx4EAsXLsSLFy+gr68PPT097NixA4qKiigoKODXlsugkydPYu3atcjMzERmZiaio6NRvXp1AMDNmzexZs0aPHz4EFOnTsXQoUOl9uVzghWVlJSEvLw8aGlpoUKFCgCA+Ph4aGhoIC8vD3369IGTkxOmTJmCuLg4tGzZEnl5edi7dy9sbW1lXPqyTTIDNAA8efIE+fn5qF27NtTU1AAAz549Q5cuXVC3bl1ERkZCR0fnh5l++Xovve7evQsVFRXo6upCVVUVkZGR2LhxI44fPw4lJSWIRCJhFvDc3FwMHz4c+/fvR1xcHBo3bizr4rMSJC0tDSNHjkS1atWwadMmvHr1CiNGjICKigocHBxgZ2eH7OxsODg4oEWLFpgzZw4Arj9Ki9TUVEyfPh3169fHrFmz8Pr1a1hbW8PMzAwXLlyApaUlNm3aBC0tLWRmZiI7O1toM7LSo6CgAFOmTMHKlSuhqKgotBG+v+9L3Lx5E8nJyfjy5QsaNmyIJk2aQE5OTrhvsPLD2dkZFy5cwK1bt6CqqvrDOZObm4t+/fph6NChGDlypLCc7wFFyC5mzP4EyROM48ePk7OzM3Xq1InWrVtHL168ELZxdnYmFRUVioyMpK9fv8qopKwku3HjBnXo0EEYVZmYmEhLly4lXV1dWrNmjbDdo0ePKDU1lSeRKKO+H3kXHR1NXbt2JRUVlR+evt+8eZNGjRpFdevWpVOnTv3JYrJSZNu2bWRlZUXVq1enYcOG0ZUrV6TWnzlzhpo1a0bx8fFERHTr1i3y9vamwMBArl9+s6IjInx8fMjIyIj09PRIW1ubDh06JIyWevr0Kenr61PHjh2FieJY6Xft2jWqVasWKSsrk7m5OQ0ePJj69etHmpqadOzYsWJHwhQUFJCHhwePkmHF2rt3LykpKdGNGzeIqHDUfo8ePahx48akra1NjRs3poYNG/LbWiXYz45Jbm4uhYaG0uPHjyk5OZlMTU3JxcWFiAonGRWJRNSzZ88f3pRhpcf3fYDg4GAKDw8X0p8VPTf+3QRS5XlyqfJIcl5s2rSJqlatSr6+vkK8qWg7PiUlhWxsbCgmJkYm5SwN+FFHGScSiXDgwAHhabaVlRVmz56NuLg4ODs7o1WrVggJCYG8vDyGDh2KPXv2wM7OTtbFZiXIhg0bcPLkSSgqKsLU1BQAUKdOHTg6OiItLQ179uyBra0tatWqBUNDQ2F0llgs5qepZQgVSQj/999/o0ePHujVqxcqVKgAsViMpUuXQlFRER07dgQANG/eHK6urtDX1+fJDVmxgoODMWXKFCxduhSVKlXCwoULoa2tDQsLC2GblJQUJCQkCBMizZkzBxoaGli4cCEA8KiN30gyEmL+/PkIDg5GUFAQOnfujAEDBsDNzQ0LFizAkCFDYGBggBMnTqBJkyZYsmQJNmzYIOOSs1+hZcuWiI2NxevXr/Hq1SscOnQIGhoaSEtLQ/fu3dGyZUsoKSnhr7/+QvPmzaGoqIhu3brB19cXAI+SKc+KjtQv+rlPnz7o0aMHwsPDYWJiAn19fWzbtg3Pnz/HhQsXULlyZdjb20NBQYHPnxJIchwzMjKQnp6O69evw8jICJqamtDV1cXQoUOhrKyMiIgIqKqqYu7cuQAAFRUVtG/fHs+fP0d6ejo0NTVl+0PYf6XoNU1E2Lp1K9LS0lCxYkX06dMHSkpKwijKfzeBVLmeXKockrQlhw8fjtDQUCxfvhwVK1aEi4uL8JZdcnIynJyckJWVha5du8qyuCWbjAPH7De7e/cuGRgYUFBQkLBMU1OTNDQ0aODAgXTz5k1h+aRJk+jBgweyKCYrQb5/Erpx40ZSU1MjTU3NYkfDKSoq0tWrV/9kEdkfVvScuHHjBtWsWZNmzJghLIuJiaFevXpRly5d6PTp08V+B4/AYkUFBwdThQoVaP/+/cIyf39/cnBwoFu3bgmTkhERDR8+nEQiEenp6ZGZmVmxk2Kw3+POnTvUvn17+vvvv4mI6PDhw6SpqUnW1takqKhImzZtEiaKe/v2LV/nZcTPRkRlZGRQ27Ztafny5bR161ZydHSkXr16kaamJtnY2PAISSZl+fLlFBUVJfWWn6+vLxkaGgr1RnG4Hil5JHXCw4cPadCgQWRsbEyKiopUsWJFsrS0FCarFYvFNGvWLGrYsKGw78yZM2nRokU8MW0pVtw9IS8vj3r37k2mpqa0a9euYkfeMkb0rzo9IyODmjdvTlWrVqWuXbvS1q1bacaMGdShQwdq1qyZ0L7nUdnF48BtGRcbG0tz584lsVhMr169Ij09PZoyZQqdOnWK5OTkaNSoUXThwgVZF5OVQEWDtLt376Zq1aqRk5OT8MoyUeGM7kZGRnT+/HlZFJH9AUUbYAEBAeTk5ETa2tqkqqpK06dPF9bFxMRQ7969qVu3bkKQh7HiPHjwgEQiEU2ZMkVquaWlJRkYGJCqqirVrFmThg4dKqw7ffo0XbhwgSe3+8OeP39OISEhVFBQQGfPniUdHR1hcqEuXbpQzZo1ae3atZSdnS3sw0GXskdyH8jPz6emTZuSt7e31Pr3798LHS3utJdfx48fl6q3Bw8eTNra2mRpaUne3t6UlpZG+fn5ZGlp+UP9z0ouybV9584d0tbWpgkTJtC+ffvo06dPtGrVKmrVqhVVrFiRjh8/TkSFKY1UVFTI0tKSunfvTpUqVaK4uDhZ/gT2Pyja3oqPj6c3b95QUlKSsK5Hjx4cvGX/SHIeZWVl0axZs6hVq1ZUpUoVsra2Jg8PD2E9t+9/jgO3ZVDRyjIlJYUePnxIeXl5NGDAABo1ahRlZWUREVGrVq1ITk6O3NzcOLctk3LkyBFq2LAh+fr6CsvCwsJIV1eX+vfvT9u3b6czZ85Qz549qUmTJtxRL4O+f9o5d+5cqly5Mu3atYv2799P9vb2ZGRkRJMmTRK2+fvvv6l169Y0efLkP1xaVpqkpKTQ1KlTqUKFChQdHU1ERLa2tmRkZEQ3btygGzdu0OLFi0lFRYU2btz4w/5c3/x6YrH4pyMcJB00e3t7cnNzo/z8fMrPz6eRI0dSvXr1qH379txJKwck54eHhwcNGTKEiAqvxf80ryEr2/Lz82nNmjXUoEEDcnZ2FpZfuXKFNm7cSDVq1KB27drRyJEjaeLEiWRjY8P5TksByfV99+5dUlVVpVmzZv1wnZ87d446dOhANWrUEN7kPH/+PA0aNIjc3Nzo3r17f7zc7H+3ePFiio2NFT57enqSvr4+Va9enUaOHEknTpwgon8Fb83MzGj37t2Uk5MjqyIzGfrZ/b9oG0HSfpcs+/Dhg9S23L7/9zgxXBmRl5cHBQUFiEQiZGZmQl1dHWKxGFpaWtDS0kJ2djbevHmDkSNHQkVFBfn5+UIOSmtrayHHCGMA0KJFC1hYWCA6OhpycnJwd3eHg4MD5OTkMGXKFBw4cAADBw5EnTp1cPDgQcjLy3M+sjLk06dP0NLSEj4nJSXh6NGj8PPzw6BBgwAAlpaWCA4ORkhICCpWrIhly5ahe/fu0NDQkMpRytj3tLS0MH/+fIhEIvTt2xdNmzaFvLw8jh49inr16gEANDU1sWbNGmRlZf2wP9czv55IJBLykB07dgxEhEqVKqFt27aoVq0aMjMz8ezZM3Tu3Fn49//69SuOHj2K+vXrQyQS/XRWaVbyfX/sijuWkryEJiYm2L59OzIyMqCurl7sNqz8kZeXx+jRoyEvL4/Nmzdj5MiRCA8Ph4WFBSwsLDBo0CDs378fMTExiIiIAAAcPnwYI0aMkHHJ2b8jEonw4cMHdO3aFR07dsSSJUsAFNYRYrEY8vLyaN++PaZNmwZXV1dERUWhefPmaNeuHSwtLUFEfM8uhS5duoQ9e/bgypUrWLRoEb58+YIdO3Zg06ZNSEhIwJkzZ+Dj44Pc3Fz06tULhw4dQr9+/TBlyhRoaWmhU6dOsv4J7A8qmtc8NjYWcnJy0NbWhr6+PkQikbBeXl5eqn1RtWpV4Tu4rvhn3MIq5Q4fPgyxWAxFRUWIRCIcPnwYPXr0QPv27dG3b1/Ex8eDiJCZmYlPnz7h4cOHOHfuHObPn4+jR4/C1tYWBgYGsv4ZTIaI6Idl2tra8PPzg5GREaKiorB8+XIAwIgRIxAYGIjq1avD0NAQ06ZN40kkypgJEyZg9OjRAP51blSqVAnp6el4+fKlsF316tUxYcIE1K5dG6tWrcKMGTMAAG3atIGcnBzEYvEfLzsrPdTV1TFv3jzMnj0bd+7cwejRo1GvXj3k5+cDKAzc1qlTB1WqVJFxScu2iRMnChPIAMDUqVMxcuRIODg4YOzYsfD29gYAqKmpoXHjxli7di3Gjx8PCwsLJCQkwMDAQGiUc9C2dCp67N68eQMA//ZYGhkZ4evXr8jOzv4j5WOlg1gshpqaGsaPH4+JEyfi77//hpubm7C+SpUqcHZ2FoK3Q4cORUREBD59+iTDUrP/xIcPH9C6dWu8ffsWMTExACBMQCVpJ9rY2MDCwgLnz58HAKlADSt92rZtCy8vL+Tk5GDBggU4cOAApk2bhq5du2LKlCmYPn06dHV1sWjRIsTExEBBQQFRUVEYOnQoT0hczlCRyavd3d0xePBgdO3aFS4uLggICAAAqX5h0fZF0fqB25D/jAO3pdjt27cxadIk4Wn1/fv30b9/f1hZWaF9+/bIzc1FmzZtsG/fPlSvXh0LFy5EREQEnJ2dsXXrVuzbt49n9mRCRbljxw6EhYUJy6tVq4alS5eiYcOGiIiIwLp16wAAAwcOxJIlS7B161Zs3LgRDx484IZZGeLq6oq9e/cCgDDaMT8/HxYWFnjw4AGePXsmbKupqYnWrVujU6dOiI2NRVBQkLCOR16xf6Kuro7JkyfD3d0dEydOxJ49e6CgoACxWIwRI0ZAJBJh5MiRsi5mmZWSkgKxWIy9e/di5cqVePXqFS5duoTjx4/j2LFjGDZsGHbs2IFJkyYBAIKDg2Fvb483b97A2NgYt2/fFt624Ou9dCo6SmbRokXw9vYWAi8/U7NmTXTs2FFqpAwrnx48eIB3794BgNTD2oMHD0JRUREXL17EqFGjhOXfvn0DAHTv3h3Dhw9HfHw8Pn78+EfLzP7vTE1N4e3tjUaNGsHDw0MqeFuUvLw8NDQ0AHAbsLSaNGkSpk6dCqCwvzd69GhkZWUhIiICmZmZwnbt27fHxIkTUbt2bSxZsgT79++HoqIili9fLrQLWNlXdPTslStXcOLECezbtw8HDx5E/fr1sXnzZmHwFw/q+QVkkZ+B/RqZmZm0YcMGatGiBY0YMYI2btxI8+fPl9rGzc2NVFVV6cGDB0RElJCQQPfv36f379/LosisBHnx4oWQX+zz589kaWlJ7du3p8jISKntMjIyqHHjxmRsbEzz5s0Tlm/bto0qVKhAs2bN4lney6Dw8HCqWrUqvXnzhoiIzp49S1WqVKExY8bQ/fv3iYgoOzub7OzsKCAggPr370+2tracn4j9n6Wnp9P06dNJQUGB9u3bRwMGDCAjIyOhXuFz6vdJTEykWbNmkYmJCQ0dOpRcXFyE3GMpKSm0Zs0a0tPTk8pbXXQiMp5Eomzw8PCgqlWr0r59+35oH/6764+vzfJJLBbTgwcPSEtLi7y9venVq1fCOltbW2ratCnFx8dTYGAgmZqakqOjo7C+aHvR2NiYduzY8UfLzv5viuanvHbtGtnb21OjRo0oJiZGWC8Wi+njx4/Up08fWrt27Q/7sdLh8+fPNHXqVDIxMSEfHx9h+b59+8jCwoIaNWpE165dk9rnwoUL1KlTJxozZgwR8XEvr/bs2UMjRowgT09PYdnLly9p6tSpZGZmRsuXLxeW8zny3+PAbSklOemzsrIoICCA2rRpQ1WrVqXZs2cTkXTDqEOHDjRw4EC+UJhg9+7d9Ndff5GHhwdlZGQQEdHTp0+pT58+1LFjxx8a0g4ODtSgQQOaMmWKVEc9MjKSHj9+/EfLzv6M8+fPk5WVFTVs2JBev35NREQxMTFUs2ZNatu2LVlbW5O5uTkZGxsTEZGvry81bdpUmPyQsaITFUjuPz+7D6Wnp9OMGTNIJBKRoaGhcA/jwODvUfTYfPr0iWbOnEm1a9emzp07S2336dMnWrNmDRkYGJCDg4PUOm5TlA3R0dFUp04dunPnDhEVnhvJycl08eJF4RhzgJYVZ968eaSnp0fLli2jjIwMGjx4MDVu3JiePXtGRIUP/iUDTPr27Su1b2BgIKmpqQnbspKhuGv9Z8HbI0eOCMtnzpxJJiYm9PLlyz9STvZ7vH37lubNm0fGxsY0d+5cYfm+ffuoc+fOZGNjQzdu3JDa586dOzwxZTn28eNHsrGxoSpVqtDQoUOl1kmCt+bm5lIPA9h/h99jKKUkOeVUVFQwcuRI2Nvbo1KlSjhx4gQAQFFREXl5eQCARo0aITs7m3OHMADAli1bMGbMGPTo0QMDBw6EmpoaxGIxDAwMsHLlSlSsWBEhISHYvn07AAivuyxduhQrVqyAgoKCkIdy8ODBqF+/vsx+C/s1int1xcrKCv7+/qhevTo6deqEN2/eoEePHjh06BCGDRsGIyMj9O7dG3FxcQCAe/fuwcTEBAoKPOclk34Fe/Xq1Zg5cyYKCgp+eh9SV1eHp6cnwsLC8ODBAygqKiI/P5/Pp98gPj5eyE/q7e2NR48eYeLEiRg2bBiuXbuGZcuWCdtWqVIF9vb2GD16NDIzM6XqCm5TlE70XV773NxcVKlSBXp6enj06BEWLlwIc3NzDB06FG3btuUJQ9gPJPWAj48PXFxcsGHDBrRq1Qp3797FyZMnoa+vj4KCAqipqcHBwQGDBw9G5cqVpeoPIyMjXL16Ffr6+rL6Gew7/v7+OHjw4A/LJZNPAkDLli0xadIkmJmZwcPDA+fOncOKFSuwbt067NixA3Xr1v3TxWa/kK6uLsaMGYPBgwdj9+7dQg58W1tbuLq64uvXr5g3bx5u3rwp7NOsWTN+Db4c+b4NUb16dSxevBjdu3fHhQsXsHXrVmFd3bp1MWXKFDRt2hSJiYnFzqvD/nMi4n/BUoeK5BOR/J2RkYEdO3Zg+fLlaN68OXbt2iVsP3LkSKSmpmLv3r1QUlLizlY5duLECQwdOhQbN27EwIEDpdZJJhh78eIF3N3d8eLFC6ioqEAkEuHLly+4c+cO5OXlpQIyrPQrejyjoqKQlpaGqlWronfv3gCAa9euYcaMGXj//j1Onz6NWrVqSdVBjx8/xpYtWxAcHIzz58+jcePGMvstrOTx8PDAzp07MW3aNNja2gqdOipm1vqiOGj764nFYjx9+hTGxsbw9/fH8+fPERYWhmvXrqFRo0Z48+YNNmzYgAMHDmD06NHChIMAkJ6eDnV1danZgVnplpOTgwoVKiAmJgYeHh7Q0dFBQkICunXrBnNzcxgaGsLR0RERERHo3LmzrIvLSpii9cCqVaswZ84cuLq6YtasWUL+Y8k2OTk5UFZWhkgk4slsSygiwqBBg7Bo0SI0aNBAuEcX1+cEgOvXryMgIAA7d+5Efn4+rl69ihYtWsjyJ7D/UnH39Ddv3mDTpk2IjIzEoEGDsGDBAgDAnj17sHnzZqSnp2PLli0wNjaWRZGZjBQ9V759+wYlJSWhXrh79y78/Pzw6tUruLq6wt7eXtjv48ePqFatmjChIcei/jvcKyplJCf7iRMncPDgQaiqqmLAgAFo2bIlhg8fDrFYLARv27RpA2VlZezZswdXr16FsrKyrIvPZERy3ly4cAH9+vWTCtpeu3YNFy9exKVLl9C/f38MHz4cAQEBOHDgAK5duwYNDQ34+flx0LYMoiIzgc6cORMbNmyAvr4+7t27h4kTJ2Lx4sVo1aoV/P394eHhga5du+L48eOoVasWgMKb9rZt23D48GGcOXOGg7ZMSlhYGLZu3YojR47A3NwcQGGj79u3b6hQocK/3ZeDtr+enJwcjIyMsGXLFri6ukJBQQHHjx9Ho0aNQESoVasWxo4dC6DwzQw5OTlMnz4dAFCpUiUA0nUGK12K3r/XrVuHQ4cOYe/evejZsyfS0tKQkJAAV1dXWFtbo3r16nj9+jW0tbWhqqoq45Kzkkgywk5OTg5Tp05Fbm4uNmzYAE1NTTg5OUFXV1fopEvqex69XTJJ+gh79uwBAFy8eBFv375Fv379oKysLKwvGsht2bIlxowZgwoVKmDixIkwMTGR8a9g/42i94W4uDikp6ejVq1a0NPTEyYpkwwGW7BgAQYOHIivX7/i1q1bMDIyklm52Z9X9FzZsGEDYmNjkZOTgw4dOsDFxQXNmjXD9OnTsWLFCgQFBUEkEmH48OEAAG1t7R++g/0X/lBKBvYLHTt2jFRVValbt25kbm5OFStWpKioKCIqzCcVFBREDRs2JA0NDdq2bRs9f/5ctgVmJYaLiwu1b99eyBvp7e1NnTt3ptq1a1PHjh1JJBKRn59fsftyrsmy6+nTp9SmTRu6desWffr0iWJiYkhZWZlGjx5N6enpRFSY18zExISGDBkitW9ubi59/PhRFsVmJcz3Oc48PDyEvKj379+nDRs2UNOmTcnQ0JAiIiJkUMLySzKBDBHR33//TfLy8iQSiWj58uX0+fNnqW1fvnxJXl5epKGhQdu3b5dFcdkvVvTaPHPmDC1dupREIhHZ29tTZmYmEZFUPttPnz5R7969qV27dpzflv3bfNZFz60lS5ZQ7dq1adGiRUJufFZ6SI5zjx49yNDQkPbs2UO5ublS677/Oycn588Wkv0yRY+jl5cXGRoakpGREdWqVYvGjx9PiYmJlJSURD4+PtSwYcNic5Rybtvyx9PTk6pVq0bz588nNzc3MjMzIwcHB2GOk5s3b5K9vT01aNCAjh49KuPSli0cuC2F1q5dSxs2bCCiwiTiU6ZMIXl5edq7dy8REWVmZtLy5cupa9eu9PbtW1kWlZUwISEh1KJFC/rrr7/IzMyM9PT0aPny5fTkyRMiIpo9ezZpaWlRcnIyTzxThhXtUC1ZsoQGDRpEI0eOlJrU8OTJk6SsrExOTk5C8DYhIUGqE8/nCCuOp6cnxcTEUGBgIMnJydGsWbOoadOmZGtrS76+vuTk5ERaWlo/BAzZ71G0Y/XixQvh75CQEBKJRLRo0SJKTU2V2ufz588UEBDAQbsyxsPDg+rWrUve3t5ka2tL6urq1KdPH+Fa/Pr1K61atYq6detGLVq0EO4JfB6UX0Xrjy9fvhR73y+6zdKlS0lBQYFCQ0P/RPHYb5CXl0c2NjZkampKu3btKjZ4y8qOlStXkra2Np09e5aIiMaMGUOampp08eJFIiJ69+4dzZ8/nypXrkwhISGyLCqTsYiICDIyMqLr168TEVFUVBQpKyuTvr4+DRgwQAjeXrlyhebNm8dth1+MA7elgORG+fDhQ7p9+zYNHTqUtm3bJqz/8uULTZ06leTl5Wn//v1EVDjyljvF5VtxDSyxWEwrV66kcePG0ejRoykxMVF4Wi4Wi2nt2rVkbW1N2dnZf7q47A85cOAANW3aVAjGBgYGkkgkokaNGtGnT5+I6F+dsJMnT5KqqirZ2toKN2Mi7sQzaUXrmv3791O1atXo7Nmz9O7dO5o3bx6ZmZnR2rVr6cGDB0RUOAOxpaUlvXnzRlZFLjeKBlTmzZtH3bt3p+joaGHZunXrSCQS0bJly4Q2w7Bhw+jatWvCNny9lw2XL1+mypUr0+nTp4mo8Nw4f/48Va1alfr37y/U/9u2baOFCxcKb9nw2zbl1/ejaSdPnkwPHz78x23Dw8O53igFCgoKhOP04cMHSk9Ppy9fvhBR4XXfo0cPDt6WYWKxmAoKCsjOzo6WL19ORIV9BA0NDdq4cSMRFT7MIyocKLZ582a+rsuZ76/3LVu2kLu7OxERHTx4kKpUqUJr1qyhVatWkYaGBo0cOZIyMjKk9uFz5tfhwG0psX//flJVVaUmTZqQnJwczZkz54en4O7u7iQSiejQoUMyLCkrqf7pdZbc3Fzq1asXOTk5/aESsT9JcvOdM2cO9ejRQ2rZzp07SV5enubMmSPcYCXrjhw5Qh06dODXodg/OnLkCI0fP57WrFkjtbzog6C8vDzq3r079ejRgzuAf5CnpydVrVqVjhw5Qh8+fJBat3r1alJQUKDBgweThYUF6evrS42+Z2XDiRMnSFdXV0htI7n+YmJiSF5enhwdHYW0CZL7AHe4GBHRjBkzSEdHh0JDQ3+oP4rW49+fL3z+lEy7du2iy5cvC5/37dtHpqamZGhoSG5ubsLDnaLB2z179nBahFLu+3a8WCym7OxssrKyomvXrtHFixdJTU2NAgMDiaiwX7hmzRo6f/681H58XZcPRc+XlJQU4e83b95QSkoKtWjRgnx9fYmoMLBft25d0tDQIA8PDyLihzy/A8/+UYLR/08A//r1ayxevBgrV65EgwYNcPToUSxZsgT6+voYNWoUAEBDQwOzZ8+GkpISDA0NZVtwJlNjxoxB+/btpWZzBPBDMvCis/0+e/YMM2bMwJs3b3DgwAEA/zzrOyudUlNToaKiAgDC8R0yZAhycnLg5OQEeXl5eHt7Q15eHkSEnj17omfPngA4qTz7udu3b2Pu3Ll4+vSpMPuw5HypWLEivn79ioMHDyI4OBipqam4du0aRCIRn1N/wNmzZ7Fnzx4cPXoULVq0QE5ODt69e4fLly+je/fumDx5MjQ0NHDx4kWYmZlh7dq1UFRU5NnfS7Hi7t/169dHamoqjhw5AkdHR2F948aNUbt2bYSHhyMzMxO7d+8WJiPl48/27duHrVu34vjx42jWrBkAID09HZ8+fYK2tjZUVFSE8+3784XPn5LnwYMHWL58ObS0tODv7w9NTU24uLjAy8sLaWlpuH79OubMmQMvLy/07NkThw4dgq2tLdzd3aGgoIB+/frJ+iew/1JBQQFyc3Px+fNn6OjoQF5eHhUrVkS9evVgZ2eHT58+ITAwECNGjABQeJ1HRUVBXl4e7dq1E76Hr+uyr2jbfPny5Xj//j0GDx6MVq1aoWbNmrh27RqSkpLQo0cPAIXnioWFBQYNGoT+/fsDAMcQfgMO3JZgIpEIJ06cQGxsLJo2bQpHR0coKirC2toaSkpKcHZ2BhHB0dERAKCpqYlFixbxhVKOJSUloU6dOhg8eLDU8uKCI3JycsjIyMC8efMQFxcHkUiEmzdvQkFBgTvsZUxaWpowK/y3b99ARAAgdZwlD4FcXFwgJycHLy+vH84BDrAxie8DQ2ZmZnBzc8OqVauwZcsW9OzZE4aGhsJ2b9++xdu3b1G/fn1s2LABCgoKyM/Ph4ICN0P+BLFYjGrVquHhw4fYunUrdu3ahezsbKioqODBgwcYNWoUhg0bBiUlJQDgY1OKFb3fp6WlQV1dHXJycqhTpw6cnJywceNGqKurY8CAAQAAdXV1dO7cGf3798egQYMQEhIi3AdY+VP0/CkoKEB6ejqaN2+OZs2aISEhAYcOHUJwcDDU1NTQokULrF27Furq6jIuNftPNWzYENOmTUNoaCjmzp0Lc3NzjB07FtOnTwcAnD9/HuvXr8fChQsBAD179sS+ffswfPhwNG3aVJZFZ/+D48eP48CBA4iOjkZGRgYsLS3Rt29fIWj/9OlTVKpUCfb29iAipKamYsSIEfj27Rvc3NxkXXz2h0nuAZ6enti8eTMCAgKgq6srrK9UqRIqVaqELVu2wNHREZ6enlBXV4etrS1EIhHHEX4TbpWVcNevX8eCBQtw8uRJvHv3Tlg+f/58eHt7Y/z48di4caOwnIO25Vv16tXh7e0NRUVFhIaGYvHixQAKK2CxWPzD9urq6mjSpAkcHBzw999/Q1FREfn5+VzZliExMTFo3749bt26BaCwIybpZMnJyYGIUFBQAKAweBsUFAQfHx+EhYXJqsishBOLxcK9JicnB58/fwYAODs7w9vbGxUqVIC3tzeeP38ubGdoaAgXFxcEBQUJD4c4MPjrSR7KFP1bVVUVNWvWhI2NDSwtLZGSkgJvb2+cP38eGRkZ2Lt3LwAIQVsAfGxKKSISOlxLlizB4MGD0a5dOxw+fBi5ubmYOHEijIyMMHv2bMyaNQvh4eGws7PDo0ePYGVlhYYNGyIxMVHGv4LJkuT8mTlzJiIiIvDt2zecOHECjo6O6NGjB+7du4fJkydj5MiRuHjxIl6/fi3jErP/RFBQENzd3QEUvmU1evRo5OTkICgoCKmpqcJ27du3x4QJE1CrVi0sXboUUVFRUFRUxO7du6Gvry+r4rP/wZYtWzB69GhUrFgREyZMgK+vLxITEzF37lzMnTsXxsbGmDZtGkQiEWrUqAErKyt0794dSUlJOHv2LOTl5YV+Ais/Tpw4gT179uDw4cMYNGgQatWqJayTDBI7cuQIevbsibS0NGzfvl14k47jCL+JLPIzsJ+T5AOR5CAjItq4caMw87MkabzEjBkzqGrVqj8sZ+Vbeno6DR8+nFq0aEGrV68WlhfNV1Nc7hnOW1T2fPnyhXR0dKhVq1YUFxdHvXv3ppkzZ/50+69fv9KpU6d4QhpWrKJ1iK+vL3Xt2pWMjIzI3t6e7ty5Q0SFkxe0b9+ehgwZQs+fP//hOzjv1e9R9Nh8P0Hp2bNnae3atRQdHU1paWlERJScnEwtWrSg48eP//Gysl+v6PFfu3YtVa5cmZYsWUJdunShunXr0qJFiygrK4tevnxJvr6+VLNmTWrRogV17dpVyGncvn178vf3JyK+Tsubosf71KlTpK6uLswcvm7dOnJ2dqawsDB69eoVERG9ePGCmjZtSrdv35ZFcdn/QUZGBrm7u5OhoSHNmzdPWL53714hr/mNGzek9rlw4QJ17dqV/vrrL8rMzOT6oJQKDAwkJSUl2rlzp1Tu+sePH5ODgwNVq1aNAgICiKgwd6m/vz/5+vrS1q1bhT4h9wfKp61bt1KjRo0oOTlZWPZ9TvM3b97QlStXhPYHnyu/l4ioyPAMViJcv34dHh4ecHV1xZAhQwAAfn5+mDlzJvz8/DBmzBjhtWcASElJQdWqVWVVXFYCUDH57BITE+Hn54ebN29i8ODBmDp1KgDOU1qeSF53zsjIgKmpKWrXro2vX7/iwYMHaN26NVJSUqCurg5FRUVkZGQgLS0NQ4cOhY+Pj9T+jH3P29sbmzdvho+PD8zMzNClSxe0bt0akZGR0NLSwubNm7Ft2zYoKSkhNDRU6hUr9usVrdd9fX0RExODpKQktGzZEitWrEC1atWEbfPy8pCcnAxXV1ckJycjNjaWR0eUIfHx8diwYQP69u2Lbt26ASi8Xvft24dhw4ZhwoQJqFy5MrKysoQc1ADg4eGBHTt24Pz58zyyrhwLDAxEXl4esrOz4enpKSzPy8uDoqIixGIxcnJyMHDgQHz9+hUnT57kNmUp8O7dO2zatAk7d+7EoEGDMH/+fABAVFQU1q1bBzU1Nfj4+KBFixbCPpcvX0bt2rWlRtqx0uPAgQOwtbXFwYMHYWNjI7TpJa+xP3v2DM7OzsjIyMChQ4eKbafxK+/lQ3GxgeXLlyMwMBCPHz+GnJycVJ/w8OHDqFGjBszNzYXt+Vz5/bhHXgJVr14dmZmZCA0NhaKiIuzs7ODh4QEigoeHB+Tl5TF69GhoaGgAAAdty7milW1WVhZUVFSQn5+PunXrwt3dHb6+vti1axcAYOrUqULaBG5ol32SPKLq6uq4ffs2LC0tER8fj759+6JZs2bIysqCkpISVFVVkZmZCSUlJcyePVtqf8a+9+TJExw8eBDh4eH466+/cPnyZRQUFGDIkCHQ0tICADg5OSErKwuPHj2Cjo6OjEtc9knq89mzZyM0NBQeHh5o2rQpbG1tkZWVhTlz5sDU1BQFBQXYtGkTDhw4gC9fvuDixYvCa5Dc4C595s6dCzs7O2HSqIMHD2L06NFQUVGBnZ2dsJ1k/oOdO3dCTk4OI0eORO3atQEA165dQ3h4OKKiohAdHc1B23IsNTUVwcHBuHPnDlxdXQH8qzOuqKiInJwcLF++HGfPnsXnz59x9epVblOWErq6unBxcYFYLMauXbtARFiwYAH69++P/Px8BAcHw8fHB/PnzxeCt23atJFxqdl/Kzc3F8eOHYO+vr6Q/qZo0JaIYGBggFmzZqFHjx54/vx5sYFbbheUfUXr7507d8LQ0BAtW7bEgAEDMG/ePEyfPh2rVq0S+oQZGRkICQlBr169pAK3fK78AbIc7st+LjExkaytralTp060d+9eYbmfnx+JRCJat24dv7bCpF6NXLlyJfXt25fatWtHCxYsoDdv3hAR0fPnz8nV1ZXatGkjlTaBlR+SV1cyMzPJ2NiYLCws6OHDh/+4PWPFiYuLo8aNGxMRUVRUFKmpqdHGjRuJqDBNy+7du4VtJfeponUV+zVevHgh9fnYsWPUsGFDunDhAhERnTt3jipWrEiVKlWiNm3a0N27d4Xt1q9fz69BlnKxsbE0bNgwqddfiYjGjh1LysrK5OPj80Marblz51KVKlUoNDRUWJaVlUWRkZHFpjVhZVtx/YhHjx5Rr169qEaNGvT06VMikq6/Q0NDadKkSUK9wfVH6fLq1Svy8fGhBg0a0Jw5c4Tlu3fvpu7du1O7du04/UUZ8e7dO5o8eTJZWFjQsmXLhOUFBQXCtf/o0SOqUKECHT16VFbFZDJU9B7g4eFBtWvXppkzZ1JqaioREQUFBZGqqio5OjpSbGwsnThxgnr06EFNmzblul8GOHArA0UvEklj6NatWxQbGyu13cuXL6lDhw5kaWlJBw8eFJavXr2a4uPj/0xhWakwc+ZMqlq1Kq1evZpmz55NLVu2pF69elFiYiIRFQZvx44dSwYGBhQZGSnj0jJZkNxg09PTSV9fn1q0aEF37tzhvMbs3yp6v5L8/e7dOzIwMCB3d3fS0NAQgrZERDdu3CBra2u6fPlysd/Bfo3x48fTtGnTiKjw31csFtOZM2dow4YNRER09OhRqlKlCoWHh9Pbt29JU1OT+vTp80OHnK//smHfvn104sQJ4bOTkxMZGBhQSEgIpaenS20bHBwsHHd+oFJ+FT32SUlJ9PLlS8rNzSWiwuBemzZtqF69evTu3TsiKr6u4PqjZCt6z37x4oUwf0pqamqxwduIiAjq37+/kMeYlX7v37+nCRMm/BC8lfQJ9u7dS5aWlnzMy7k1a9aQlpYW3bp1i7Kzs4XlmZmZFB0dTfr6+lSrVi0yNjam7t27Cw+M+R7wZ3Hg9g+TNJSSk5OFpxlfvnwhQ0ND6tKli1Rnl6gwUbiuri516NCBtm/f/qeLy0qBXbt2kbGxsTCJxJEjR0hZWZkaNGhAHTt2pNevXxNRYSJ6Pz8/rmTLsaLBWyMjI9LT06MnT57IuFSspCoacF21ahUdOHCAsrKyiIho+vTppKamRq6ursI2OTk51Lt3b7KxseGA0G8WHR0tNJwlE0dkZ2fT69evKTMzkzp06EDz588nosI2hpmZGYlEInJ2dpZZmdmvs3XrVlqxYgUVFBTQo0ePyMjIiOzs7OjcuXPCNg4ODlS/fv1ig7dE3OEqz4rW7XPnzqX27duTuro6DR06lFauXElEhQ/8LS0tycDA4N8Gb1nJJDnGUVFRZGJiQo0aNSJdXV2aOXMmvXjxglJSUsjHx4eMjY2lJiwrrq5gpdvPgrfp6enUs2dPcnJy4gfs5Vh+fj6NGDFCqAck9XzR+j4jI4MSEhLo6dOnPBGZDHHgVgaePHlC9erVI1dXV0pKSiIiouvXr1OjRo2ob9++P4y8tbe3J1VVVRowYADfUNkPDh8+TFOmTCEiokOHDlGVKlVow4YNFB4eTpUrV6YePXrQs2fPpPbhxnfZ8rMgWXENMcmN9suXLzRo0CA+F1ixip5TqamppK+vTw0bNhRep4uLi6P+/fuToaEheXp6ko+PD3Xq1IkaN24sBBQ5ePvrfX9Nh4eHU+fOnSkuLk5Y9u7dOzIxMaE9e/YQUeGIifHjx9OTJ0/4ei/lxGIx5eXlkampKQUGBgrLo6OjqW3btjRo0CA6e/assHzUqFFkbGxMq1evFh66MCYxb9480tLSoiNHjtCtW7eoR48epK2tTQ8ePCAioqdPn5KVlRWpqqpSSkqKjEvL/q9OnjxJampqtGbNGvr69SstXLiQ5OTkhHRG7969owULFlD16tVp8eLFMi4t+52KBm/9/f2JiKhv377UrFkzoV/AwdvyKTc3l5o2bUpubm7CMsm5kJ2dTY8ePfphH27fywZnkv/DxGIxIiIi8PLlSzx9+hQLFy7E+/fvYW5ujvDwcDx8+BB+fn64dOmSsI+2tjZCQkKwYsUKqKury7D0TNaI6IdlvXv3xsyZM5Geno5ly5bB3d0d48aNQ//+/aGrq4ubN29ixYoVUvtzAvGyo2hS+aioKCxbtgyBgYG4d+8eRCLRD+eMZMIyDQ0N7Nq1S5iYiLGiJOfU9OnT4eDgAAMDA6SkpMDR0RHHjh1DkyZNsGDBAjg5OeHgwYO4c+cOGjVqhNu3b0NRURH5+fk8Wc1vIBKJpD5/+/YN3759w4IFC5CQkAAAUFVVRUZGBiIiIhAWFob+/fvj6tWrMDAw4Ou9lBOJRMjPz8eXL1+gpKQkLO/Vqxdmz56NxMREbNy4EefOnQMAhIaGwsjICJcvX0bFihVlVWxWAr179w4nT55EeHg4evbsic+fP+PcuXNYsmQJjI2NUVBQAAMDA4SGhsLe3h6ampqyLjL7D0naffv374e9vT0mTZqElJQUbN26FS4uLhg4cCAAoEaNGnB2dsa0adMwePBgWRaZ/WY6OjqYPXs2WrVqhaioKGhra+PBgwe4fv26MGnZ9+0LVvaIxeJil7du3RovXrzAs2fPAPyrrfn06VNMnToVT58+ldqe2/eyIaLiIkHst7pz5w46duwIc3NzyMvLw9jYGDNnzoSOjg5u3boFBwcH1KhRA/Xr14e8vDy2bduG+Ph41KhRQ9ZFZzJUNED3/v17iMVi1KxZU1gfHx+Pv/76Czt37oS1tTVevnyJmTNnYtCgQejXrx9XsmUQEQk3V09PT+zatQt16tSBqqoqnj9/ji1btsDS0lJqO8b+U1u2bMG0adNw5swZ1KxZEyKRCPb29rh9+zYiIiLQrVs3AIWzFysrKwv7SWYtZr/Wz67j7du3Y/PmzdDU1MS8efPQtGlT3L59G/3790eVKlVQpUoV/P3331BUVOS6oAzIyclBq1atsGzZMvTs2VPqeouJicGCBQugp6eHcePGoX379gD+1X7g419+fX/sU1JS0KFDB8TExOD27duwt7eHv78/3NzckJOTgx07dqB169YwMTER9uG6vWSSXN/fX+eDBg1C3759YWtrC0NDQ/Tu3RuBgYEQiUTYvXs3qlatik6dOvFxLUc+fPgAT09PJCcn4+DBg8KDdgUFBVkXjf1mReMIcXFxyMjIQM2aNaGnp4cbN27A2toaDg4OcHNzQ9OmTZGUlAQXFxdkZmbixIkTHEcoAfgI/GZF4+JEhIKCApiammLixIlo1qwZWrVqhYsXL8LX1xcfPnxA8+bNERkZCT09Pdy9exdxcXE4c+YMB22ZUGF6eXmhW7duaNasGaZOnYoXL14AACpXroxatWph06ZNOHPmDNzc3JCVlSUEbX/2lI2VXpJO2Pr167Fz507s2rUL58+fh42NDZ48eQIbGxucPHmy2JG3jP2TN2/ewNzcHE2bNkXVqlVRrVo1HDt2DI0bN4abmxuOHj36Q9CWiLgD+BuIxWLhek9JScGHDx+EkbPDhw/HqFGj8OXLF8ybNw/37t2DmZkZ7t+/j6NHj+LEiRNC54yDdqXTqVOnsGjRIgCAoqIisrKypN7AktTvPXv2xJw5c/D69WssXLgQd+7cAQChDcDHv3wqeuwlbcG8vDzIycnB19cXo0ePhq+vL9zc3AAUjrLav38/Xr9+LfU9XLeXLJJjKTm2GRkZUp91dHSwaNEiNGjQAHZ2dli/fj1EIhHy8vIQFRWFs2fPIj8/n49rOaKjo4PVq1cjOjqag7blCBEJcYTZs2fDzs4Oo0ePRrt27TB+/HgYGxvj4MGDOHLkCBwcHNCgQQP06tULiYmJOHr0KMcRSoo/nJqhXJHk//j06ZMwk6ckZ8imTZvIwsKCMjIyaPXq1WRubk6TJ0+m9+/fE1FhTrqCggLKyMiQTeFZiVE0j8yWLVuodu3atGXLFlq/fj1paGjQgAEDKD4+noiIAgICqHnz5lS7dm2ytrbmXJNlVNE8lWlpaTR69GjatGkTERXmOlRXV6f58+eTra0tValShS5evEhEnL+K/Wck58mMGTNIX19fWP7161ciIvr7779JJBKRkZGRMKEm1zG/T9F/2/nz51P79u1JQ0ODxo8fTwcPHhTWbd26lTp06EC2trZCzlvJseTjU3rl5OTQmDFjqGnTprRy5UpKS0ujmjVr0qlTp366z+HDh8nZ2ZmPO5M6B1auXElTp06l3NxcIiLauHEjiUQicnJyErbJyMigXr160V9//cU5sUswyXF98eIFLVy4kKysrKhu3bo0bNgw2rZtGxERvXz5ktq0aUO1atUSclzn5+eTl5cX1a5dmx4/fiyz8jPZ4/tD+bNy5UrS1tYWcuGPGTOGNDQ06MKFC0REdP/+fdq3bx/NnTuXwsPDhfzHPBFZycCpEn6zJ0+eoEePHqhQoQKWLFmCBg0aoEGDBgCATp06oWXLlvD19cWiRYsQHR0NKysruLu7Q0dHR8YlZyXNhQsXcOHCBdStWxfDhw8HANy6dQu9evVC69atsXLlStSrVw+pqal4//49jI2NIScnx09Ty5isrCyoqqoCABISEmBiYoJ79+5BRUUFubm5sLGxwdSpUzFhwgRs3boVjo6OAIDLly/DwsJClkVnJVTR16eKevHiBdq1awcbGxts3LhRWH7+/HkcPnwYt27dQlJSEu7evcuvUP0Bc+bMQVBQENauXQs1NTUsXboU+fn5mDRpknBPCA8PR2hoKLS0tLBkyRIYGRnJuNTsV3j37h38/Pxw9epVtG3bFocPH8bw4cOhrq4OsVgsjHrPzs5GUlISXF1dhWP/s+ublW30XWoEDw8P7Ny5E9OnT0efPn2gr6+PvLw8eHt7w9/fH8OHD4dYLMa7d++QkpKCW7duQVFRkc+fEkhyTO7duwc7OzuYm5tDXV0dderUwebNm5GbmwsnJycsWLAA+/btw7x585CZmYmWLVsiOzsb165dw7Fjx2BmZibrn8IY+wOICESEQYMGoU2bNpg+fToOHjwIBwcHLFu2TEiRIy8vD0VFRal9OZVKCSLTsHEZV1BQQF5eXqSqqko6OjpkZmZGAwcOpLFjx1J6ejpt3ryZHB0dhSffixYtIiMjI/Ly8uKnYEwgFovp2bNnJBKJSCQS0erVq4XlREQ3b96kGjVqkJ2dHd25c0dqXz6PypaTJ0/SsGHDKD8/nyZOnEhNmjShtLQ0YX1YWBh16NBBGKkfExND9vb2tG7dOn5ayopVdBR2eHg4ubu7U0REBD179oyIiIKCgsjIyIhGjhxJb9++pfj4eOrRowdNnz6dHj58SKqqqhQdHS2r4pcbJ0+eJBMTE7p06RIREZ0/f56UlJSoVatWZG5uLswSTkQUERFBHTp0oGnTplF2djaPtC8j3r17R+PHj6dGjRqRSCQiQ0NDMjMzIyMjIzI0NKT69etTkyZNqF27dlzfl3PZ2dlSn8PDw0lbW5uuX78uLMvPzxdGYe7du5dGjBhBDg4OtHjxYh5lVYJJ2vV37twhNTU18vDwoNTUVGH9o0ePaMSIEVStWjWhv/Do0SPy9PQkZ2dnWrx4MT158kQWRWeM/SHf9//FYjFlZ2eTlZUVXbt2jS5evEhqamoUGBhIRES5ubm0Zs0aYeQtK5l4GN5vJCcnhwkTJiArKwuJiYmoUqUKhg4dilmzZsHe3h5ZWVk4ffo02rVrB0dHR8yePRvKysoYMGAAP90u56jISAmRSAR9fX2cOXMG3bt3x9mzZ2FnZ4datWqBiNC8eXMcOXIELVq0gLGxMZo1ayZ8D59HZUt8fDxevHiB5s2b482bN7h27RoqVaokrM/NzcXVq1fx7NkzGBkZITAwEPr6+pgwYQIA8OhrJqVoPePt7Y0NGzbA1NQUoaGh6NSpE6ZPnw4XFxeoqanB29sbDRs2RKVKlVC9enUcPnwYiYmJ0NbWRvXq1WX8S8o+PT09jBw5Em3atMHRo0dhb2+PwMBAWFhYoEuXLli6dClSU1MxZswY2Nvb49GjRzh58iQAcF7TMqJGjRrw9vaGvLw8NDU10aFDByHv7bdv36CgoCA1MRGPkimfnJycYGVlBUdHRyH38YMHD9ClSxeYm5vj/v37OHv2LAIDA5GVlYU5c+Zg9OjR6NOnj9RIq4KCAm4vlEBycnJ4+vQpWrduDXd3dyxcuFDId56fnw8jIyP4+PggOTkZISEh6NmzJ4yMjLBs2TIZl5wx9qcUFBQgNzcXnz9/ho6ODuTl5VGxYkXUq1cPdnZ2+PTpEwIDAzFixAgAQHp6OqKioqCgoAArKysZl579DEd1frMaNWrAw8MDNWvWxMOHD/H06VNcv34drq6uMDU1BQCpCSbc3d2hp6cnm8KyEqHoJBJpaWkACitga2trHDx4EIcPH8bChQvx/v17YdIpMzMzPHz4EPPnz5dl0dlvNmnSJNSoUQP37t2DlZWVEDCTNNo7deqEv/76CxYWFjAzM8PTp0/h7+8PoDBIx50wVpSknrl16xaePHmCmJgYnDlzBtu3b0dKSgoWLlyIK1euYNiwYXj69Cn27NmDqKgoXL9+HfLy8ggJCYGamhpq164t419Stty/fx/nzp3D2bNnhWV169bF2LFjkZubi3Xr1mHixIlwcHCAiYkJmjRpgq9fvyI+Ph75+fkAgAoVKuDdu3fIzc2V0a9gv4OOjg5mzpwJMzMzHD9+HEuXLgUAKCkpCfcBSbuAg7blj1gshqGhIezt7QEUTkAmEolQq1Yt7NixAzNmzMDQoUNx9uxZODo6olevXpgyZQqSk5N/eD2Wz5+SSSwWY8uWLVBXV0e1atUAFB4rSaCdiGBgYAAvLy88ePAA9+/fl9qfOEMiY2Xa8ePHMXnyZDRo0ACNGzdG3759ERISAqBwgvNatWqhXr16sLe3BxHh8+fPGDFiBL59+wZXV1cZl579O5zj9g95//49lixZgsuXL8Pe3h5TpkwBADx//hz6+vqyLRwrMYqOgFu2bJkwG7iDgwN69OgBTU1NHD16FL1794azszPmzZv3Qz5kHmVTNuXl5SEvLw8BAQFIS0sT8h0vW7YMNWrUEM6dJ0+e4M6dO0hLS8OoUaOgoKDA5wT7qfDwcERGRqKgoAD79+8X8icfP34cvr6+UFVVxaRJk9ClSxdhnzt37iAoKAg7d+7E2bNnhYeQ7H8XFhaGpUuXIiMjA/Ly8ujSpQtCQ0OF9ZmZmWjVqhVGjRoFDw8PZGZmwtXVFX369MHAgQOFmX8PHz6MevXqoWnTpjL8Nex3+fDhA5YsWYKbN2+iY8eOwshbVn59n4s2ODgYb968gYeHB0QiEVauXIlDhw5h1KhR6NKlCxo0aID79+/D1dUVu3btQq1atWRYevZ/Icl5feXKFfTr1w8zZ84E8K+BHyKRCNnZ2dDT08O8efMwbtw4GZeYMfYnbNmyBXPnzsXgwYOhra0NTU1NrFu3DikpKXBxccGCBQuwd+9ezJ8/H8nJyTAwMEBeXh4KCgpw5coVKCoqcp+xBOPA7R/04cMHLF68GNeuXUPfvn3h5eUFgANtrFDRoO2GDRvg7e0NLy8vHD58GDk5OejcuTNmzJiBKlWq4OjRo+jbty/69euHgIAAaGlpybj07Hf4d5OCrFmzBnv27IGBgYEQvAWA69evo2XLlsJ2XL+wfyckJAS+vr7IzMxEdHQ0zM3NhXUnTpyAv78/srKysG7dOjRv3hwAcObMGRw7dgwjR46EiYmJrIpe5gQFBWHSpEnYvHkzmjRpgpCQEAQHByMiIgKDBw9GQUEBvnz5gjFjxiA3NxetW7fGhQsX8OXLF1y+fFkI2nKKnPLhw4cP8PDwQIUKFRAUFMQpMcq576/9iRMn4vz58xgxYgTGjRsHFRUVqclN8/Ly0KdPHwBATEwMnz+ljKRPef36dfTv3x+enp4A/tXmi42Nxfjx47Flyxbh3s0YK7skbcitW7fCzs5OeIviyZMnWLx4MWJiYjB//nyMHTsWb9++xc6dOyEWi6Gjo4Phw4dDXl6eU+qVcBy4/cMkN9rbt2+jc+fO/Go7+8GNGzcQFhaGnj17omfPngAKX204ffo0rK2t4enpiSpVquDAgQNYuXIlzp49yx31MqhoJ2z//v1ISEiAtrY2GjdujDZt2gAoDN7u378fOjo68PDwwKxZs5CXl4czZ87IsuishPpZUG/v3r2YN28ezMzM4O7uLpUn+/Dhwzh58iRWrVoltW9ubq4wkz373x04cAC2trY4ePAgbGxsABQ+hLGwsIC/vz+mT58ubHv8+HEEBQXh5cuX0NXVxf79+3n293Lq8+fP0NTUlMpty8qfosfewcEBioqKCAkJweTJk3Hp0iUMGDAA48ePh7q6OjIzM3H48GEEBwfjy5cvuHbtGtcfpdTPgrcAMG3aNMTHx2Pnzp2oUqWKDEvJGPvdvm9DSgKwkgc5z549g7OzMzIyMnDo0CHo6ur+8B080Kfk45D6H6ajo4PZs2dj1qxZuHTpEj59+sSjJZng0KFDmDlzJrKzszF8+HBh+cKFCyESiXD69GnIyclh+vTp6NevH/r16wfg34/MZKUPEQnH08PDAzt27ICxsTHy8vLw7ds3uLu7w87ODpMnT4aysjJ27NiBPn36oF69ejh9+rSMS89KoqJ1RHR0NFJTU/Hp0yeMHz8eAwYMQEFBAfz9/bF69WpMnTpVeMXexsZGCCQW/Q4O2v46ubm5OHbsGPT19fHixQthuZ+fH4DCh3menp7Q0tKCs7Mzunbtiq5duyIrKwsqKioQiUQ8SqKckgRkuA1QfhUN2iYkJCAhIQGLFy+GSCTCqlWrMGnSJOzbtw8ikQgTJkxAdnY23r17B2NjY6xbtw4KCgpcf5RSkj7l4sWLERUVBQDw9PTEokWLEBYWhvPnz3PQlrEyrmgbMjExEQCkgraSvNezZs1Cjx498Pz582IDtxy0Lfl4xK2MfPz4EQCgra0t45KwkiQzMxNTpkzB3r174erqigULFggBErFYDB8fH+zYsQPTp0/HuHHjuLNWxq1fvx7Lly/Hzp070aZNG6xduxYzZsxAnTp14OPjI0xA8urVK6SkpMDU1BRycnLcCWM/5eHhgT179kBPTw+fP39Gamoqdu7cCUtLS2zfvh2rV69Gs2bN4ObmJpU2gf1e79+/h6+vL65evYrBgwcjNjYWjx49gru7OwwMDBAREYG4uDi8fPkS6urqCAgIQOfOnQFw0I4xBmzevBmHDx9GlSpVsGnTJuTn5wuT1k2aNAnXr1/H4MGDMW7cOCgqKgptBB5lVfpJRt7evXsXubm5iIuLQ2xsLKdIYKyckLQhr1y5IjX6vmje68ePH6NZs2Y4cOAAunXrJuMSs/8G9+xlhAO27PvO9rdv36Cmpoa1a9dCTk4Op06dQs2aNeHm5gYlJSXIyclh/vz5qF27NpycnACAO+tlTNFzIisrC7dv38bUqVPRpk0bHD58GHPnzsWMGTPw4MEDeHt7Q0VFBba2tqhTpw7q1KkDAMLMwox9b8uWLQgPD8exY8fQrFkzREdHo0+fPvjy5QsAYPjw4SAieHl5QV9fnwO3f1CNGjUwc+ZMLF68GGvWrEF6ejri4uJQs2ZNAECbNm0gJyeHbdu24fnz57C2thb25fsAY+Vbamoqbty4gStXrqBx48aQk5ODkpKSkNJm7dq1mDp1KtauXSvkMwQKR+ty0Lb0k4y89fLywoULF3D58mWeNJSxcqRoG7Lo6Puig3nu3buHFi1a8NwUpRiPuGVMBooG6IKCgnDz5k18+PABvXv3xpgxY5CTk4Nx48YhISEBw4YNE4K3RfEoibKl6OuOjx49QoMGDfDq1Svk5+fj27dv6NWrFyZNmoTJkydjx44dGDVqFCpWrIjIyEj06NFDxqVnJc3NmzfRokULqWU+Pj7Izc3FsmXLsGvXLowZMwa+vr5wc3NDWloaNDQ0AABHjx7FX3/9xfWLDHz8+BFLlixBbGwshgwZAnd3dwCFD/b4HsAYA4ofZf/o0SOEhIRg/fr1WLx4sZAXW1J3FBQUYM2aNZg8eTLXG2VUcnIyxGIxDw5irJz6Wd7rjIwMDBkyBDVq1EBISAjnwy+leJgGYzIgaXB7enpi4cKFUFNTg5WVFdzc3IRZotevXw8TExPs2rUL/v7+yMvLk/oObniXLZKbaFBQEMaMGQOxWIw6depAX18fly5dQo0aNTB69GgAQKVKldC7d2/4+vqia9eusiw2K4E2btyIli1b4siRI1LLExISkJmZiQsXLsDFxQXLli2Dm5sbiAhr1qzB4sWLAQDdu3eHvLw8CgoKZFH8ck1bWxuzZs1CmzZtsHfvXvj6+gKAEHgpiu8BjJU/RYO2jx8/xtOnT1FQUIAGDRpg3LhxGD9+PIKDg7Fu3ToAEEbeysvLY9q0aVy3l2HVqlXjoC1j5Zhk9H3Lli0RFRWF5cuXAwBGjBiBt2/fIjAwECKRCDxus3TiwC1jMnL+/Hns3r0be/fuxcqVK2FlZQWRSIRGjRoBAFRUVLBu3TpUq1YNiYmJ/Pp7GTRkyBBs27ZNalliYiIMDAwgJycHsVgMAMKMoNevX0dubi6Cg4NhZGQEV1dX7oSxH4wdOxYuLi4YOnSoVPB25MiRuHjxIjp16oTly5dj7NixAApza1+/fh3p6elS38OBQdmQNLxbtWqFQ4cOwdvbGwAfD8bYvx78e3l5oUOHDvjrr7/Qpk0bJCUlQV9fH+PGjYONjQ0CAgKwYcMGAD9OJsl1CWOMlU1F25BRUVHQ1tbGgwcPcP36dWHSMh5xWzpx4JYxGUlNTYW+vj5at26NvXv3olu3btiwYQMcHBzw5csXXLt2DaqqqoiMjOQnZGVUhQoVMGbMGOzbt08I0n758gXq6uoA/tVBMzU1RevWrTFgwAA0atQIz58/x6JFi4RzgjthDABWrFiB58+fAygcuT1kyBAMHjwY0dHRAIBmzZqhQYMGMDExgbKyMr59+4b4+HgMGTIE79+/F0bcMtnT0dGBl5cXDAwMkJSUxHU/Y+WcpI0AAEeOHEF4eDiCgoKwdOlSKCkpwdzcHA8fPoSBgQHGjh0LGxsbeHt7Y+/evTIsNWOMsT9N0oY0NDREixYtcP/+fSgqKiI/P5/7jKUY57hlTEaOHTsGT09PjB8/Hu7u7li2bJkwAu7QoUPYuHEjgoKChEmneObwsuPjx4/C62xTpkxBYGAgIiIiMHDgQDg6OkJDQwOrV6+WOuYJCQl48uQJkpOT4ejoCHl5eSHhPGPPnj1D/fr1MXjwYCxbtgx169YFAIwZMwbbt29HZGQkbGxsEB8fjwULFuDKlSvIyMhA3bp1UalSJZw8eRKKioqcN7WE+fz5MzQ1NSEnJyeVB5sxVj6FhYUBKJzAdPz48QCApKQkDB8+HA8fPsSJEydgbGyMR48e4eTJk3Bzc+M6nTHGyqHU1FRoaGhITVLGSi8+eoz9ZkUryqIdbxMTE2hra2PixInw8vISgrZfv37F5s2boaWlhdq1awvfw0HbssHe3h6JiYnYunUr9PX1sXr1ahAR7O3tUbVqVaiqqiI7Oxvv3r3Dhw8foKKiAi0tLXz8+BF9+/YVvqegoIBvwAxAYb1iYGCA69evw9raGmKxGH5+fqhbty6Cg4MBFKbl2LlzJ/r06YOAgACkpqbi9u3bMDAwgKmpKTfqSqgqVaoA4Ad3jDEgJSUFCxYswMuXLzFnzhwAhfV/9erVsX37dtjb26N79+6Ijo5G48aN0aBBAwA8kSFjjJVHlStXBlDYhuT2fenHI24Z+03evHkDXV1dobMdGBiIx48fQ1lZGdOnT0fVqlWxc+dOLFmyBPXr18fIkSPx7ds3bNmyBe/evcOtW7egoKDAHfYyJi4uDtbW1rC2tsaKFStgYGAAAJg4cSKCgoKgrq4OJSUlaGlp4dWrV1BVVUWFChWgo6ODS5cu8Yg7VixJx/zmzZto164dbGxshOAt8K+Rt7t27ULv3r1/2J/rGcYYK7kkdXRcXBwmTZqEDx8+4NKlS6hSpYowKCA5ORldu3aFnp4eoqKiZF1kxhhjjP0iHLhl7DdwcXFBbGws9u3bh4YNG2LBggXw8/NDr169EBMTg/r162P9+vVo27YtIiIicODAAfz9998wNzeHjo4Otm/fzq8tl0GSEY0PHjxA69atYW1tjVWrVgnB23nz5mHBggXw9/fHiBEjkJubK7wiLXkIwK9Ls5+R1Bc3btxA+/btfwjeurq6IjIyElu2bIGdnZ2MS8sYY+w/sWTJEuTm5mL27NlQUlJCfHw8hg4dCjk5OZw/fx6VKlUS2gZfvnxBpUqV+EEcY4wxVoZw4Jax3+D9+/do1aoV6tWrhxUrVsDX1xceHh5o1aoVvn37BktLS+Tl5WHDhg2wtLQEALx8+RI6OjpQVlaGSCTi15bLqO+Dtx06dMDKlSuF4O20adMQHByM8PBw2NraSu3LoyJZUf/ufJCkTfg+eDto0CB8/vwZJ0+e/JNFZYwx9l/y9/eHp6cnfH19MXnyZKngrby8PM6fPw91dXWpB7vcXmCMMcbKDg7cMvaLSUa9vX//Hs2bN4euri7U1NSwbds2IWdtVlYWOnbsiPz8fKxcuRJWVlZSQVoeVVm2/KwDdf/+fbRt2xYdO3b8IXi7evVqnD59Gh06dPjDpWWlQdFzKjw8HImJifj06RMmTZoEHR0dqKioCMHbPn36wNfXVwjecoeeMcZKpp/VzwEBAZgwYQKWLl2KqVOnCsFbe3t7fPz4EU+fPoWKiooMSswYY4yx3417boz9Qnfv3kV0dDTOnDmDGjVq4O7du8jKysKFCxfw/PlzAIVBWVVVVZw9exbKysoYOXIk4uLipL6Hg7ZlR9FO2NWrV3Ho0CHcv38f79+/R+PGjREbG4szZ85g2rRpwjmycuVKrFq1ClZWVrIsOivBJOfUzJkzMWPGDMTHx+PcuXPo06cPoqKikJaWhpYtW+LcuXM4cuQIXFxc8OHDB2FfsVgsy+IzxhgrhqRuT0hIkFo+btw4rF27FrNmzcKqVauQm5uLRo0aISwsDF26dIGysrIsissYY4yxP4BH3DL2i2zfvh3Lly9HnTp10KhRIyxcuBDy8vJISUlB8+bNUbt2bYSEhMDExETYJysrC5MnT0ZQUBDnsi2Dio6c9vDwwK5du5Cbmws1NTXo6upi5cqVMDc3x71799CuXTt07NgRvr6+MDIyEr6DU2awnwkMDMTSpUtx8OBBmJqa4syZM+jcuTMaNmwIDw8P2NraQl1dHbGxsZgzZw5OnjzJI20ZY6wEys3NFYKvp0+fRpcuXRAREYHhw4dLbefv74/Zs2dj1apVGD16NCpWrCis43kRGGOMsbKJA7eM/QLh4eFwc3PDli1b0L17d2hqagL4V9Dt48ePaNGiBfT19REYGCgVvJXgBnfZUrQTFhISglmzZmH//v1o2LAhLl26hK1bt+L+/fvYtWsXzMzMkJCQgMaNG2PGjBnw9fWVcelZSff161esWbMGGhoaGDt2LPbv3w8nJyf4+vriyJEjuH79OpYuXYo+ffqgcuXKwn6cJoExxkqW48eP4+7du7C2tkarVq0AADNmzMCGDRuwadMmDBs2TNj24cOHsLCwQEZGBsLDw2Fvby+rYjPGGGPsD+HALWP/o/j4eAwePBhTpkyBs7OzsFwy2rJo8Nbc3ByGhoZYvXo1mjVrJsNSs99p27ZtSEpKwtSpU1FQUIAJEyaAiBAUFCRsc+PGDXh7e6NmzZpYv349KlasiJcvX6JWrVo8wpb9oLi817dv34auri7S09PRt29fjBkzBlOmTEFcXBxatWqFatWqISgoCD179uS82YwxVgKFhoZizpw56NOnDxwdHdGyZUthnaenJ1atWoWwsDAhePvixQts2rQJpqam6N+/P7cXGGOMsXKA7/aM/Y/evn2L7OxstG/fXio4Ivl/yShabW1tXLt2DbVq1UJwcDA2bNggszKz34OIUFBQgBUrVsDV1RUikUjoVD169Egq7YG5uTnatm2Lbdu2CflG9fT0AHB6BCYtLy8PioqKAApH5hMRFBQUYGZmBqAwd7KysjL69OkDAEhJSYGDgwOqVq2Kbt26AeC82YwxVtJERkZiwoQJCA0NRffu3VGpUiWp9b6+vigoKMCIESPw5MkTNGrUCOHh4SAiLF68GAC3FxhjjLHygO/0jP2Pbt68iYyMDCEv6fcj20QiER48eIAPHz6gY8eOSE5OhoaGhqyKy34jyQjrL1++oEKFCsLy5s2b49y5czh27JjUJCKmpqY4dOgQsrKyoKqqKmzPnTAGAFeuXEHr1q2FoK2/vz/OnTuHSpUqYcCAAbC1tQUAJCUlISUlBS9evICCggJWr16NBg0aCB17TsPCGGMlS3JyMoKCguDn54dBgwYJyzMzM5GQkICCggK0adMGy5cvR/Xq1bFu3TqoqamhevXqOHnypLA9txcYY4yxso8T3TH2PzI0NERWVhaOHz8OoPiRbeHh4di5cyfy8vJQpUoVyMvLo6Cg4E8Xlf0h6urqqF69uvB5zJgxqFu3Ljw8PLB//368fv0aycnJWLduHWrUqIFq1arJsLSsJNq8eTPatm2Lffv2AQAWLVoEPz8/6OnpISMjAw4ODli/fj0AYPTo0ahZsyaGDh0KS0tLvHnzBkuWLBG+i4O2jDFW8iQlJaFmzZrC540bN8LR0RGtW7fGgAED0K5dOxARPDw8cPHiRZw6dQpnzpyBoqIi8vPzZVhyxhhjjP1J/JiWsf9RixYtoKSkhODgYBgbG6NOnToA/jXyNj09HU+ePIG1tbUwcg7gYEpZcurUKVy+fBne3t5QVFREVlYW1NXVAfxrkrKjR4+ib9++WLx4MRITE2FoaAgAuHbtGkQiEecgZVI6dOiAiRMnwtnZGfn5+ahQoQL27NmDDh06ICUlBUFBQZg0aRLy8/MxZcoUXLp0CYcOHYKioiK6d+8OeXl5foWWMcZKsPT0dBw5cgSVKlVCQEAAHj9+DCsrKxw7dgxpaWnw9PTEwoULMXfuXNSpU0doI4jFYq7bGWOMsXKE7/qM/Y/09fURGBiIUaNGQVlZGe7u7jAzM4NIJMK7d+/g7OyM9PR0jB07VtZFZb9Bbm4udu/ejStXrkBVVRVOTk7Izc1FXl4eAAhpEQDg4MGDePz4MeLj46GgoICePXtygI0Vy8DAAHPnzoVYLIarqyvU1dURFRUFAKhatSomTJgAAJg2bRpEIhEmT56Mfv36CfsXFBTwOcUYYyVUtWrVEBYWBjs7O5w+fRrq6urCxLVaWlpITU1FpUqVhBz4RR/sysnxC5OMMcZYecK9OsZ+gYEDByIzMxPjxo3D+fPn0bhxY4jFYqSlpUEsFiM2NhYKCgqca7IMUlZWho+PD/z8/LB79268efMGKioquHDhAu7cuQOxWAxlZWXk5+dDJBLh9evXGDVqFJo0aQKAA2xM2uXLl3H//n1kZGRgwoQJmD59OlRUVLBixQrEx8fD3NwcAKChoYEJEyZATk4OU6dORa1atWBnZyd8D9czjDFWsnXu3BlPnjxBZmYm6tWr98N6dXV16OrqyqBkjDHGGCtJREREsi4EY2XFnTt3sGXLFjx69Ai1a9eGmZkZ3NzceFRlOfD+/XssXrwYZ8+eRUJCAgwMDKCuro6srCyIxWKIRCJUqFABlStXxqlTp/hcYD8ICwuDn58fWrdujbZt28LZ2RkAkJiYCD8/P4SGhiI8PBwDBgwQ9klNTcXhw4cxbNgwPqcYY6wMSE5OhqOjI1JSUhAbG8sP4hhjjLFyjgO3jP0BPNK2fPjw4QOWLl2KmzdvokOHDli0aBEA4Nu3b1BQUICcnJyQy5bPCVbUzp074ezsjK1bt6JHjx5QVVWVWv/q1SssX74cW7duxZYtW6RG10rwwyHGGCu9UlJSsGnTJly8eBFJSUmIjY2FoqIitxcYY4yxco6TJDH2ixX3LIQb3OWDjo4OZs6cCTMzMxw/fhxLly4FACgpKaGgoAAAhInI+JxgEm/evMGqVavg4+ODAQMGCEHbonVJnTp1MH36dDg4OMDFxQURERE/fA8HbRljrPR68+YNYmNjYWhoiEuXLkFRURH5+fncXmCMMcbKOR5xyxhjv9iHDx+wZMkS3Lx5Ex07dhRG3jJWnBs3bqBfv37Yv38/WrVq9cP6oqOtPn/+jMmTJ+Pjx484fvz4ny4qY4yx3+jLly/Q0NDgN3MYY4wxJuARt4wx9ovp6OjAy8sLBgYGSEpKKnYUNmMS79+/R2ZmJqpWrQrgx1H78vLyePPmDfz8/KCpqQk/Pz8cPXpUFkVljDH2G2lqavKbOYwxxhiTwu9VMsbYb6Cjo4PVq1dLdcJEIpGsi8VKoGrVqiE9PR3Xrl2Dvr5+sefKoUOH8OrVK8jJyaFGjRoAALFYDDk5fv7KGGNlDbcXGGOMMSbBPT7GGPtNqlSpAjk5OYjFYu6EsZ9q3bo1evXqhfHjx+PWrVuQk5NDXl6esD43NxenTp2ClpaW1H4ctGWMMcYYY4yxso17fYwx9ptxgI1J5OfnF7vc1dUVOjo66NmzJ86dOwd5eXkQEe7du4d+/frh5cuXmDNnzh8uLWOMMcYYY4wxWeJUCYwxxthvNmfOHMyfPx8KCgrIz8+HgkLh7VeSFqF3797Izc3FypUr0bFjR5iZmSEzMxPq6upQUVHBlStXoKCgwJPVMMYYY4wxxlg5IiKeNYcxxhj7be7cuYOuXbvCxMQEp0+fhpycnFTwtmiu2vfv3+PkyZO4d+8eFBUV0bJlS9jY2EBeXl5qH8YYY4wxxhhjZR8HbhljjLHfKC8vD6dPn4aHhwc0NTVx5syZH4K3/zR5HY+0ZYwxxhhjjLHyhwO3jDHG2G8iCcjm5+fj1KlTcHd3R5UqVYoN3ha3H2OMMcYYY4yx8otnzGGMMcZ+E5FIBCKCgoICOnXqBH9/f3z+/BkdO3aEWCwWct4Wtx9jjDHGGGOMsfKNA7eMMcbYLyYWi4W/JUFYRUVFdOzYEf7+/vj06ZNU8LagoEBWRWWMMcYYY4wxVkJxqgTGGGPsFyo62diOHTuQkJAAeXl52NjYwNzcHLm5uThz5gzc3d1RtWpVYcKyovsxxhhjjDHGGGMcuGWMMcZ+A09PT0RGRqJRo0ZQUVHBsWPHEBUVhS5duuDbt284ffo0PD09kZ+fj/v373N6BMYYY4wxxhhjUnhoD2OMMfaLBQcHY+fOndi3bx9iYmJgZ2eHrKws9OjRA1FRUVBSUkKnTp0wf/58NG/eXCq1AmOMMcYYY4wxBvCIW8YYY+x/VjTNQUZGBhYtWgQjIyM4OTkhOjoaw4cPx7x585CQkIDw8HAcOnQI3bp1Q15eHhQVFQEABQUFkJeXl+XPYIwxxhhjjDFWgnDgljHGGPtFPnz4AB0dHdy5cweVKlVCQUEBevXqhYkTJ2LixImIjo5Gnz59AACnT59Ghw4dZFtgxhhjjDHGGGMlFqdKYIwxxn6ByMhImJiYICcnB6amptDX10d8fDy0tLQwfPhwAICmpibGjBmDoKAgWFlZybjEjDHGGGOMMcZKMg7cMsYYY79Ay5Ytoaenh6ioKGFZTk4Orl69ipcvXyIlJQV+fn7Iy8uDi4sLFBQUkJ+fL8MSM8YYY4wxxhgryThVAmOMMfZ/REQQiURSy7KzszFw4ECoqKhgz549AIAvX75gzJgx2Lt3LwwNDaGsrIxbt25BUVGx2O9gjDHGGGOMMcYkOHDLGGOM/ZckOW0lbt++jY4dOyI0NBT9+/cHAGRmZuLChQvIyclBnz59IC8vj/z8fCgoKMiq2IwxxhhjjDHGSgEO3DLGGGP/hYCAAGzevBktW7bEggULoKamBhUVFQwcOBD16tWDn58fxGIx5OSksxIVFBRAXl5eRqVmjDHGGGOMMVZacI5bxhhj7D/w/XPOrl27YuDAgbhz5w4sLCwwbdo0xMXFoXfv3ggODkZiYiLk5OR+2I+DtowxxhhjjDHG/hMcuGWMMcb+gVgsFvLRFhQUICMjA4aGhpg5cyauXLkCd3d3fP36Fa1atcKlS5eQnp6OgIAA5Ofncx5bxhhjjDHGGGP/FU6VwBhjjP0bRdMd+Pv74/Lly0hISMCQIUPQsWNHWFtbC9uePXsWu3btwrFjx6CoqIj4+HgoKCjwRGSMMcYYY4wxxv7POHDLGGOM/Qe8vLwQHByMiRMnIjMzE0eOHEHdunXh7OwMOzs7Ybu8vDykpKTAwsICbm5u8PLykmGpGWOMMcYYY4yVVjylNWOMMfYPEhISsH//fuzatQudO3cGAAwYMAD+/v4IDQ2Fqakp9PX1IRKJIC8vjxo1aqBPnz549eqVjEvOGGOMMcYYY6y04hy3jDHG2D9QUlJCWlqa1ERjFhYWmDFjBmJjY3H//n0hFYIkrUJSUhKePn2KvLy8HyYoY4wxxhhjjDHG/gkHbhljjLEi7t+/j3PnzuHs2bPCsm/fvkFOTg4vX74EAOTn5wMoDN4aGRnh1q1bUt/x+PFjvHv3Dr6+vlBUVOT8towxxhhjjDHG/s84VQJjjDH2/4WFhWHp0qXIyMiAvLw8unTpgtDQUJiYmGD06NGYOHEi6tWrJ6RLyMjIQE5ODnR1daW+R09PD0eOHIGGhoYsfgZjjDHGGGOMsTKAJydjjDHGAAQFBWHSpEnYvHkzmjRpgpCQEAQHB2Pr1q0YOnQocnJyMGXKFISEhGD8+PFQU1PDjRs38OHDB9y6dQsKCvwslDHGGGOMMcbYr8O9TMYYY+XegQMHMHbsWBw8eBA2NjYAAAcHBwQEBODt27cAgAoVKiAwMBCNGjVCTEwMcnNzhZG1CgoKKCgogLy8vCx/BmOMMcYYY4yxMoQDt4wxxsq13NxcHDt2DPr6+njx4oWw3M/PDwBw8+ZNeHh4oFq1anBycsLEiRMxceJEiMViYSKy/Px8HnHLGGOMMcYYY+yX4lQJjDHGyr3379/D19cXV69exeDBgxEbG4tHjx7B3d0dBgYGiIiIQFxcHF6+fAl1dXUEBAQIeW6JiCcfY4wxxhhjjDH2y3HgljHGGAPw4cMHLF68GNHR0UhPT0dcXBxq1qwJAMLo2m3btuH58+fw8vLiEbaMMcYYY4wxxn4rDtwyxhhj/9/Hjx+xZMkSxMbGYsiQIXB3dwcAfPv2DUpKSlLbck5bxhhjjDHGGGO/EwduGWOMsSIkI2+vX7+O/v37w9PTEwAHahljjDHGGGOM/VkcuGWMMca+8+HDByxZsgQ3b95Ex44dsWjRIlkXiTHGGGOMMcZYOSMn6wIwxhhjJY2Ojg68vLxgYGCApKQk8DNOxhhjjDHGGGN/Go+4ZYwxxn7i8+fP0NTUhJycHIgIIpFI1kVijDHGGGOMMVZOcOCWMcYY+wdisRhycvySCmOMMcYYY4yxP4cDt4wxxhhjjDHGGGOMMVbC8PAhxhhjjDHGGGOMMcYYK2E4cMsYY4wxxhhjjDHGGGMlDAduGWOMMcYYY4wxxhhjrIThwC1jjDHGGGOMMcYYY4yVMBy4ZYwxxhhjjDHGGGOMsRKGA7eMMcYYY4wxxhhjjDFWwnDgljHGGGOMMcYYY4wxxkoYDtwyxhhjjLEyTyQS/dv/zZs3T9ZFZIwxxhhjTIqCrAvAGGOMMcbY7/b+/Xvh7127dmHu3Ll49OiRsExNTU0WxWKMMcYYY+yneMQtY4wxxhgr83R0dIT/aWhoQCQSSS2LjIxEw4YNUaFCBRgbGyMgIEBqf09PTxgZGUFFRQX6+vqYM2cO8vLyhPXz5s2DqakptmzZgjp16kBNTQ3jxo1DQUEB/Pz8oKOjg+rVq2Px4sXCPkSEefPmoU6dOlBWVoauri4mTZr0x/5NGGOMMcZYycYjbhljjDHGWLm2fft2zJ07F+vXr4eZmRlu374NFxcXqKqqwsHBAQCgrq6OsLAw6Orq4t69e3BxcYG6ujo8PDyE73n27Bn+/vtvHD16FM+ePcOAAQPw/PlzGBkZ4dy5c7h06RJGjx6NLl26wMLCAvv27cOqVasQGRmJRo0a4cOHD7h7966s/hkYY4wxxlgJw4FbxhhjjDFWrvn4+GDFihWwtbUFANSrVw8JCQkICgoSArfe3t7C9np6enB3d0dkZKRU4FYsFmPLli1QV1eHiYkJOnbsiEePHiEmJgZycnJo0KABfH19cebMGVhYWODVq1fQ0dFBly5doKioiDp16qBVq1Z/9sczxhhjjLESiwO3jDHGGGOs3MrKysKzZ8/g5OQEFxcXYXl+fj40NDSEz7t27cLatWvx7NkzZGZmIj8/H5UqVZL6Lj09PairqwuftbW1IS8vDzk5OallSUlJAICBAwdi9erV0NfXR/fu3dGzZ0/Y2NhAQYGb6IwxxhhjjHPcMsYYY4yxciwzMxMAEBISgjt37gj/u3//Pq5cuQIAuHz5MoYPH46ePXsiOjoat2/fxuzZs/Ht2zep71JUVJT6LBKJil0mFosBALVr18ajR48QEBCAihUrYty4cWjfvr1U7lzGGGOMMVZ+8eN8xhhjjDFWbmlra0NXVxfPnz/H8OHDi93m0qVLqFu3LmbPni0sS0xM/CX//YoVK8LGxgY2NjYYP348jI2Nce/ePTRv3vyXfD9jjDHGGCu9OHDLGGOMMcbKtfnz52PSpEnQ0NBA9+7dkZubixs3biA1NRXTpk1D/fr18erVK0RGRqJly5Y4cuQIoqKi/uf/blhYGAoKCmBhYQEVFRVs27YNFStWRN26dX/Br2KMMcYYY6Udp0pgjDHGGGPlmrOzMzZt2oTQ0FA0adIE1tbWCAsLQ7169QAAffr0wdSpUzFhwgSYmpri0qVLmDNnzv/839XU1ERISAgsLS3RtGlTnDx5EocPH4aWltb//N2MMcYYY6z0ExERyboQjDHGGGOMMcYYY4wxxv6FR9wyxhhjjDHGGGOMMcZYCcOBW8YYY4wxxhhjjDHGGCthOHDLGGOMMcYYY4wxxhhjJQwHbhljjDHGGGOMMcYYY6yE4cAtY4wxxhhjjDHGGGOMlTAcuGWMMcYYY4wxxhhjjLEShgO3jDHGGGOMMcYYY4wxVsJw4JYxxhhjjDHGGGOMMcZKGA7cMsYYY4wxxhhjjDHGWAnDgVvGGGOMMcYYY4wxxhgrYThwyxhjjDHGGGOMMcYYYyUMB24ZY4wxxhhjjDHGGGOshPl/wwUJLSVjTu4AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["#Toss Decision vs Match Winner (Heatmap)\n","plt.figure(figsize=(12, 6))\n","sns.heatmap(toss_decision_result, annot=True, fmt='d', cmap=\"YlGnBu\")\n","plt.title(\"🧠 Toss Decision vs Match Winner\")\n","plt.ylabel(\"Toss Decision\")\n","plt.xlabel(\"Winner\")\n","plt.tight_layout()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":700},"id":"bkGLodnKhDRs","executionInfo":{"status":"ok","timestamp":1744090629506,"user_tz":-330,"elapsed":2170,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"32f7d1a5-ba41-4662-f285-c136d440e3fb"},"execution_count":6,"outputs":[{"output_type":"stream","name":"stderr","text":[":7: UserWarning: Glyph 129504 (\\N{BRAIN}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 129504 (\\N{BRAIN}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABCgAAAJOCAYAAAB1FTaBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYU+ffBvA7YYS9t8gQB6KiFheK2ipq3VbqrHXXtlqr4qTWbUV9666jWsVRbR111FpX3QP33ooIiDKUJRvCef/gZzRlxiAnofen17ku85yTnDvhNDn55nmeIxEEQQARERERERERkYikYgcgIiIiIiIiImKBgoiIiIiIiIhExwIFEREREREREYmOBQoiIiIiIiIiEh0LFEREREREREQkOhYoiIiIiIiIiEh0LFAQERERERERkehYoCAiIiIiIiIi0bFAQURERERERESiY4GCiIioGAMHDoSbm5tK9zl+/DgkEgmOHz/+XjJR0dzc3NCpUydR9z9w4EDR9k9ERKTNWKAgIvqP+vDDDyGRSEpcpk+fLmpONzc3RRapVAoLCwvUqVMHw4YNw/nz50XN9l/0+u/h7+9f6Po1a9Yo/l6XLl1S+fHPnj2L6dOnIykpSc2kqpHL5TAzM0PXrl0LrFu0aBEkEgkGDBhQYN3UqVMhkUjw4MGD8ohJRERUoemKHYCIiN7d7du3Ub9+fejr6xe6Pjs7G3fv3oWHh0eBdZMnT8bQoUMVty9evIilS5fiu+++Q82aNRXt3t7eZR9cRfXq1cPYsWMBAK9evcLdu3exfft2rFmzBmPGjMHChQvf277XrFmDvLw8le7TokULZGRkFPl30XYGBgY4duwYYmJi4ODgoLRu8+bNMDAwQGZm5js99tmzZzFjxgwMHDgQFhYWZZC2dHR0dNCkSROcPXu2wLozZ85AV1cXZ86cKXSdnZ0dqlevDgC4f/8+pFL+/kNERPQuWKAgItJigiCgUaNGOH36dKHrmzRpAkEQCl3Xpk0bpdsGBgZYunQp2rRpgw8//LCso6qlUqVK6Nevn1LbvHnz0LdvXyxatAjVqlXD119//V72raenp/J9pFIpDAwM3kMazdCsWTNcvHgRW7duxahRoxTtT58+xalTp/DJJ5/gjz/+EDHhu/Hz88Phw4dx9+5dpSLdmTNn0LNnT2zZskWpKJObm4vz58+jbdu2im1lMlm551ZFbm4u8vLyKmzxjIiItBtL/EREVKwVK1agVq1akMlkcHJywogRIwp0v3/48CECAgLg4OAAAwMDODs7o3fv3khOTlZsc/jwYfj5+cHCwgImJiaoUaMGvvvuu3fOZWhoiE2bNsHKygo//PCDUiEmLy8PixcvRq1atWBgYAB7e3t8+eWXSExMLPA4+/fvR8uWLWFqagozMzM0bNgQW7ZsUawvbA6K33//HT4+Por71KlTB0uWLFGsL2oOiu3bt8PHxweGhoawsbFBv379EB0drbTNwIEDYWJigujoaHTr1g0mJiawtbXFuHHjIJfLi31NOnXqhCpVqhS6ztfXFw0aNFDcVufvYWBggO7duyu9TgDw22+/wdLSEu3atStwnxs3bmDgwIGoUqUKDAwM4ODggMGDB+Ply5eKbaZPn47x48cDANzd3RVDRZ48eaLY5tdff0WjRo1gZGQES0tLtGjRAocOHSqwv9OnT6NRo0YwMDBAlSpVsHHjxhKfl5+fHwAo9ZR4/PgxYmJi8M0338DAwEBp3bVr15CWlqa4H1BwDor169dDIpHgzJkzCAwMhK2tLYyNjfHJJ58gPj5eaf+v588oTfakpCSMHj0alStXhkwmQ9WqVTFv3jyl3j5PnjyBRCLBjz/+iMWLF8PDwwMymQx37twp8bUgIiISAwsURERUpOnTp2PEiBFwcnLCggULEBAQgJ9//hlt27ZFTk4OgPxhJO3atcO5c+cwcuRILF++HMOGDcPjx48VhYzbt2+jU6dOyMrKwsyZM7FgwQJ06dKl0C7zqjAxMcEnn3yC6OhopS9dX375JcaPH49mzZphyZIlGDRoEDZv3ox27dopcgP5Xx47duyIhIQEBAUFYe7cuahXrx4OHDhQ5D4PHz6MPn36wNLSEvPmzcPcuXPx4Ycflvhc1q9fj549e0JHRwfBwcH44osvsHPnTvj5+RUo+MjlcrRr1w7W1tb48ccf0bJlSyxYsACrV68udh+9evVCeHg4Ll68qNQeERGBc+fOoXfv3gDK5u/Rt29fXLhwAWFhYYq2LVu24NNPPy2018nhw4fx+PFjDBo0CMuWLUPv3r3x+++/o0OHDoriUvfu3dGnTx8A+fM+bNq0CZs2bYKtrS0AYMaMGfj888+hp6eHmTNnYsaMGahcuTKOHj2qtK9Hjx7h008/RZs2bbBgwQJYWlpi4MCBuH37drHPqUmTJtDV1VXqkXTmzBkYGxujYcOGaNCggdJr9PrfbxcoijJy5Ehcv34d06ZNw9dff429e/fim2++KbBdabKnp6ejZcuW+PXXX9G/f38sXboUzZo1Q1BQEAIDAws8ZkhICJYtW4Zhw4ZhwYIFsLKyKjEvERGRKAQiItJaN2/eFJo1a1bk+saNGwsPHz4s1WNt375dACAcO3ZMEARBiIuLE/T19YW2bdsKcrlcsd1PP/0kABDWrVsnCIIgXL16VQAgbN++vcjHXrRokQBAiI+PL1WWt7m6ugodO3Ys8bH37NkjCIIgnDp1SgAgbN68WWm7AwcOKLUnJSUJpqamQuPGjYWMjAylbfPy8hT/HjBggODq6qq4PWrUKMHMzEzIzc0tMtOxY8eUXsvs7GzBzs5OqF27ttK+/vrrLwGAMHXqVKX9ARBmzpyp9Jj169cXfHx8itynIAhCcnKyIJPJhLFjxyq1z58/X5BIJEJERIQgCGXz98jNzRUcHByEWbNmCYIgCHfu3BEACCdOnBBCQkIEAMLFixcV90tPTy/wWL/99psAQDh58qSi7f/+7/8EAEJ4eLjStg8fPhSkUqnwySefKB2PgqD893J1dS3wmHFxcYW+LoVp2LCh4OHhobj95ZdfCh999JEgCIIwYcIEoWHDhop1n376qWBkZCTk5OQo7X/AgAGK269fC39/f6WcY8aMEXR0dISkpCSVs8+aNUswNjYWHjx4oJR90qRJgo6OjhAZGSkIgiCEh4cLAAQzMzMhLi6uxOdOREQkNvagICKiQv3zzz/Izs7G6NGjlSb9++KLL2BmZoZ9+/YBAMzNzQEABw8eRHp6eqGP9Xqywz179qg84WRJTExMAORPngnkD6MwNzdHmzZt8OLFC8Xi4+MDExMTHDt2DED+L/qvXr3CpEmTCswXIZFIityfhYUF0tLScPjw4VJnvHTpEuLi4jB8+HClfXXs2BGenp6K1/JtX331ldLt5s2b4/Hjx8Xux8zMDO3bt8e2bduUhrxs3boVTZo0gYuLi+I5AOr9PXR0dNCzZ0/89ttvAPInx6xcuTKaN29e6PaGhoaKf2dmZuLFixdo0qQJAODKlSsl7m/37t3Iy8vD1KlTC0xC+e+/l5eXl1IOW1tb1KhRo8TXD8jvDREWFoaYmBgA+b0kmjZtCiB/7o2rV68qjvMzZ86gcePG0NUteUqvYcOGKeVs3rw55HI5IiIiVM6+fft2NG/eHJaWlkrHuL+/P+RyOU6ePKn0mAEBAYpeKERERJqMBQoiIirU6y9ONWrUUGrX19dHlSpVFOvd3d0RGBiIX375BTY2NmjXrh2WL1+uNP9Er1690KxZMwwdOhT29vbo3bs3tm3bVibFitTUVACAqakpgPz5MJKTk2FnZwdbW1ulJTU1FXFxcQCgGJpQu3ZtlfY3fPhwVK9eHe3bt4ezszMGDx5c7JAQoOjXEgA8PT0LfEk1MDAo8IXS0tKy0Dk0/q1Xr16IiopCaGgogPznefnyZfTq1Utpm7L4e/Tt2xd37tzB9evXsWXLFvTu3bvI4k5CQgJGjRoFe3t7GBoawtbWFu7u7gCgdKwUJSwsDFKpFF5eXiVu+7oQ87bSvn5vz0ORlJSE27dvo1mzZgCApk2bIjc3FxcuXEB4eDieP39equEdhWWytLQEgAKZSpP94cOHOHDgQIHj+/WlX18f46+9fp2JiIg0Ha/iQUREaluwYAEGDhyIPXv24NChQ/j2228RHByMc+fOwdnZGYaGhjh58iSOHTuGffv24cCBA9i6dStatWqFQ4cOQUdH5533fevWLQBA1apVAeRPkGlnZ4fNmzcXur26vyTb2dnh2rVrOHjwIPbv34/9+/cjJCQE/fv3x4YNG9R67NfUeT06d+4MIyMjbNu2DU2bNsW2bdsglUrRo0cPxTZl9fdo3LgxPDw8MHr0aISHh6Nv375FbtuzZ0+cPXsW48ePR7169WBiYoK8vDx8/PHHZd6rpqj8QhFXtHnb64LD6dOnYWRkBCB/glEAsLGxQbVq1XD69GlERUUpbV9WmUqzXV5eHtq0aYMJEyYUuu3rS56+9nbvFSIiIk3GAgURERXK1dUVAHD//n2lK0NkZ2cjPDxc8Wvta3Xq1EGdOnXw/fff4+zZs2jWrBlWrVqF2bNnA8i/9Gbr1q3RunVrLFy4EHPmzMHkyZNx7NixAo9VWqmpqdi1axcqV66suCykh4cH/vnnHzRr1qzYL2YeHh4A8gscr4sbpaWvr4/OnTujc+fOyMvLw/Dhw/Hzzz9jypQphT7W269lq1atlNbdv39fsb4sGBsbo1OnTti+fTsWLlyIrVu3onnz5nByclLarqz+Hn369MHs2bNRs2ZN1KtXr9BtEhMTceTIEcyYMQNTp05VtD98+LDAtkX1wPDw8EBeXh7u3LlT5H7Kgp2dnaIIYWxsDC8vL8WQGCC/F8WZM2fw9OlT6OjoKIoX5cnDwwOpqanv/P8NERGRpuIQDyIiKpS/vz/09fWxdOlSpV9v165di+TkZHTs2BEAkJKSgtzcXKX71qlTB1KpFFlZWQDyu/f/2+svma+3UVVGRgY+//xzJCQkYPLkyYovtj179oRcLsesWbMK3Cc3N1dxxYy2bdvC1NQUwcHByMzMVNquuF/a374sJpD/Rd/b27vY59KgQQPY2dlh1apVStvs378fd+/eVbyWZaVXr1549uwZfvnlF1y/fl1peAdQtn+PoUOHYtq0aViwYEGR27zuFfDv13Xx4sUFtjU2NgaAAlc26datG6RSKWbOnFmgx0Vpekaows/PD9euXcOhQ4cU80+81rRpU4SGhuLUqVPw9vZWDC0qTz179kRoaCgOHjxYYF1SUlKB/x+JiIi0BXtQEBFRoWxtbREUFIQZM2bg448/RpcuXXD//n2sWLECDRs2RL9+/QAAR48exTfffIMePXqgevXqyM3NxaZNm6Cjo4OAgAAAwMyZM3Hy5El07NgRrq6uiIuLw4oVK+Ds7FyqLvLR0dH49ddfAeT3mrhz5w62b9+OmJgYjB07Fl9++aVi25YtW+LLL79EcHAwrl27hrZt20JPTw8PHz7E9u3bsWTJEnz66acwMzPDokWLMHToUDRs2BB9+/aFpaUlrl+/jvT09CKHawwdOhQJCQlo1aoVnJ2dERERgWXLlqFevXqKXhz/pqenh3nz5mHQoEFo2bIl+vTpg9jYWCxZsgRubm4YM2aMSn+bknTo0AGmpqYYN26c0t/hNXX/Hm9zdXXF9OnTi93GzMwMLVq0wPz585GTk4NKlSrh0KFDCA8PL7Ctj48PAGDy5Mno3bs39PT00LlzZ1StWhWTJ0/GrFmz0Lx5c3Tv3h0ymQwXL16Ek5MTgoODVcpdHD8/P4SEhODixYsYMWKE0rqmTZsiOTkZycnJGDlyZJntUxXjx4/Hn3/+iU6dOmHgwIHw8fFBWloabt68iR07duDJkyewsbERJRsREZE6WKAgIqIiTZ8+Hba2tvjpp58wZswYWFlZYdiwYZgzZw709PQAAHXr1kW7du2wd+9eREdHw8jICHXr1sX+/fsVV2no0qULnjx5gnXr1uHFixewsbFBy5YtMWPGDMVVQIpz7do1fP7555BIJDA1NUXlypXRuXNnDB06FI0aNSqw/apVq+Dj44Off/4Z3333HXR1deHm5oZ+/fopJjwEgCFDhsDOzg5z587FrFmzoKenB09Pz2ILBv369cPq1auxYsUKJCUlwcHBAb169cL06dMLXF3ibQMHDoSRkRHmzp2LiRMnwtjYGJ988gnmzZunNISgLBgYGKBLly7YvHkz/P39YWdnp7Re3b/Hu9iyZQtGjhyJ5cuXQxAEtG3bFvv37y8w9KRhw4aYNWsWVq1ahQMHDiAvLw/h4eEwNjbGzJkz4e7ujmXLlmHy5MkwMjKCt7c3Pv/88zLN+naR5t89KGrVqgULCwskJSWpXMwpK0ZGRjhx4gTmzJmD7du3Y+PGjTAzM0P16tXf69+QiIjofZMIZd0vkoiIys2tW7fw1Vdf4fTp04Wub9KkCX799VeV51ggIiIiIipvnIOCiIiIiIiIiETHIR5ERFru3LlzRQ4RSE1NLd8wRERERETviEM8iIiIiIiIiEh0HOJBREREREREREV69eoVRo8eDVdXVxgaGqJp06a4ePGiYr0gCJg6dSocHR1haGgIf39/PHz4UOX9sEBBREREREREREUaOnQoDh8+jE2bNuHmzZto27Yt/P39ER0dDQCYP38+li5dilWrVuH8+fMwNjZGu3btkJmZqdJ+OMSDiIiIiIiIiAqVkZEBU1NT7NmzBx07dlS0+/j4oH379pg1axacnJwwduxYjBs3DgCQnJwMe3t7rF+/Hr179y71vtiDgoiIiIiIiOg/JisrCykpKUpLVlZWge1yc3Mhl8thYGCg1G5oaIjTp08jPDwcMTEx8Pf3V6wzNzdH48aNERoaqlKmCnkVD/exf4odQS1nZknEjvDOdCTa3SHn7yiZ2BHeWf9qlcSO8M7Scp+LHUEtl+JzxI7wzlo5VRU7glo+2BIrdoR3drqndv9GUHetXOwI7+zy4IInX9rEQMdS7AjvLOBIhtgR3tneNvZiR1CLXMgWO8I7G3MuXuwIalni6yB2hHf2890osSOo5auabcWO8F4ZuvRR6/4TB9fAjBkzlNqmTZuG6dOnK7WZmprC19cXs2bNQs2aNWFvb4/ffvsNoaGhqFq1KmJiYgAA9vbK75P29vaKdaWl3WdHRERERERERKSyoKAgJCcnKy1BQUGFbrtp0yYIgoBKlSpBJpNh6dKl6NOnD6TSsi0psEBBREREREREpGUkEqlai0wmg5mZmdIikxXeo9zDwwMnTpxAamoqoqKicOHCBeTk5KBKlSpwcMjvJRQbq9yzNTY2VrGutFigICIiIiIiItIyEkjVWt6FsbExHB0dkZiYiIMHD6Jr165wd3eHg4MDjhw5otguJSUF58+fh6+vr0qPXyHnoCAiIiIiIiKqyCSS8utvcPDgQQiCgBo1auDRo0cYP348PD09MWjQIEgkEowePRqzZ89GtWrV4O7ujilTpsDJyQndunVTaT8sUBARERERERFpmfIsULyen+Lp06ewsrJCQEAAfvjhB+jp6QEAJkyYgLS0NAwbNgxJSUnw8/PDgQMHClz5oyQsUBARERERERFRkXr27ImePXsWuV4ikWDmzJmYOXOmWvthgYKIiIiIiIhIy0gkErEjlDkWKIiIiIiIiIi0TsW75gULFERERERERERapjznoCgvLFAQERERERERaRkWKIiIiIiIiIhIdJIKOMSj4j0jIiIiIiIiItI67EFBREREREREpGU4xIOIiIiIiIiIRMcCBRERERERERGJjgUKIiIiIiIiIhKdBBKxI5S5ildyISIiIiIiIiKtwx4URERERERERFqGQzyIiIiIiIiISHQsUBARERERERGR6FigICIiIiIiIiINUPEKFBXvGRERERERERGR1mEPCiIiIiIiIiItwyEeRERERERERCQ6FiiIiIiIiIiISHSSCjhjAwsURERERERERFqmIvagqHjPiIiIiIiIiIi0DntQEBEREREREWkZiUQidoQyxwIFERERERERkZapiEM8WKAgIiIiIiIi0jIVcZLMiveMiIiIiIiIiCo4iUSq1qIKuVyOKVOmwN3dHYaGhvDw8MCsWbMgCIJiG0EQMHXqVDg6OsLQ0BD+/v54+PChSvthgYKIiIiIiIiIijRv3jysXLkSP/30E+7evYt58+Zh/vz5WLZsmWKb+fPnY+nSpVi1ahXOnz8PY2NjtGvXDpmZmaXeD4d4EBEREREREWmZ8pyD4uzZs+jatSs6duwIAHBzc8Nvv/2GCxcuAMjvPbF48WJ8//336Nq1KwBg48aNsLe3x+7du9G7d+9S7Yc9KIiIiIiIiIi0jARStRZVNG3aFEeOHMGDBw8AANevX8fp06fRvn17AEB4eDhiYmLg7++vuI+5uTkaN26M0NDQUu+HPSiIiIiIiIiItI2aPSiysrKQlZWl1CaTySCTyQpsO2nSJKSkpMDT0xM6OjqQy+X44Ycf8NlnnwEAYmJiAAD29vZK97O3t1esKw32oCAiIiIiIiLSMupOkhkcHAxzc3OlJTg4uNB9bdu2DZs3b8aWLVtw5coVbNiwAT/++CM2bNhQps+JPSiIiIiIiIiI/mOCgoIQGBio1FZY7wkAGD9+PCZNmqSYS6JOnTqIiIhAcHAwBgwYAAcHBwBAbGwsHB0dFfeLjY1FvXr1Sp2JPSiIiIiIiIiItIxEIlFrkclkMDMzU1qKKlCkp6dDKlUuH+jo6CAvLw8A4O7uDgcHBxw5ckSxPiUlBefPn4evr2+pnxN7UBARERERERFpGVUnulRH586d8cMPP8DFxQW1atXC1atXsXDhQgwePDg/i0SC0aNHY/bs2ahWrRrc3d0xZcoUODk5oVu3bqXeDwsURERERERERFqmPC8zumzZMkyZMgXDhw9HXFwcnJyc8OWXX2Lq1KmKbSZMmIC0tDQMGzYMSUlJ8PPzw4EDB2BgYFDq/bBAQURERERERKRtJJJy25WpqSkWL16MxYsXFxNHgpkzZ2LmzJnvvB/OQUFEREREREREomMPCiIiIiIiIiJtUwG7G7BAQURERERERKRtynGIR3lhgYKIiIiIiIhI27BAQURERERERESi4xAPIiIiIiIiIhKbUAF7UFTAmgsRERERERERaRv2oCAiIiIiIiLSNhWvAwULFERERERERERaR1rxKhQsUBARERERERFpmwo4BwULFERERERERETapuLVJzhJJhERERERERGJjz0oiIiIiIiIiLQN56AgIiIiIiIiItFxDgoiIiIiIiIiEl3Fq0+wQEFERERERESkdSrgEA9OkklEREREREREomMPCiIiIiIiIiJtU/E6ULBAQURERERERKRtBE6SSURERERERESiq4BzULBAQURERERERKRtKl59gpNkEhEREREREZH42IOCiIiIiIiISNtwDgoiIiIiIiIiEl0FnIOCQzyIiIiIiIiItI1EzUUFbm5ukEgkBZYRI0YAADIzMzFixAhYW1vDxMQEAQEBiI2NVfkpsUBBREREREREpG0kEvUWFVy8eBHPnz9XLIcPHwYA9OjRAwAwZswY7N27F9u3b8eJEyfw7NkzdO/eXeWnxCEeRERERERERFQkW1tbpdtz586Fh4cHWrZsieTkZKxduxZbtmxBq1atAAAhISGoWbMmzp07hyZNmpR6P+xBQURERERERKRtyrEHxduys7Px66+/YvDgwZBIJLh8+TJycnLg7++v2MbT0xMuLi4IDQ1V6bHZg4KIiIiIiIhI26jZ3SArKwtZWVlKbTKZDDKZrNj77d69G0lJSRg4cCAAICYmBvr6+rCwsFDazt7eHjExMSpl0ogeFIMHD8arV68KtKelpWHw4MEiJCIiIiIiIiLSYGr2oAgODoa5ubnSEhwcXOJu165di/bt28PJyanMn5JGFCg2bNiAjIyMAu0ZGRnYuHGjCImIiIiIiIiINJiaV/EICgpCcnKy0hIUFFTsLiMiIvDPP/9g6NChijYHBwdkZ2cjKSlJadvY2Fg4ODio9JREHeKRkpICQRAgCAJevXoFAwMDxTq5XI6///4bdnZ2IiYkIiIiIiIiqnhKM5zj30JCQmBnZ4eOHTsq2nx8fKCnp4cjR44gICAAAHD//n1ERkbC19dXpccXtUBhYWGhuH5q9erVC6yXSCSYMWOGCMkAezMDTOrkhZaedjDU18GTF2mY8PtV3HyaDAAY1bYGOtd3gqO5IXLkebj5NBkL9t/FtcgkUfK+7frlMGzdeBwP7kTj5YsUzFo4EH4f1S5024Wzd2DvH+cwYlwXfPpZi3JOWrhrlx/j9w3Hcf9uNF7Gp+CHhQPQvNWb/OtWHsLRg9cQF5MEXT1d1PCqhC++aQ+vOi4ips4Xuv0Q7p+9gYToWOjq66GSpzs+HNgF1s72im0Sn8fj6Lo9eHonDPKcXFT5oCbafPkpjC3NRExe0Oqfd+Kfw+fw+HE0DAz0Ua9+DYwd+zncq1QSO1qppaVlYtWyv3D8yHUkJqSiuqczxk76FLXquIodTcmBzf/g2qkbiImMg55MDx613NBtWGc4uBQs0AqCgJ8mrcadC/fw5azBqOdXR4TEpbN58z6sXbsT8fGJ8PR0x5QpX8Lbu+B7vZi+rOOCL/91PIQnpyNg32UAgL5UgsAPqqCtqy30pVKEPk9E8KVHSMjMESNuqcTFJmLJwu04c+omMjOzUdnFDtNnD0at2u5iR1My0scV3zZQfu3DEtPx8bZLBbb9pX1ttHSxwtcHb+OfJy/LK6JKtOX9pjR+WfMnlizcin6ff4yJ330udpxifermjAHV3LEnIhq/PHgMABhRsyrqWlnASqaPTHke7ialYMPDcDxNL9hbV1Now/vlv2nTeULk0ROIOnoSGS/y3z9MKjnCo2tH2HrXRkb8C5wc/32h96s7/As4NPIpz6ildvHibaxduwu3b4UhPj4RPy2fBH//0l8pobxc338KNw6cRkpcAgDA2sUBjXt+DHefWgCA3OwcnAzZhfunL0OekwvXejXR6queMLbQrPNiTSVI332iy3eRl5eHkJAQDBgwALq6b0oJ5ubmGDJkCAIDA2FlZQUzMzOMHDkSvr6+Kl3BAxC5QHHs2DEIgoBWrVrhjz/+gJWVlWKdvr4+XF1d38u4lpKYGephx0g/hD56gUFrzuFlWjbcbYyRnPHmhDQ8PhXTdt5E5Mt0GOjpYEjLKtgwzBcfBR9BQlp2uWd+W2ZGNjyqO6F910aYOnZDkdudOnoTd25GwsZWs94AXufv0K0hvg8sOMSnsqstRk/qBidna2Rl5mDb5lMY+/Ua/PbnRFhYmYiQ+I3IW4/wQcfmcKzmgry8PJzcuBdbp67A0BXfQd9AhuzMLGydugJ27pXQ54eRAIBTv+7Djlmr0f/HQEikGjHqCgBw6eJt9On7MWrXqQq5PA+LF23G0KEzsfevJTAyMij5ATTA7KlbEPboGWYED4CtnTn2772AEV8sw7Y938PO3kLseAoPr4ehZTc/uNaojDx5Hvb8sg/LJqzC1JCJkBkqV7WP7jgBiRqzLpeXv/8+heDgXzBjxgjUrVsdGzb8iSFDpuLAgVWwtrYQO56SR0lp+ProTcVtuSAo/j3WxwN+TpaYePouUrPlmNjQAz82r4nBh2+IEbVEKclpGNhvDho28sRPq8bA0soUkRGxMDMzFjtaoR4kpGHAX29ey7df+9cG1qmEgq2aR1veb0py62YYdmw9iuo1xC/6l6SamQk+dnZE+KtUpfZHKak4/jwO8ZlZMNXTRR8PV8z8oDaGnr6IPJGyFkeb3i/fpk3nCQaWlqjeoxuM7PML/89Oh+LqkpVoOnMyjB0d8OHieUrbR504jSf7D8HGu5YYcUslIz0TnjXcERDgj5HfzBU7TpFMrC3g93kXWDjZAgJw59h5/Bm8Bp8tnAgbF0ecWLcT4Zduo+P4wZAZGeLYmu3YO/cX9J4bKHZ07VDO54T//PMPIiMjC50nctGiRZBKpQgICEBWVhbatWuHFStWqLwPUQsULVu2BACEh4ejcuXKkGrIl7OvWlXF86QMTNh6TdH2NCFdaZs/r0Yr3Z695zZ6NXaFp5MZzj58UR4xi9TYryYa+9Usdpv4uGQsnbcb81d8gaCRa8spWek08fNEEz/PIte36VBf6fY3Yztj364LCHv4HD6Nq73veMXqNWO40u2Ooz/D0n6TEfMoCi61qyL6zmMkxyVg0JIJkBkZ5m8zph8W95mEiBsP4VavhhixC7X6lylKt+cEfwO/poNx53YYGjTU3A/s1zIzs3Hsn2v4cekwfNCgKgBg2IiOOHXiFv7Yegpff9tZ5IRvjJz/pdLt/pP6YsInUxD54Cmq1fVQtEc9isY/245j0s+BmBQwrbxjqiQkZDd69myHgID8y03NmDEcx49fxB9/HMawYT1ETqdMLgh4WUiPCBM9HXSrYo/vzt7Hxdj83nPTzz3Azk4NUMfaFDdfFpzcWWwha/+Gg4MVZvwwRNFWydm2mHuIS54n4EVG0b1RalobY4i3Mz7ZeQWh/VXrIlqetOn9pjjpaZmYNH4Fps0citWrdosdp1gGOlKMrV0Dy+48RC/3ykrrDka/mTE+LjMLvz56gmW+PrAzNEBMRmZ5Ry2RNr1fvk2bzhPs6nsr3a72aTdEHjuJpEfhMKnkBJmFudL6uMvX4NDQB7oGmlVoeVuLlj5o0VIze3e8zaORck/PZv064/qB04i5/wSm1ha49U8o2gcOgIt3/jlw25GfYcM3P+D5/XA41tCsnn8aqZx/s2rbti2EQn5MAAADAwMsX74cy5cvV2sfGlERcHV1hVQqRXp6Ou7du4cbN24oLeXN38sBN6KSsLx/A1yc3g5/BbZE78ZF/5KgpyNBH19XpGTk4O6zlHJM+m7y8vIQ/P0W9BrwIdw9VJu0RNPk5OTizz/OwcTEAB7Vy7+3TUmy0vJPhAxNjQAAubm5ACTQ0XtTG9TV14VEIkHUnTAxIpbaq1f5RTpzc1ORk5SOXJ4HuTwP+jI9pXaZTA/Xrmj2a52Rlt8N2cjMSNGWnZmNdbM3ofeoAJhbaVavp3/Lzs7B7duP0LRpXUWbVCpF06b1cPXqfRGTFc7F1BAHuzXCn10aYHbTGnAwyu+1UtPKBHo6UpyPSVRs+yQlA8/TMuFto5n/H5w4dg1etdwwfswKtGo+Cr0DpmPn9hNixyqSq7khTvdrjKN9GmJBK084mrzpMWSgK8XC1p6YfvpRsUUMTaDN7zdv+2HWejRvWQ++TQsfFqpJvvKsiksvEnE9IanY7WRSKfydHBCTnoEXmVnFbisGbXu/LI62nCcIeXl4fu4i5FnZsKha8Atw8pMIvIqMQqUWzURIV7HlyfNw/9Rl5GZmw9HTDbFhkcjLlSuKEwBg5ewAU1tLPL8fLmJSLSKVqLdoIFF7ULwWHx+PQYMGYf/+/YWul8vl5ZrHxdoI/Zq64ZcTYVh+5AHqVrbEtE/qIFsuYOelKMV2rWraY+nnPjDU00Hcq0x8/nMoEkUe3lEav4Ucg46ODgL6+Ikd5Z2dPXkHMyZuRmZmDqxtTLFg1TBYWGpWF2YhLw//rNkJ55pVYOuaXzypVMMN+gb6OL7+T7T8vDMECDi+YS+EvDykJWhucSsvLw9z54Tggw88Ua265nf7BQBjYwPUqeuOtav2w72KPayszXDw70u4eT0czi6a+4tyXl4etv+0Gx613VHJ3VHRvn35blSp5Ya6GjznxGuJiSmQy/NgbW2p1G5tbYHHj5+KlKpwN1+8wrTQB4h4lQ4bQ30Mq+2KtW280WPfFVgb6CNbnofUHOXPoJeZObA21BcpcfGin8Zj+9Zj6DegHYYM64jbN8MxP3gLdPV00aWbZp1sX49LwcTj9xGelAFbI32M9HHBb13qouP2y0jLkWOyrweuxKTgSIRmzjnxNm19v3nb/n2huHMnHL9vnyV2lBI1t7eFh6kJAi9cLXKbDs6OGFjNHYa6Onialo4pV24ht4hf/cSkTe+XxdGG84RXUdE4P3s+8nJyoCOTof7IL2FSqeCPW9Enz8DYyQGW1TwKeRR6Fy+ePMPvkxYgNzsX+gYydJ40FNaVHRH/OBo6urowMDFS2t7IwhRpiZrXS1EjacGwX1VpRIFi9OjRSEpKwvnz5/Hhhx9i165diI2NxezZs7FgwYJi75uVlYWsLOWKuJCbA4muXhH3KJlEIsHNp0n4cf89AMCd6BRUdzDFZ76uSgWK0LAX6LjgBCyN9dG7iQt++twHnyw9hZepmlukuH/nKf747TRWbxmtFePYi1K/YVWs3ToGyUlp2LvzPKZN2ISff/0WliLPQfG2Q6u2Iz7yOfrNG6VoMzI3RbeJg3Bw5TZc2nsSEokEXi0+gL2HMyQaWsUEgFkz1+Dhw0j8uuUHsaOoZGZwf8ycuhkdWn0PHR0patSsjLbtG+DenUixoxXp9yV/4Fn4c4xb9q2i7fqZW7h/9SG+WzNOxGQV09nnb3pHPExKx80Xr7CvayO0cbFBllwTR6sXLy9PgFdtN4wcnT+DtmdNVzx6FI0d245rXIHiZNSb1/5+Qhqux6XgRN/GaF/FFgmZ2WhSyQJdd1wWMaFqtPH95rWY5y8xN3gjVq8NgkymmcW312xk+viiRhVMvXITOXlFFxyOx8ThakIirPT18YmbMyZ6e2LCxevF3ofenTacJxg72sN35mTkZmQg9uIV3PxlAxpNClQqUsizs/E89CI8unQQMWnFY1nJDv0WTUJWWgYehl7DwaW/oscP35Z8R/pP0ogCxdGjR7Fnzx40aNAAUqkUrq6uaNOmDczMzBAcHKx0CZN/Cw4OLnClD/MmvWHZtM8754lPycSjWOWq3aPYVHzs7ajUlpEtR8TLNES8TMO1yEQcndQKPRu5YOXRR++87/ft5tXHSEpIRa8Obz5A8uR5WLlwL3ZsPoXf/54sYrrSMzTUh7OLDZxdbFDL2xV9Os/Dvl0X0G9IK7GjAcgvTjy6eBufBY+CmY3yryLuH9TEV2umIT05FVIdKQxMjLDs88mwcLARKW3xZs9cgxPHL2Pjr7Pg4GAtdhyVOLvYYvX60chIz0JaWiZsbM0RNHYdKjlr5mv9+5I/cCv0DgKXfANLWwtF+/2rD/Hi2UuM7fSd0varp4Wgap0qCFz8TTknLZ6lpRl0dKR4+TJRqf3lyyTY/Ov/B02TmiNH5KsMVDY1xPmYROjrSGGip6PUi8LaQA8vMzSzEG1ja4EqHsq/CLpXccKRw5r/Rf9VthzhyRlwNTdADWsjuJgZ4PIg5aLKT228cCkmGf32at4kpdr2fvO227fDkfAyBb0C3pwDyOV5uHzpHn7bcgiXr2+Ajo5GjApGVTNTWMr0sbjxB4o2HakEtSzN0amyE7ofOY08AOm5cqTnyvE8PRP3r9/Fbx/5wtfOBidj4sULXwhtfr98TVvOE6S6ujD+3ySZ5m6uSA6PQMThY6g18DPFNrEXr0CenQ2nZpp3NQxtpqOnCwvH/N5k9lVdEPMwAlf3nkB1v/qQ5+YiMzVdqRdFetIrGFtq9lAhjaG5v2++M40oUKSlpcHOLv8Nw9LSEvHx8ahevTrq1KmDK1euFHvfoKAgBAYqz/LqPeWwWnkuPUlAFVvlX+LdbY0RnVj85amkEgn0dXXU2vf71qajT4GJJCcMX4M2HX3wcdeGIqVSnyDkITs7V+wYEAQBh3/egQehN9A3eCQsivmgNjLPP8aeXH+AtORUVG2kWWN+BUHAD7N+wT//XMD6jTPg/NalUrWNoZEMhkYypCSn49zZuxgZ2FXsSEoEQcDWpTtx7fRNBC4aARtH5eOmXd/WaNZR+WRp9uD5+HR4N3g31ayJyABAX18PtWpVRWjoDfj7509smJeXh9DQ6+jXr+iCsyYw1JXC2cQA+zKycTchFTnyPDRysMDRqPxhBq6mhnA0NsCNF5rZ9bRe/aqICI9Raot8EgNHJ8390vCaka4ULmYG2PMwG3+HxWPbXeXn8XfPBpgTGoajEQkiJSwdTX+/KUwT31rYuUf5KgBTJq+Gu7sjBg/trDHFCQC4npCEEWeVC26ja1XH07R07HjytMirdEgA6Glgz1Ftfr/U+vMEQUBejvL8Nk9PnoFdfW/om/HL8XslCJDn5MDewwVSXR1E3XiAak3rAQASomPxKj6RE2SWlgb3wH5XGlGgqFGjBu7fvw83NzfUrVsXP//8M9zc3LBq1So4OjoWe1+ZTAaZTPkyfOoM7wCAdScfY8dIPwxvXQ37rj1DXRcL9Gniiu92XAcAGOrrYETravjndiziX2XC0lgfnzdzh4O5Af6+/kytfZeFjPQsREe9uZLI8+gEPLofDVMzI9g7WsLcQnmuBh1dHVjZmMLFza68oxYqPT0L0ZHK+R/ei4aZuRHMLIyxac0RNPvQC9Y2ZkhOSsOurWfxIi4FH7XxLuZRy8ehldtx5+RlBEweCn1DA6Qm5s8rITMygN7/us3e+OccrJ3tYWRuguh7T/DPmj/QsOuHsNawD/ZZM9dg31+n8NPySTA2NkR8fP6vO6amRjAwkJVwb80QeuYOBAFwdbPD08h4LFmwG27u9ujSTbOuBvD74j9w8chlfDV7CGRGMiT/bz4SQ2MD6Mv0YW5lVujEmFb2lgWKGZpi0KBumDhxEWrXrgpv7+rYsGEPMjIy0b27v9jRlIyu746T0Ql4npYJW0N9fFXHFXkCcCAiHqk5cux+HIuxH1RBSlYu0nLkmNDAA9fjUzTyCh4A0K9/WwzsNwdrV/+FNu0a4vbNcPyx4wSmTB8gdrQCJjZxx7GIBES/yoSdsQyjGrgiTxDw16N4JGTmFDox5rPULDx9pXlXYQC05/2mMMbGhqhWXflKGIaGMlhYmBZoF1uGXI7INOUrq2XK5UjJyUVkWjrsDQ3Q3N4GV18mISUnB9YyfXzqXhlZ8jxcepFYxKOKS1veL/9Nm84THmzfBRvv2jC0skRuZhaen7uAhHsP4DN2pGKbtNg4JD54hA/GaFavxKKkpWUgMvK54vbTp3G4e/cxzM1N4eSkOXPfnN70J9w+8IKpjSVyMrJw79QlRN16hO7ThkNmbIja/r44EbITBqZG0Dc0wLE1O+BYw50FitJigeL9GDVqFJ4/z/8fbNq0afj444/x66+/Ql9fHxs2bCj3PDeikvBVyEWM71gT37apjqiEdMzacwt7ruRfWlSeJ8DDzhQBDSvD0lgfSWk5uBGViJ7Lz+BhrPgnrffvRGHMF6sUt1cs+BMA0K5zA0ya2VusWKV2//ZTjHor/08L9gIAPu7sg7HfByDiSRwOjL2E5KQ0mFkYw7OWM5atGw73quJfkeTq/tMAgC3fLVNq7zDqM3j7NwYAJDyNw4kNe5GRmg5zOys07dkWDbt+VO5ZS/L7bwcBAAP6T1Vq/2HOCHzSXTOG0pQk9VUmli/+E3GxSTAzN0KrNvUw/NvO0NXTrJ5OJ/88AwBYNEb5skz9J/aB78eNxIiktg4dmiMhIRlLl25GfHwiatasgl9+maFxXZbtjWQIbloD5jI9JGbl4Fp8CgYcuoakrPwvxwsuh0EQquD/mteEvo4Uoc8TEXxRc4fx1arjjgVLRmDZ4j+weuWfqORsi/ET+6BDJ837kuxgLMPC1p6wNNBDQkYOLsUko8fua0go5JKv2kBb3m8qupy8PNSyNEcXl0ow0dNFUnYObicmY8LF60jO0cxjS1veL/9Nm84TslNe4ebqEGQlp0DP0BAmlSvBZ+xI2NT2UmwTfeosDCwtYFO7pohJS+/WrUcY0P/NpV7nBq8DAHT75CPMnTuqqLuVu/SkVzi4eBPSElOgb2wAG1cndJ82HK71PAEALQd3h0Qiwd55ayHPyYVbfU+0+rKXyKm1h1Dx6hOQCEVdyFQkgiAgIyMD9+7dg4uLC2xsVB+76T72z/eQrPycmaW9R5qORKMOJ5X9HaVZFX9V9K9WSewI7ywt93nJG2mwS/GaedJbGq2cqoodQS0fbIkVO8I7O91Tc7rNv4u6a8v3Cltl6fJgzbvcpCoMdDT7i2txAo4UP1xWk+1to1k9HVUlFzRz7pzSGHNOs+YOUdUSX/F/RHtXP9+NKnkjDfZVzbZiR3ivqgzdrtb9H//So4ySlB2NOTtau3YtateuDQMDA1haWqJ///7YvXu32LGIiIiIiIiINI9Uot6igTRiiMfUqVOxcOFCjBw5Er6++d1QQ0NDMWbMGERGRmLmzJkiJyQiIiIiIiLSIBo4+a+6NKJAsXLlSqxZswZ9+ry5NGiXLl3g7e2NkSNHskBBRERERERE9DYN7QWhDo0oUOTk5KBBgwYF2n18fJCbK/6lI4mIiIiIiIg0isZM2FB2NOIpff7551i5cmWB9tWrV+Ozzz4TIRERERERERERlSfRelAEBgYq/i2RSPDLL7/g0KFDaNKkCQDg/PnziIyMRP/+/cWKSERERERERKSZOAdF2bl69arSbR8fHwBAWFgYAMDGxgY2Nja4fft2uWcjIiIiIiIi0micg6LsHDt2TKxdExEREREREWk1gT0oiIiIiIiIiEh0GjGjZNmqgE+JiIiIiIiIiLQNe1AQERERERERaRvOQUFEREREREREouMcFEREREREREQkOvagICIiIiIiIiLRVbz6BCfJJCIiIiIiIiLxsQcFERERERERkZYROMSDiIiIiIiIiERXAQsUHOJBREREREREpG0kEvUWFUVHR6Nfv36wtraGoaEh6tSpg0uXLinWC4KAqVOnwtHREYaGhvD398fDhw9V2gcLFERERERERETaRqrmooLExEQ0a9YMenp62L9/P+7cuYMFCxbA0tJSsc38+fOxdOlSrFq1CufPn4exsTHatWuHzMzMUu+HQzyIiIiIiIiIqEjz5s1D5cqVERISomhzd3dX/FsQBCxevBjff/89unbtCgDYuHEj7O3tsXv3bvTu3btU+2EPCiIiIiIiIiJto+YQj6ysLKSkpCgtWVlZhe7qzz//RIMGDdCjRw/Y2dmhfv36WLNmjWJ9eHg4YmJi4O/vr2gzNzdH48aNERoaWuqnxAIFERERERERkbaRStRagoODYW5urrQEBwcXuqvHjx9j5cqVqFatGg4ePIivv/4a3377LTZs2AAAiImJAQDY29sr3c/e3l6xrjQ4xIOIiIiIiIhI26h5FY+gCUEIDAxUapPJZIVum5eXhwYNGmDOnDkAgPr16+PWrVtYtWoVBgwYoFaOt7EHBREREREREZGWESQStRaZTAYzMzOlpagChaOjI7y8vJTaatasicjISACAg4MDACA2NlZpm9jYWMW60mCBgoiIiIiIiEjblONVPJo1a4b79+8rtT148ACurq4A8ifMdHBwwJEjRxTrU1JScP78efj6+pZ6PxziQURERERERERFGjNmDJo2bYo5c+agZ8+euHDhAlavXo3Vq1cDACQSCUaPHo3Zs2ejWrVqcHd3x5QpU+Dk5IRu3bqVej8sUBARERERERFpG4l6c1CoomHDhti1axeCgoIwc+ZMuLu7Y/Hixfjss88U20yYMAFpaWkYNmwYkpKS4OfnhwMHDsDAwKDU+2GBgoiIiIiIiEjbqDlJpqo6deqETp06FbleIpFg5syZmDlz5jvvgwUKIiIiIiIiIm1TzgWK8vDOBYrs7GzExcUhLy9Pqd3FxUXtUERERERERERUjIpXn1C9QPHw4UMMHjwYZ8+eVWoXBAESiQRyubzMwhERERERERHRf4PKBYqBAwdCV1cXf/31FxwdHSEpx4k5iIiIiIiIiAgQOMQDuHbtGi5fvgxPT8/3kYeIiIiIiIiISlIBOwuoXKDw8vLCixcv3kcWIiIiIiIiIiqNCtiDQqrqHebNm4cJEybg+PHjePnyJVJSUpQWIiIiIiIiInrPJGouGkjlHhT+/v4AgNatWyu1c5JMIiIiIiIiInpXKhcojh079j5yEBEREREREVEpSVUeD6H5VC5QtGzZ8n3kICIiIiIiIqJSqoBzZKpeoACApKQkrF27Fnfv3gUA1KpVC4MHD4a5uXmZhiMiIiIiIiKigipigULlTiGXLl2Ch4cHFi1ahISEBCQkJGDhwoXw8PDAlStX3kdGIiIiIiIiInqLRCJRa9FEKvegGDNmDLp06YI1a9ZAVzf/7rm5uRg6dChGjx6NkydPlnlIIiIiIiIiIqrYVC5QXLp0Sak4AQC6urqYMGECGjRoUKbhiIiIiIiIiKggDe0EoRaVh3iYmZkhMjKyQHtUVBRMTU3LJBQRERERERERFU0iUW/RRCoXKHr16oUhQ4Zg69atiIqKQlRUFH7//XcMHToUffr0eR8ZiYiIiIiIiOgtEql6iyZSeYjHjz/+CIlEgv79+yM3NxcAoKenh6+//hpz584t84BEREREREREpExTe0GoQ+UChb6+PpYsWYLg4GCEhYUBADw8PGBkZFTm4YiIiIiIiIjov0HlAsVrRkZGqFOnTllmISIiIiIiIqJSkP5Xe1B0794d69evh5mZGbp3717stjt37iyTYERERERERERUuP/sEA9zc3NI/vfszc3N32sgIiIiIiIiIiref7ZAERISUui/iYiIiIiIiKj8SSpghULli4tkZGQgPT1dcTsiIgKLFy/GoUOHyjQYEREREREREf13qFyg6Nq1KzZu3AgASEpKQqNGjbBgwQJ07doVK1euLPOARERERERERKRMIlVv0UQqx7py5QqaN28OANixYwccHBwQERGBjRs3YunSpWUekIiIiIiIiIiUSSTqLaqYPn06JBKJ0uLp6alYn5mZiREjRsDa2homJiYICAhAbGysys9J5QJFeno6TE1NAQCHDh1C9+7dIZVK0aRJE0RERKgcgIiIiIiIiIhUU54FCgCoVasWnj9/rlhOnz6tWDdmzBjs3bsX27dvx4kTJ/Ds2bMSrwBamFJNkvm2qlWrYvfu3fjkk09w8OBBjBkzBgAQFxcHMzMzlQMQERERERERkWrKe45MXV1dODg4FGhPTk7G2rVrsWXLFrRq1QpA/sU1atasiXPnzqFJkyal3ofKPSimTp2KcePGwc3NDY0bN4avry+A/N4U9evXV/XhiIiIiIiIiEhFUol6S1ZWFlJSUpSWrKysIvf38OFDODk5oUqVKvjss88QGRkJALh8+TJycnLg7++v2NbT0xMuLi4IDQ1V7Tmp+iJ8+umniIyMxKVLl3DgwAFFe+vWrbFo0SJVH46IiIiIiIiIyllwcDDMzc2VluDg4EK3bdy4MdavX48DBw5g5cqVCA8PR/PmzfHq1SvExMRAX18fFhYWSvext7dHTEyMSplUHuIBAA4ODgW6djRq1OhdHoqIiIiIiIiIVKTuEI+goCAEBgYqtclkskK3bd++veLf3t7eaNy4MVxdXbFt2zYYGhqqF+QtpSpQdO/eHevXr4eZmVmJE13s3LmzTIIRERERERERUeHULVDIZLIiCxIlsbCwQPXq1fHo0SO0adMG2dnZSEpKUupFERsbW+icFcUp1RAPc3NzSP737P/dBeTfCxERERERERG9XxKpRK1FHampqQgLC4OjoyN8fHygp6eHI0eOKNbfv38fkZGRijkrS6tUPShCQkIK/TcRERERERERlb/yvIrHuHHj0LlzZ7i6uuLZs2eYNm0adHR00KdPH5ibm2PIkCEIDAyElZUVzMzMMHLkSPj6+qp0BQ/gHeagCA8PR25uLqpVq6bU/vDhQ+jp6cHNzU3VhyQiIiIiIiIiDfX06VP06dMHL1++hK2tLfz8/HDu3DnY2toCABYtWgSpVIqAgABkZWWhXbt2WLFihcr7UblAMXDgQAwePLhAgeL8+fP45ZdfcPz4cZVDEBEREREREVHplWcPit9//73Y9QYGBli+fDmWL1+u1n5Uvszo1atX0axZswLtTZo0wbVr19QKQ0REREREREQlk0jUWzSRyj0oJBIJXr16VaA9OTkZcrm8TEIRERERERERUdHUnOdSI6ncg6JFixYIDg5WKkbI5XIEBwfDz8+vTMMRERERERERUUHsQQFg3rx5aNGiBWrUqIHmzZsDAE6dOoWUlBQcPXq0zAMSERERERERUcWncg8KLy8v3LhxAz179kRcXBxevXqF/v374969e6hdu/b7yEhEREREREREb5FI1Vs0kco9KADAyckJc+bMKessRERERERERFQKmjpMQx3vVDc5deoU+vXrh6ZNmyI6OhoAsGnTJpw+fbpMwxERERERERFRQRKJRK1FE6lcoPjjjz/Qrl07GBoa4sqVK8jKygKQfxUP9qogIiIiIiIiev8q4iSZKhcoZs+ejVWrVmHNmjXQ09NTtDdr1gxXrlwp03BERERERERE9N+g8hwU9+/fR4sWLQq0m5ubIykpqSwyEREREREREVExNLUXhDpU7kHh4OCAR48eFWg/ffo0qlSpUiahiIiIiIiIiKhoFXGIh8o9KL744guMGjUK69atg0QiwbNnzxAaGopx48ZhypQp7yOjynSvxoodQS25eQ5iR3hny+4Zix1BLYlZGnq9nVLo6houdoR39ixdQ98hS2no3FyxI7yzWwvjxY6gloT5Z8SO8M4iOmj3pbmf/rBZ7AjvzPCLiWJHUMudpKdiR3hnd9aliB3hnSW1TBU7glqMdR3FjvDO9o+8JXYEtcw9py92hHcW/Nc7XfRRY3xVU+wE75dUu0+hC6XyETdp0iTk5eWhdevWSE9PR4sWLSCTyTBu3DiMHDnyfWQkIiIiIiIiorewQIH8S5lMnjwZ48ePx6NHj5CamgovLy+YmJi8j3xERERERERE9B/wTn12BEFASkoK7O3t4eXlVdaZiIiIiIiIiKgYUokgdoQyp9KA+5iYGPTv3x+Wlpawt7eHnZ0dLC0tMXjwYMTGave8D0RERERERETaQipRb9FEpe5BkZKSgqZNmyI1NRWDBg2Cp6cnBEHAnTt38Ntvv+H06dO4cuUKh3oQERERERERvWfaO71/0UpdoFiyZAl0dHRw+/Zt2NraKq37/vvv0axZMyxduhTfffddmYckIiIiIiIiojf+00M89u3bh++++65AcQIA7OzsEBQUhL1795ZpOCIiIiIiIiL6byh1geLBgwdo2rRpkeubNm2K+/fvl0koIiIiIiIiIiraf34OCgsLiyLXW1hYICUlpSwyEREREREREVEx/tNzUAiCAKm06JdAIpFAECreGBgiIiIiIiIiTaOpvSDUoVKBonr16pBICn8VWJwgIiIiIiIiKh+SCjhJZqkLFCEhIe8zBxERERERERGV0n+6B8WAAQPeZw4iIiIiIiIi0nBz585FUFAQRo0ahcWLFwMAMjMzMXbsWPz+++/IyspCu3btsGLFCtjb26v02BVxXg0iIiIiIiKiCk2q5vIuLl68iJ9//hne3t5K7WPGjMHevXuxfft2nDhxAs+ePUP37t3f6TkRERERERERkRaRSgS1FlWlpqbis88+w5o1a2BpaaloT05Oxtq1a7Fw4UK0atUKPj4+CAkJwdmzZ3Hu3DnVnpPKqYiIiIiIiIhIVFKJeouqRowYgY4dO8Lf31+p/fLly8jJyVFq9/T0hIuLC0JDQ1XaR6nnoCAiIiIiIiIizaBub4OsrCxkZWUptclkMshksgLb/v7777hy5QouXrxYYF1MTAz09fVhYWGh1G5vb4+YmBiVMqndg0Iul+PatWtITExU96GIiIiIiIiIqBwEBwfD3NxcaQkODi6wXVRUFEaNGoXNmzfDwMDgvWZSuUAxevRorF27FkB+caJly5b44IMPULlyZRw/frys8xERERERERHRv6g7xCMoKAjJyclKS1BQUIH9XL58GXFxcfjggw+gq6sLXV1dnDhxAkuXLoWuri7s7e2RnZ2NpKQkpfvFxsbCwcFBpeek8hCPHTt2oF+/fgCAvXv3Ijw8HPfu3cOmTZswefJknDlzRtWHJCIiIiIiIiIVvMtEl28rajjHv7Vu3Ro3b95Uahs0aBA8PT0xceJEVK5cGXp6ejhy5AgCAgIAAPfv30dkZCR8fX1VyqRygeLFixeKKsjff/+NHj16oHr16hg8eDCWLFmi6sMRERERERERkYreZaLLd2FqaoratWsrtRkbG8Pa2lrRPmTIEAQGBsLKygpmZmYYOXIkfH190aRJE5X2pXKBwt7eHnfu3IGjoyMOHDiAlStXAgDS09Oho6Oj6sMRERERERERkYo06ZKcixYtglQqRUBAALKystCuXTusWLFC5cdRuUAxaNAg9OzZE46OjpBIJIpLiZw/fx6enp4qByAiIiIiIiIi7fHv+ScNDAywfPlyLF++XK3HVblAMX36dNSuXRtRUVHo0aOHYsyKjo4OJk2apFYYIiIiIiIiIiqZunNQaCKVCxQA8OmnnyrdTkpKwoABA8okEBEREREREREVr7zmoChPKg9bmTdvHrZu3aq43bNnT1hbW8PZ2Rk3btwo03BEREREREREVJC6lxnVRCoXKFatWoXKlSsDAA4fPozDhw9j//79+PjjjzFu3LgyD0hEREREREREyqRqLppI5SEeMTExigLFX3/9hZ49e6Jt27Zwc3ND48aNyzwgEREREREREVV8KhdOLC0tERUVBQA4cOCA4ioegiBALpeXbToiIiIiIiIiKkAqEdRaNJHKPSi6d++Ovn37olq1anj58iXat28PALh69SqqVq1a5gGJiIiIiIiISJmmziOhDpULFIsWLYKbmxuioqIwf/58mJiYAACeP3+O4cOHl3lAIiIiIiIiIlKmqfNIqEPlAoWenl6hk2GOGTOmTAIRERERERERUfHYg+J/wsLCsHjxYty9excA4OXlhdGjR6NKlSplGo6IiIiIiIiI/htU7hVy8OBBeHl54cKFC/D29oa3tzfOnz8PLy8vHD58+H1kJCIiIiIiIqK3SCSCWosmUrkHxaRJkzBmzBjMnTu3QPvEiRPRpk2bMgtHRERERERERAVVxCEeKveguHv3LoYMGVKgffDgwbhz506ZhCIiIiIiIiKioknVXDSRyrlsbW1x7dq1Au3Xrl2DnZ1dWWQiIiIiIiIiomJIJYJaiyYq9RCPmTNnYty4cfjiiy8wbNgwPH78GE2bNgUAnDlzBvPmzUNgYOB7C0pEREREREREFVepCxQzZszAV199hSlTpsDU1BQLFixAUFAQAMDJyQnTp0/Ht99++96CEhEREREREVG+ijgHRakLFIKQ3wVEIpFgzJgxGDNmDF69egUAMDU1fT/piIiIiIiIiKiA/3SBAsgvTryNhQkiIiIiIiKi8qcjdoD3QKUCRfXq1QsUKf4tISFBrUBEREREREREVDxNnehSHSoVKGbMmAFzc/P3lYWIiIiIiIiI/qNUKlD07t2blxIlIiIiIiIiEtl/eg6KkoZ2EBEREREREVH5+E8XKF5fxYOIiIiIiIiIxKXzXy5Q5OXlvc8cRERERERERFRK/+keFERERERERESkGSriVTykYgcgIiIiIiIiIs21cuVKeHt7w8zMDGZmZvD19cX+/fsV6zMzMzFixAhYW1vDxMQEAQEBiI2NVXk/LFAQERERERERaRmpRL1FFc7Ozpg7dy4uX76MS5cuoVWrVujatStu374NABgzZgz27t2L7du348SJE3j27Bm6d++u8nPiEA8iIiIiIiIiLaNTjvvq3Lmz0u0ffvgBK1euxLlz5+Ds7Iy1a9diy5YtaNWqFQAgJCQENWvWxLlz59CkSZNS74cFCiIiIiIiIiIto+4kmVlZWcjKylJqk8lkkMlkxd5PLpdj+/btSEtLg6+vLy5fvoycnBz4+/srtvH09ISLiwtCQ0NVKlBwiAcRERERERGRlpFKBLWW4OBgmJubKy3BwcFF7u/mzZswMTGBTCbDV199hV27dsHLywsxMTHQ19eHhYWF0vb29vaIiYlR6TmxBwURERERERHRf0xQUBACAwOV2orrPVGjRg1cu3YNycnJ2LFjBwYMGIATJ06UaSYWKIiIiIiIiIi0jI6aQzxKM5zjbfr6+qhatSoAwMfHBxcvXsSSJUvQq1cvZGdnIykpSakXRWxsLBwcHFTKxCEeRERERERERFqmPK/iUZi8vDxkZWXBx8cHenp6OHLkiGLd/fv3ERkZCV9fX5Uekz0oiIiIiIiIiLRMWRQZSisoKAjt27eHi4sLXr16hS1btuD48eM4ePAgzM3NMWTIEAQGBsLKygpmZmYYOXIkfH19VZogE2CBgoiIiIiIiEjrlGeBIi4uDv3798fz589hbm4Ob29vHDx4EG3atAEALFq0CFKpFAEBAcjKykK7du2wYsUKlffDAgURERERERERFWnt2rXFrjcwMMDy5cuxfPlytfbDAgURERERERGRltGRCGJHKHMsUBARERERERFpmYp4xQsWKIiIiIiIiIi0THnOQVFeWKAgIiIiIiIi0jIVsUBREXuFEBEREREREZGWYQ8KIiIiIiIiIi3DSTKJiIiIiIiISHQVcYgHCxREREREREREWoYFijJSv359SCSlezWvXLnyntMQERERERERaRcWKMpIt27dFP/OzMzEihUr4OXlBV9fXwDAuXPncPv2bQwfPlyMeERERERERERUzkQpUEybNk3x76FDh+Lbb7/FrFmzCmwTFRVV3tGIiIiIiIiINJ5OBexBIfplRrdv347+/fsXaO/Xrx/++OMPERIRERERERERaTapRFBr0USiFygMDQ1x5syZAu1nzpyBgYGBCImIiIiIiIiINJtUzUUTiX4Vj9GjR+Prr7/GlStX0KhRIwDA+fPnsW7dOkyZMkWUTMe29Iazg2mB9l9338aMpWfx68KOaFzPSWndb3/exdTFp8srYrFuXAnD9o3H8eBuNBJepGD6jwPR7KPaivXzp/2Ow39dUrpPA98aCP7pi/KOWsDjf07i8T8nkR6fAAAwc3aE5ycd4FCvFgDg5OxFeHH3odJ93Fv5of6QvuWetTDRx04g+thJZL54CQAwruQIt84dYe2d//pnJScjbNtOJN6+i9zMTBg52MO1U3vYNfhAzNgAgKuXwrB5/XHcvxuNF/EpmLt4IFq2enPcHP/nJnZtD8W9O0+RkpyODdvGoLpnJRETK7t9NQx7fj2Ox/efIvFFCibMG4jGLeso1ie9fIVNy//C9QsPkPYqA171q2BI4CdwcrEVMfUb9uYGmNilFlp62cNQTwcRL1IxYfNV3IxKKrDt7J510dfPHbN23kTI8bDyD1sKcbGJWLJwO86cuonMzGxUdrHD9NmDUau2u9jRlEilEoz+yg+fdKwFW2tjxManYsefN7FszVnFNu1aVcdnPeqjTk0HWFoYokOvdbhzP07E1G/cvhqGXb8eR9i9/ON+0vyBaPLWcZ+RnoVNy/fh/IlbeJWSBjtHa3Tq5YePuzcVMXU+E2MDTBvXE13aNYCtjTmu33qCcdM34PKNx4ptpgR+ikF9W8HCzBihl+7j2+/WIexJjIipi/b7b4ew9ffDeBYdDwCoWtUZXw0PQPMW9UVOVtCuDUdw4cRNREfEQV+mh+p1XNFveCc4udoptsnOysHGpX/i7D/XkJOTi7qNa2Do+ABYWBU8Pypv9paGmNC3HlrWdYKhTAcRMamY+PM53Hycf+5gbW6AiX3qwc/bAWZG+rh4Lw4z1l/Gk5hXIifP/6z9df1R3LsThRfxKZi/eDBatvZWrBcEAauX78eeP84h9VUGvOu5Y8KUHnBx1YzPqrdp0zF/7M8BcHYyK9D+67YbmDH/BFwqmWHiaD80qOcEfT0dnAyNwMz/O4GXCRkipC0dbfmcHd3UHWOaKWd69DINrdedBwDYGuvju5ZV4edmCRM9XTxOTMdP555g/4N4MeJqHU6S+R5MmjQJVapUwZIlS/Drr78CAGrWrImQkBD07NlTlEwBX++G9K2/dnV3S2z4sSP2nwhXtP3+110sCbmsuJ2ZlVuuGYuTmZGNKtWd0K5LI8wYv6HQbRo2rYFx03opbuvpi34oAAAMrSxQu3c3mDjYQRAERJ46h9CFq9B6ThDMnPOLQm4fNYPXp50U99HR1xcrbgEyS0t4fNoNhvZ2gADEnAnFzWUr0XD6ZBhXcsLdX9YjNz0ddb79GnomJog9fxG3V66B4dQgmLq6iJo9MyMb1Wo4odMnjRA0puBxk5GRDe/6bmjdti6CZ2wXIWHxsjKy4VbNCa07N8L8SeuV1gmCgHkTQ6Cjq4NJ8wfB0NgAe387gRnf/owlv42HgaFMnND/Y2aoh+2jW+Dcw3gMWnkWCanZcLMzRnJGdoFt23o7op6bFWKSNPekKSU5DQP7zUHDRp74adUYWFqZIjIiFmZmxmJHK+CrQU3Qr0d9jJ26Dw/DXqCOlwP+b0YHvErNwvrf8t/jjQz1cOnqU+w7dBfzpnUQObGyzIxsuFdzgn/nRpg7cX2B9esW/4mblx9i9Iy+sHO0wrXz9/Hz/+2ElY0ZGrWoXfABy9HK+cPgVaMyBo9egeexiejT3Q/7tkzGB63H4VlsIsZ+3RnDB32MLwJX4klUPKaO64G9v05C/dbjkZWVI2r2wjg4WGNMYF+4ujpAEATs2XMSI7/5P+z4Yx6qVqssdjwld66GoV1AU3jUdIFcnoffVv2N2aNXY+GWN++HG5bswZWzdxH4Q38YmRhg7YJdWDBpPWatHilqdjNjPWyb0Qbnbsdi8LzjSEjJhJuDKZJT37xfrgpsgVx5Hr788SRSM3IwpIMnNn7XCu3G/4WMLLmI6YGMjCxUq+6Ezp80xsTR6wqs37TuCLZtOYmpsz+DUyVr/PzT3xj15Sr8vmcSZDI9ERIXTZuO+YD+WyHVefN7cXUPa2xY0Q37jzyCoYEuQpZ3w70HL/D5V7sAAKO/boKfF3VGj4HbIGhgL3ht+pwFgPvxqfhs+zXF7dy8Ny/qwg5eMJPpYujOG0jIyEG3mg5Y3rk2Om+6iNtxqSKkJbFpxLfSnj17ilaMKExCcqbS7S/71kVEdDIuXH+uaMvMysWLRM38gtCoWU00alaz2G309HRhZVOwkiw2xw+8lW7X6tkVj/85hYRH4YoChY5MHwYW5mLEK5FNPeX8VQK6Ifr4SSSHhcO4khNSHj1G9c/7wKxKfiXZrXMHRB06glcRkaIXKHyb14Rv86KPm/adfQAAz6MTyiuSSj5oWhMfNC08//OoF3hwKwKLtoyHSxUHAMCwCQEY0nEGTh+6Cv+uTcozagFf+VfD86R0TNhyVdH2NCG9wHb25gaY9qk3Bq44i7Vf+pZnRJWErP0bDg5WmPHDEEVbJWfN+/UPAHzqVsLh4w9x7FR+T5Snz5LR5WMv1K3tqNhm177bAABnJ8173/FpWhM+RRz3AHD/5hN81KEh6vhUBQC0+8QXB3edw8M7UaIWKAxkeujWvhF6DF2AMxfuAQB+WPQHOvh/gC8+b4MZP27DiCHtMW/ZLvx1OL9QNHTMCkRcXoUubRtg+95Q0bIX5cOPfJRujxrdG1t/P4Tr1x9q3Je1yYuHKd0e8X1vDO0wDY/vPYVXfQ+kp2bg6N4LGDXjM9RuUA0AMHxyL4zpMx8PbkWgem1XMWIDAL7s7IXnL9Mx8efziran8WmKf7s5mOKD6jb4ePw+PHyaDACYsu4izq/sjs5N3bDtmLi9zpo290LT5l6FrhMEAb//ehKDhrVFy1b5PaGmz/kM7T+cghNHb6Jte/F7W75Nm475hKR/ndsP8EFEVBIuXI6GX+PKqORoiq6f/YbUtPzi54Rph3H52DD4NqyMsxc0b9J+bfqcBYBcQUB8WsEfXQDAx8kMkw8/wPX/9XBadu4JhjSojDr2pixQlAInyfwP0tOVoot/NezY/0CpvUvrqji/63PsWxuAsUMbwkCmI1LCd3P9chh6+E/DoO7zsGTOH0hJSiv5TuVMyMtDVOglyLOyYVW1iqI96sxF/PXlePwzcRZu/b4buVmFv+GJTcjLQ+z5i5BnZcPcI78gYVa1CuIuXEZOappifV5ODixqVBc5bcWWk53fw0n/rZ5CUqkUeno6uHs9vKi7lZvWdRxwMzIJPw1qiAs/tMfeCR+il6/yFwCJBFjwuQ/WHHmIhxrQTbk4J45dg1ctN4wfswKtmo9C74Dp2Ln9hNixCnX5ejSaNXaDu4slAKBmdTs0qO+M42cel3BP7VCjjhsunrqNl3HJEAQBNy89wrOoeNRrLO57jq6uDnR1dZD5r/fvzMxsNG1YA24udnC0s8TR07cU61JeZeDitTA09qlW3nFVJpfn4e99Z5CRnoV69TT//T09Nf/Lm4mZEQDg8b2nkOfKUafhm+yV3Oxh42CJBzefiBFRobWPM24+TsCyUX64sKo7/gz+GL1aeSjW6+vln9pmZb/pKSEIQHauHA1qaO4XOAB49vQlXr5IQaMmb153E1ND1KrjipvXn4gXrBS06ZjX05WiS4ca2PHnXQCAvr5O/jHy1jGTnZ2LvDwBPvUci3oYUWnT5ywAuFsY4cLXzXDqC18s6egFJ9M3PVcvP0tBZ087mBvoQgKgs6cdZDpShBYyxJUKqoiTZIrSg8LS0hISSenKPQkJ4v5a69/MDWYm+th58E2BYu+RMETHpiLuZRo8q1hh/LBGqFLZHCOm/SNi0tJr2LQG/FrVgaOTFZ49fYl1y//Gd9/+giUhI6GjI37NKjkyGsen/4i8nBzoGsjQZMwwmDnnf0BUbtoQRjZWMLAwR3JUNG79thupz2PRZMyXIqd+I/VpNK78MB95OTnQkclQ55svYVwpv/dHra+/wO2Vv+D0t2Mh0ZFCqq+POt98BSN7uxIeldRRyc0ONg6W+HXl3/hq4qeQGerjr99O4mVcMhJfpogdDy7WxvjMzx1rjz3CisMP4O1igWkB3siR52Hn/365+cq/GuR5Ataf0PwvztFP47F96zH0G9AOQ4Z1xO2b4ZgfvAW6erro0q2Z2PGUrFwXClNjfRzZPQxyeR50dKT48acT2PP3HbGjlYlh4z7BiuDtGNJ5JnR0pJBIJRjxXU/Uqu9R8p3fo9S0TJy79ABB33bH/UfPEBufhJ5dm6HxB9UR9iQGDrb5vVXiXiQr3S/uRTLsbS1ESFw6Dx5E4rM+3yM7KwdGRgZYsmwcPKo6ix2rWHl5eVi/eDdqeLvBxSP/szbp5Svo6unA2NRQaVtzSxMkJYhbIHWxM8Fn/tWw9u97WLnnNryrWGHqAB/k5OZh58lwPH6Wguj4NIzrUxff/3IBGZlyDOpQA47WxrC1MCx5ByJ6+TL/tbWyVp7nw8raFAkvxP+sKow2HvP+H1aBmYkMO/fmFyiu3YxBRmYOxo9shgXLQyGRAONGNoWurhR2Npo5ZEKbPmevPU/G2P138DgxHXbGMoxu6o7tfXzQNuQ80nLkGPHnLfzUuRZujGyBHHkeMnLzMGzPTURo8FBWTcI5KMrI4sWLy+yxsrKykJWVpdQm5OVAIi2bcXo9OtTAyQtRiHv5prv11n33FP9+EJ6IuIQMbFrQES5Opoh8ptm/bALAR+3eTF7kXs0RVao5on/XYFy/HIYPGon/y5Spkz1azwlCTkYmos9fwaVVG9Hi+zEwc3aEeys/xXbmLpVgYGGO03OWIDU2Hib2mvHLiJGDPRpMnwx5RgbiLl3B3V82oP7EQBhXckL4rj+Rm56OuuNGQ9/EBPFXr+H2yjWoHzQOJs6aM+FkRaOrq4MJcwdgxQ/bMKDtFEh1pPBuWA31fT0BDSgeSyQS3IxKxI9/5Z8s3XmajOqOZujbzB07L0ShdmVzDGzpgc7zj4sbtJTy8gR41XbDyNEBAADPmq549CgaO7Yd17gTp05ta6Jrh1oYFfQnHoS9gFcNO0wd74/Y+FT8sfdWyQ+g4fZtO4X7tyLw3Y+DYedgidvXHivmoKjbSNxfOQePWY6f/+8rPL64Arm5cly7FY5te86ifh3NmuBNFe5uTvhj53y8Sk3HoYPnMDloOdZvnK7RX9jW/rgTUY9jMPPnb8SOUioSKXDrcQIWbL0OALjzJBHVK1ugT+tq2HkyHLlyAcMXnUTwsCa4+ksP5MrzcPZWDI5ffYZS/jZGKtDGY75HVy+cPBuBuBf5vYcTkjLx7cT9mBH0Efr3rou8PAF/HXqAW3fjkJenAScJhdCmz9nj4W9+bL4Xn4Zrz1Nw5sum6ORph603n2OsnzvMZLrou/UqEjJy0LaaDZZ3roUev13B/Rea18Nb07BAUUYGDBhQZo8VHByMGTNmKLVZunWCtXsXtR/byd4ETT9wKrFnxPW7+bO5uziZa0WB4t8cna1hbmGMZ1EvNKJAIdXVhYlDfo8CS3cXJD6OwKODx/BBIVfqsPJwAwCkaVCBQqqrq+gRYermilfhEXj6zzG4tG+L6CPH0WjWVEWPChMXZyQ/eIToo8dRo/9nYsau8Dw8K2PBprFIS81Abo4c5pYmmDR4CTxqin8SFZ+SiUf/GrYRFvsKH9fNP04aetjA2kSG0zPaKtbr6kjxXbfaGNTSAy1mHCrXvCWxsbVAFQ/lKx25V3HCkcOXi7iHeILGfISVIeew92B+cej+o3hUcjTH8MG+Wl+gyMrMwa8r92PSvIFo4Jc/5t2tmhPCH0Rj9+bjohcowiPi0LbnTBgZymBmaoiYuCRsWv4twiPjEBOf33PCzsYcMXFJivvY2Zjjxp0n4gQuBT19Xbi45s9zU6tWFdy+GYZfN/2NaTOGlXBPcaz9cSeunLmDGStHwNrOQtFuYW2K3Bw50l5lKPWiSE5MFf0qHvGJmYq5JV57FJ2Mdo3ezHlwKzwRnYP2w8RQD/q6UiS8ysIfs9oqrvKhqaz/13Mi4eUr2Ni+mfMm4eUrVNOgq2a9TduOeScHUzRtVBkjJvyt1H76fBRad9sIS3MD5Mrz8Co1G2cPDEZUdHIRjyQubfqc/beUrFyEJ6TD1cIQLhaGGPhBZfivO4+HL/OLEXfjU9HI2QL96ztj8uH7IqfVfOL3fS97GvGcwsLC8P3336NPnz6Ii8v/sr9//37cvn27xPsGBQUhOTlZabFybV8muQI+ro6XSZk4fi6y2O1qelgDAOILmdROG8THJiElOV0jJ80EAAgC8nIKv0pKcsRTAICBhYZmR/6kV3m5OZBn/2+s9b9/wpFKIWhohb4iMjYxhLmlCZ5FxiPsXhQainwlAwC4/PglqtiZKLW525ogOjH/PWXXhUh0mHcUneYfUywxSRlYc+QhBqw8W9hDiqpe/aqICFe+FGTkkxg4OlmLlKhohgZ6Bf7/y8vLg6QC/CQhz5UjN1de4LlIpVKN+lUwPSMLMXFJsDA3hn8Lb/x1+BKeRMbheVwiPmr25v9PUxNDNKzngfOXHxbzaJolTxCQna05V/l6TRAErP1xJy6cuImpP30Nu3/9v1nF0xk6ujq4eenNa/0sIg4vYhJRvY5bOadVdvlBPKr863KR7o5meFbIL62pGTlIeJUFNwdT1KlihX8uPS2vmO/Eydka1jZmuHj+zeuempqJ2zcjUKeum3jBVKCpx/xrAV1q4mViBo6fflLo+sTkTLxKzUaTBs6wtjLCkZPiz1NVGG36nP03Iz0duFoYIi4tG4a6+V9FhX9dKkWeJ1TIngFUOqJfxePEiRNo3749mjVrhpMnT+KHH36AnZ0drl+/jrVr12LHjh3F3l8mk0EmU75EYFkM75BI8gsUuw49gPytEzkXJ1N0blUVx89HISklEzU8rDB5uC8uXH+O+xpSmc9Iz0J01AvF7ZhnCXh0PxpmZkYwNTfCptWH4NfaG1bWpnj29CV+WfIXnCpbo4FvDRFT57v1+2441K0FQxsr5GZkIursRcTffYhmE79Bamw8os5ehEO92tA3MUZyZDRu/roDNp5VYe4i/q/gABC2Yxes69SGzNoS8swsxJ67gKT7D1A3cCSMHBxgaGeL+xs3o2rPAOiZmCD+yjUk3rkL71HDxY6O9PQsPI18c9w8i07Ag3vRMDM3goOjJZKT0xH7PBEv4vPHwUY+yb8+tbWNKaw1oLiVkZ6FmKdv8sc9S0D4g2iYmBnB1sESZ49ch5mFMWwcLBEZ9hzrFu5Gwxa1Ua+x+Mf9uuNh2D6mBYa3qY59V6NR19USvZu6YfLWawCApPQcJKUrX1YxVy4g/lUWwjVwhut+/dtiYL85WLv6L7Rp1xC3b4bjjx0nMGV62fWeKytHTj7CiKG+iI5JwcOwF6hVwx5D+jXC9j03FNuYmxmgkqMZ7Gzzi0hVXK0AAPEv0hD/UtzupxnpWXj+r+P+8YNomP7vuK/1gQc2LPsL+jI92Dla4taVMBzffwmDRnUVMXU+/xbekEgkePD4GTzcHDDnu754EPYMG7flT/S2fO1+TPy2Gx49icGTyDhMG9cDz+MS8eehSyInL9yihVvQvHk9ODrZIC0tE/v+Oo2LF+7g5zXfiR2tgLU/7sTpQ1cwYd5gGBrJkPS/uXiMjA2hb6AHIxNDtOrcCBuX/gkTMyMYGcuwbsEuVK/tKuoVPABg3d/3sH1GW3zd1Qt/n4uEt4c1ereqism/XFBs075xZSSkZOHZyzTUqGyBKQN8cPjiU5y+GVPMI5eP/M/aeMXt/M/apzAzN4aDoyV692uBkJ8PobKLLZwqWeHnn/6Gja254qoemkSbjnngf+f2nWti11/3IJcrfyEO6FwTYeEJSEjMQD1vR3w/tjlCtlxDeESSOGFLoE2fs5M/rIp/Hr1AdEom7E30MaZZFcgFAX/ejc3vTZGYjjltPfHD8YdIzMxFu6o2aO5mhcF/3Cj5walCDl2TCP8uWZUzX19f9OjRA4GBgTA1NcX169dRpUoVXLhwAd27d8fTp6pXu6u1WqN2Lr8GlRAyvwPa9N+GJ291JXSwNcaC7z5CNTdLGBnq4nlcGg6ffoIVv15FanrZXJf9yJ8Oat3/+qVHGPflqgLtbTo1wKigAEwbG4Kw+9FIfZUJa1sz+DSpjoFffwxLa/W7ba68Z6TW/S+v3oT42/eRmZQCPSMDmFWuhOqd28K+Tk2kv0zApRXrkfL0OXKzsmBoZQmnBnXh2a099IzKZuKrxCz1OhXdW7cRiXfvISs5BbqGhjBxrgSXDm1hVSu/e3V6bCwe79iNpIePIM/MgqGdLVw+bgOHpupf5nJOA/W+qF65+AgjhhQ8bjp0aYAps3tj356LmD1la4H1Q75qg6HD26m172fp6r+73rr8CNNGrCzQ/mGHBhg5tQ/2bT2FPZuPITkhFRY2ZviwvQ8+HdwGenrq12m7TFP/16JWtewxvrMX3GxNEPUyHWuPPcLW0Igitz85rS1CToQh5Lh6l8y7tfD9DI06efwali3+A5ERsajkbIt+/duie4+WZb4frwan1Lq/sZE+xo5ojrYfVYeNlRFi41Px54E7WPrzGeTk5gEAPu1SBz/O7FjgvotXncbiVaffed/7j6vfe+fm5UeYMrzgcf9RxwYYNbUPEl+mYNPyv3Htwn2kpqTD1sESbbv5okufFqWerLooH3hvVuv+AZ2aYObE3qjkYIWE5FTs+fsCpv3fVqS8ejMx2pTATzG4b2tYmBnh7KX7GDV5HR6Fq/8lM+XJRLUf49+mTF6F8+duIT4+EaamRqhe3QWDh3ZF02beJd9ZRXeS1OsJ0NN3bKHtw7/vhQ87NgIAZGflYOPSP3Hm8FXk5shRt3ENDB3fHRbW6hWku49Qf7LHj+o7YXzvenBzMEVUfCrW/X0PW4++eS8c0K46vuhcE9bmBohPzMSuU+H4aect5Mjz1Nrv5Q2W6kbH5YsPMXzw8gLtHbs0xNQfPoMgCFi9fD927whF6qsM1K1fBRO+/xQubupPpm2sW7ZXpCjPY96rkXrv9QDg17gyQpZ3Q5vum/AkMklp3bhvmqJ7J0+Ymxsg+lkKftt5CyGbr6m9z9eunyv7S8SW1+dszUVZJW9UjGWdaqFxZQtYGOghISMbF58m4/9OP0bk/ybBdLMwxKSWHmhQyQLGejp4kpSO1RejsOtO2RQUI8a3KpPH0VQX4/epdf+GtgXPb8QmeoHCxMQEN2/ehLu7u1KB4smTJ/D09ERmZmbJD/IvZVGgEJO6BQoxqVugEJu6BQoxqVugEFNZFCjEVBYFCrG8rwJFeVG3QCGmsihQiEndAoWY3keBojypW6AQU1kUKMRSFgUKMZV1gaI8lUWBQkzvo0BRXtQtUIitohcoLr1Qr0DRwEbzChSifxuzsLDA8+fPC7RfvXoVlSpp5oRARERERERERGKSqrmoIjg4GA0bNoSpqSns7OzQrVs33L+vPJFpZmYmRowYAWtra5iYmCAgIACxsbEqPydR9e7dGxMnTkRMTAwkEgny8vJw5swZjBs3Dv379xc7HhEREREREdF/2okTJzBixAicO3cOhw8fRk5ODtq2bYu0tDfzcY0ZMwZ79+7F9u3bceLECTx79gzdu3dXaT+iT5I5Z84cjBgxApUrV4ZcLoeXlxfkcjn69u2L77//Xux4RERERERERBpHIim/2RoOHDigdHv9+vWws7PD5cuX0aJFCyQnJ2Pt2rXYsmULWrXKH1oTEhKCmjVr4ty5c2jSpHRz7oleoNDX18eaNWswZcoU3Lp1C6mpqahfvz6qVasmdjQiIiIiIiIijaTuLG5ZWVnIylKeZ6Swq2QWJjk5/0ISVlb5Vze7fPkycnJy4O/vr9jG09MTLi4uCA0NLXWBQvQhHq+5uLigQ4cO6NmzJ4sTRERERERERMWQSNRbgoODYW5urrQEBweXuN+8vDyMHj0azZo1Q+3a+ZN+x8TEQF9fHxYWFkrb2tvbIyam9FdlEaUHRWBgIGbNmgVjY2MEBgYWu+3ChQvLKRURERERERGRdlC3B0VQUFCB7+Ol6T0xYsQI3Lp1C6dPv/vl1osiSoFi/fr1+O6772BsbIyrV68WuZ2612gnIiIiIiIiooJKO5zjbd988w3++usvnDx5Es7Ozop2BwcHZGdnIykpSakXRWxsLBwcHEr9+KIUKJKSkpCXlwcAiIiIwMWLF2FtbS1GFCIiIiIiIiKtIy3H3/MFQcDIkSOxa9cuHD9+HO7u7krrfXx8oKenhyNHjiAgIAAAcP/+fURGRsLX17fU+xGlQGFpaYnw8HDY2dnhyZMnimIFEREREREREZWsPMcbjBgxAlu2bMGePXtgamqqmFfC3NwchoaGMDc3x5AhQxAYGAgrKyuYmZlh5MiR8PX1LfUEmYBIBYqAgAC0bNkSjo6OkEgkaNCgAXR0dArd9vHjx+WcjoiIiIiIiEizleeMCCtXrgQAfPjhh0rtISEhGDhwIABg0aJFkEqlCAgIQFZWFtq1a4cVK1aotB9RChSrV69G9+7d8ejRI3z77bf44osvYGpqKkYUIiIiIiIiIq1Tnj0oBEEocRsDAwMsX74cy5cvf+f9iFKgAICPP/4YQP71UkeNGsUCBREREREREdF/mGgFitdCQkLEjkBERERERESkVSriNS9FL1AQERERERERkWrK8yoe5YUFCiIiIiIiIiItUwHrEyxQEBEREREREWkbiaTkiSu1jVTsAERERERERERE7EFBREREREREpGU4xIOIiIiIiIiIRCepgBUKFiiIiIiIiIiItExFnK+BBQoiIiIiIiIiLVMRe1BUxKILEREREREREWkZ9qAgIiIiIiIi0jIVsAMFCxRERERERERE2qYiDvFggYKIiIiIiIhIy1TA+gQLFERERERERETaRloBKxQsUBARERERERFpmQpYn+BVPIiIiIiIiIhIfOxBQURERERERKRlJBJB7AhljgUKIiIiIiIiIi1TEYd4sEBBREREREREpGV4mVEiIiIiIiIiEl0FrE9wkkwiIiIiIiIiEh97UBARERERERFpmYrY24AFCiIiIiIiIiItUxHnoKiIRRciIiIiIiKiCk6i5lJ6J0+eROfOneHk5ASJRILdu3crrRcEAVOnToWjoyMMDQ3h7++Phw8fqvyMWKAgIiIiIiIi0jISNf9TRVpaGurWrYvly5cXun7+/PlYunQpVq1ahfPnz8PY2Bjt2rVDZmamSvvhEA8iIiIiIiIiKlL79u3Rvn37QtcJgoDFixfj+++/R9euXQEAGzduhL29PXbv3o3evXuXej/sQUFERERERESkZSQSqVpLWQkPD0dMTAz8/f0Vbebm5mjcuDFCQ0NVeiz2oCAiIiIiIiLSOurNkpmVlYWsrCylNplMBplMptLjxMTEAADs7e2V2u3t7RXrSos9KIiIiIiIiIi0jLpzUAQHB8Pc3FxpCQ4OFvU5sQcFERERERERkdZRrwdFUFAQAgMDldpU7T0BAA4ODgCA2NhYODo6KtpjY2NRr149lR6LPSiIiIiIiIiI/mNkMhnMzMyUlncpULi7u8PBwQFHjhxRtKWkpOD8+fPw9fVV6bHYg4KIiIiIiIhIy5TlRJclSU1NxaNHjxS3w8PDce3aNVhZWcHFxQWjR4/G7NmzUa1aNbi7u2PKlClwcnJCt27dVNoPCxREREREREREWke9IR6quHTpEj766CPF7ddDQwYMGID169djwoQJSEtLw7Bhw5CUlAQ/Pz8cOHAABgYGKu2HBQoiIiIiIiIiLSMpxwLFhx9+CEEQis4ikWDmzJmYOXOmWvthgYKIiIiIiIhIy5RngaK8cJJMIiIiIiIiIhIde1AQERERERERaZ2K19+ABQoiIiIiIiIiLSORVLwhHixQEBEREREREWkdFiiIiIiIiIiISGScJJOIiIiIiIiI6D1gDwoiIiIiIiIirVPx+huwQEFERERERESkZSriEA8WKIiIiIiIiIi0DK/iQUREREREREQagAUKIiIiIiIiIhKZpALOQVHxnhERERERERERaR32oCAiIiIiIiLSOhziQUREREREREQi4ySZRERERERERKQBWKAgIiIiIiIiIpFxkkwiIiIiIiIioveAPSiIiIiIiIiItA6HeBARERERERGRyCQsUBARERERERGR2HgVDyIiIiIiIiLSABVvSsmK94yIiIiIiIiISOuwBwURERERERGRlqmIc1CwBwURERERERGR1pGouahm+fLlcHNzg4GBARo3bowLFy6UxZNQwgIFERERERERkZaRSCRqLarYunUrAgMDMW3aNFy5cgV169ZFu3btEBcXV6bPiQUKIiIiIiIiIq0jVXMpvYULF+KLL77AoEGD4OXlhVWrVsHIyAjr1q0rqycDqJyKiIiIiIiIiP4zsrOzcfnyZfj7+yvapFIp/P39ERoaWqb74iSZRERERERERFpG3Ukys7KykJWVpdQmk8kgk8mU2l68eAG5XA57e3uldnt7e9y7d0+tDAUIpJLMzExh2rRpQmZmpthRVKbN2QVBu/Nrc3ZB0O782pxdELQ7vzZnFwTtzs/s4tHm/NqcXRC0O782ZxcE7c7P7OLR9vwVwbRp0wQASsu0adMKbBcdHS0AEM6ePavUPn78eKFRo0ZlmkkiCIJQtiWPii0lJQXm5uZITk6GmZmZ2HFUos3ZAe3Or83ZAe3Or83ZAe3Or83ZAe3Oz+zi0eb82pwd0O782pwd0O78zC4ebc9fEZS2B0V2djaMjIywY8cOdOvWTdE+YMAAJCUlYc+ePWWWiXNQEBEREREREf3HyGQymJmZKS3/Lk4AgL6+Pnx8fHDkyBFFW15eHo4cOQJfX98yzcQ5KIiIiIiIiIioSIGBgRgwYAAaNGiARo0aYfHixUhLS8OgQYPKdD8sUBARERERERFRkXr16oX4+HhMnToVMTExqFevHg4cOFBg4kx1sUChIplMhmnTphXa9UXTaXN2QLvza3N2QLvza3N2QLvza3N2QLvzM7t4tDm/NmcHtDu/NmcHtDs/s4tH2/P/F33zzTf45ptv3us+OEkmEREREREREYmOk2QSERERERERkehYoCAiIiIiIiIi0bFAQURERERERESiY4GCiIiIiIiIiETHq3ioKCUlBUePHkWNGjVQs2ZNseMUKyMjA4IgwMjICAAQERGBXbt2wcvLC23bthU5XcmuXLkCPT091KlTBwCwZ88ehISEwMvLC9OnT4e+vr7ICUtPm44bQLtfe23O/m9RUVEAgMqVK4ucRDV37txBZGQksrOzldq7dOkiUqLSOXDgAExMTODn5wcAWL58OdasWQMvLy8sX74clpaWIics2oYNG2BjY4OOHTsCACZMmIDVq1fDy8sLv/32G1xdXUVOWHra9n6pzceNtp8naHP+wYMHY8mSJTA1NVVqT0tLw8iRI7Fu3TqRkpWONr/2AJCUlIQdO3YgLCwM48ePh5WVFa5cuQJ7e3tUqlRJ7HhFGjx4cLHrNfG4uXHjRqm39fb2fo9JSGsIVKwePXoIy5YtEwRBENLT04Vq1aoJenp6gq6urrBjxw6R0xWvTZs2wsqVKwVBEITExETB3t5ecHZ2FgwMDIQVK1aInK5kDRo0ULzGYWFhgoGBgdCnTx+hatWqwqhRo8QNVwJtPm4EQbtfe23OLgiCkJOTI3z//feCmZmZIJVKBalUKpiZmQmTJ08WsrOzxY5XrLCwMMHb21uQSCSCVCoVJBKJ4t9SqVTseCWqXbu2sG/fPkEQBOHGjRuCTCYTgoKChCZNmggDBw4UOV3xqlevLhw5ckQQBEE4e/asYGRkJPz8889C586dhU8++UTkdMXT9vdLbT5utP08QZvzS6VSITY2tkB7fHy8oKOjI0Ii1Wjza3/9+nXB1tZWqFq1qqCrqyuEhYUJgiAIkydPFj7//HOR0xWvW7duSkvHjh0FV1dXwdzcXGPf698+J3h9PlDUQiQIgsACRQns7e2Fa9euCYIgCJs3bxaqVq0qpKWlCStWrBDq1asncrriWVtbC7du3RIEQRDWrFkjeHt7C3K5XNi2bZvg6ekpcrqSmZmZCY8ePRIEQRDmzp0rtG3bVhAEQTh9+rTg7OwsZrQSafNxIwja/dprc3ZBEISvvvpKsLOzE1atWiVcv35duH79urBq1SrBwcFB+Oqrr8SOV6xOnToJXbt2FeLj4wUTExPhzp07wqlTp4RGjRoJJ0+eFDteiYyNjYXw8HBBEARh2rRpQkBAgCAIgnD58mXB3t5exGQlMzQ0FCIiIgRBEIQJEyYoTrJv3bol2NjYiBmtRNr+fqnNx422nydoY/7k5GQhKSlJkEgkwqNHj4Tk5GTFkpCQIGzYsEFwdHQUO2aJtPG1f61169bC+PHjBUEQBBMTE0WB4syZM4Krq6uIyd6NXC4Xhg0bJsybN0/sKIV68uSJYtm1a5fg4eFR4BynWrVqwq5du8SOShqCQzxKkJycDCsrKwD53TgDAgJgZGSEjh07Yvz48SKnK156erqi6+ChQ4fQvXt3SKVSNGnSBBERESKnK5kgCMjLywMA/PPPP+jUqROA/O7uL168EDNaibT5uAG0+7XX5uwAsGXLFvz+++9o3769os3b2xuVK1dGnz59sHLlShHTFS80NBRHjx6FjY0NpFIppFIp/Pz8EBwcjG+//RZXr14VO2Kx9PX1kZ6eDiD/2Onfvz8AwMrKCikpKWJGK5GJiQlevnwJFxcXHDp0CIGBgQAAAwMDZGRkiJyueNr+fqnNx422nydoY34LCwtIJBJIJBJUr169wHqJRIIZM2aIkEw12vjav3bx4kX8/PPPBdorVaqEmJgYERKpRyqVIjAwEB9++CEmTJggdpwC3h5i2KNHDyxduhQdOnRQtL0+x5kyZQq6desmQkLSNJwkswSVK1dGaGgo0tLScODAAcW4usTERBgYGIicrnhVq1bF7t27ERUVhYMHDyqyx8XFwczMTOR0JWvQoAFmz56NTZs24cSJE4qx1eHh4bC3txc5XfG0+bgBtPu11+bsACCTyeDm5lag3d3dXePnz5DL5YoTVhsbGzx79gxA/snJ/fv3xYxWKs2aNUNgYCBmzZqFCxcuKI6dBw8ewNnZWeR0xWvTpg2GDh2KoUOH4sGDB4qTv9u3bxd6PGkSbX+/1ObjRtvPE7Qx/7Fjx3DkyBEIgoAdO3bg6NGjiuX06dOIjIzE5MmTxY5ZIm187V+TyWSFFg8fPHgAW1tbERKpLywsDLm5uWLHKNHNmzfh7u5eoN3d3R137twRIRFpJHE7cGi+5cuXC7q6uoKFhYVQt25dQS6XC4IgCEuXLhU+/PBDkdMVb/v27YKenp4glUqFNm3aKNrnzJkjfPzxxyImK53r168LtWvXFszMzITp06cr2r/55huhT58+IiYrmTYfN4Kg3a+9NmcXBEGYMWOG0KdPHyEzM1PRlpmZKXz22WdKz0cT+fn5Kbpo9unTR/j444+F06dPC/379xdq1aolbrhSiIiIEDp16iR4e3sLv/zyi6J99OjRwsiRI0VMVrLExERhxIgRQpcuXYT9+/cr2qdOnSrMnj1bxGQl0/b3S20+brT9PEGb8z958kRxrGsjbX7thwwZInTr1k3Izs4WTExMhMePHwsRERFC/fr1NX6uqjFjxigto0ePFnr16iWYmJgII0aMEDteierXry98/vnnQlZWlqItKytL+Pzzz4X69euLmIw0iUQQBEHsIommu3TpEqKiotCmTRuYmJgAAPbt2wcLCws0a9ZM5HTFi4mJwfPnz1G3bl1IpfkdZi5cuAAzMzN4enqKnO7dZGZmQkdHB3p6emJHKZY2HzdF0ZbXvjCanL179+5Kt//55x/IZDLUrVsXAHD9+nVkZ2ejdevW2LlzpxgRS+XgwYNIS0tD9+7d8ejRI3Tq1AkPHjyAtbU1tm7dilatWokdsUi5ubnYsmUL2rZtCwcHB7HjqCwyMhLOzs6K9/nXBEFAVFQUXFxcREpWOtr6fqntxw2g/ecJ2pw/KSkJFy5cQFxcnGJo4muvhwppsqJee3Nzc9SoUUPkdEVLTk7Gp59+ikuXLuHVq1dwcnJCTEwMfH198ffff8PY2FjsiEX66KOPlG5LpVLY2tqiVatWGDx4MHR1NXv0/oULF9C5c2cIgqC4YseNGzcgkUiwd+9eNGrUSOSEpAlYoKigcnJyYGhoiGvXrqF27dpixyEtlZ2dXeiJk6Z/2QG0K/ugQYNKvW1ISMh7TFL2EhISYGlpCYlEInaUEhkZGeHu3btadUnO13R0dPD8+XPY2dkptb98+RJ2dnaQy+UiJav4tPm4IfHs3bsXn332GVJTU2FmZqb0HimRSJCQkCBiupJp+2VSAeDMmTO4fv06UlNT8cEHH8Df31/sSMV6XXC2tbWFoaGh2HHeWVpaGjZv3ox79+4BAGrWrIm+fftqdGGIyhcLFCV4PdHYv0kkEhgYGKBq1aro2rWrYoIvTVKlShXs2rVL8SusNlDli4ymfXgXdawUZuHChe8xifoePHiAIUOG4OzZs0rtgiBAIpFo9Jcdbc5O4vrwww8xevRorZykSyqVIiYmpkCBIiIiAl5eXkhLSxMpWcnkcjnWr1+PI0eOFFpUPHr0qEjJSkebj5tPPvmk0M/ct89x+vbtq1G/hv+7x1lxNLnHWfXq1dGhQwfMmTMHRkZGYsdRWVFF0RcvXsDBwUFj50PQ5h/w8vLyYGBggNu3b6NatWpixyF6bzS7H5AGuHr1Kq5cuQK5XK74gH7w4AF0dHTg6emJFStWYOzYsTh9+jS8vLxETqts8uTJ+O6777Bp0yaNLKAUZvHixWJHeGelvUKBNvySPGjQIOjq6uKvv/6Co6OjVmR+TZuza6OK8mUBAIYPH46xY8fi6dOn8PHxKfBrzuvuqJrkdWFUIpFg6tSpSl905HI5zp8/j3r16omUrnRGjRqF9evXo2PHjqhdu7bW/T+rjcfNa+bm5ti9ezcsLCzg4+MDALhy5QqSkpLQtm1bbN26FfPmzcORI0c0ZqiNubm52BHKRHR0NL799lutK06kpKRAEAQIgoBXr14pTWQrl8vx999/FyhaaBI9PT24uLho5Y8VUqkU1apVw8uXL7W+QHHnzh1ERkYiOztbqb1Lly4iJSJNwh4UJVi8eDFOnTqFkJAQxazEycnJGDp0KPz8/PDFF1+gb9++yMjIwMGDB0VOq6x+/fp49OgRcnJy4OrqWuCk6cqVKyIlI01nbGyMy5cva/z43cJoc/bXduzYgW3bthX64a1p/99WpOEp/56/Acj/4q/JvW9ej0c+ceIEfH19la70oq+vDzc3N4wbN06jT2ZtbGywceNGpcvOaRNtPG5emzRpElJSUvDTTz8pnkdeXh5GjRoFU1NT/PDDD/jqq69w+/ZtnD59WuS0FUv37t3Ru3dv9OzZU+woKpFKpcUWEV9fJlWTr0Sydu1a7Ny5U6t+wHtt7969mD9/PlauXKl1PUAA4PHjx/jkk09w8+ZNxfsk8ObHO01+v6TywwJFCSpVqoTDhw8X6B1x+/ZttG3bFtHR0bhy5Qratm2LFy9eiJSycCVdR3vatGnllER9mZmZBb6oafplrLRZw4YNsWjRIvj5+YkdRWXanB0Ali5dismTJ2PgwIFYvXo1Bg0ahLCwMFy8eBEjRozAD//P3p3H1Zj+/wN/naJ9J3urkhCyj6WikC00Mx+7FkuMJTtjKWtMgzAZyVayhMbO2EK0oELZ0i5rKFFZ2q7fH/06307ndM5hZrruO9fz8TiP6dz3+eOlOZ1z39fyfq9ZQztirfXkyROp57lcY8DNzQ2bN2/m5edikyZNcPXqVbRo0YJ2lG/C5/eNvr4+oqKixH73ycnJ6N69O96+fYt79+6hV69eyMvLoxOyltq1axdWrlwJNzc3WFlZiRVw5upMckREBAgh6NOnD/766y+RG3wlJSUYGRmhSZMmFBPKxucJPF1dXXz8+BElJSVQUlISq0XBte3PVQ0ZMgSKiorYuXMnTExMcOvWLeTk5GDu3LlYv349evXqRTsiwwFsi4cM79+/x+vXr8UGKN68eSPsoayjoyN288wFfBqAkKSwsBALFy7E4cOHkZOTI3aea6Oszs7OCAoKgpaWlsxl71xf6v7bb79hwYIF8PHxkXjhxOWbID5nB4A///wTgYGBGDVqFIKCgrBgwQKYmprCy8uL8xcefMflG0lZuL46RZq5c+di8+bN8Pf35932DoDf75uSkhIkJSWJDVAkJSUJv2NVVFQ4/f+FTyvOKps0aRIAYOXKlWLnuLzyxtbWFgCQkZEBAwMDiSuIuI6P9WIq8HkrNADExMTg8uXLqF+/PhQUFKCgoICePXti7dq1mDlzptzbpZnajQ1QyDB06FC4u7tjw4YN6Ny5MwAgNjYW8+bNE37A3bp1i7MzP3l5eQgLC0NaWhrmz58PPT093L59Gw0bNkTTpk1px5NqwYIFuHLlCrZt24Zx48Zh69ateP78ObZv345169bRjidGW1tbeBHH9z2yFZWs7e3tRY7zYckyn7MD5e0iu3fvDgBQVVVFfn4+AGDcuHHo1q0b/P39acaTia83CxVCQkIQEBCAjIwMxMTEwMjICJs2bYKJiQmGDh1KO161CgsLsW7dumoLTaanp1NKJltkZCSuXLmCv//+G61btxYbVOT6gC4ApKWlYdOmTXj06BEAoFWrVvD09ETz5s0pJ5Nu3LhxmDBhAhYvXixyjePj4yNscxkREYHWrVvTjFmtyivOTpw4IbbijMuq/o3yjZGREW/bpPJ5As/FxYV2hH+ktLRU2Pmlfv36ePHiBSwsLGBkZITHjx9TTsdwBRugkGH79u2YPXs2Ro4cKaxIXKdOHbi4uMDPzw8A0LJlS+zcuZNmTIkSExPh4OAAbW1tZGZmYtKkSdDT08PRo0eRlZWFvXv30o4o1alTp7B3717Y2dnBzc0NvXr1gpmZGYyMjLB//36MGTOGdkQRlWcw+TybCQBXrlyhHeGb8Tk7ADRq1Ai5ubkwMjKCoaEhbty4gXbt2iEjIwNc35HH55sFANi2bRu8vLwwa9YsrFmzRjiYpaOjg02bNnF6gGLixImIiIjAuHHjeFccVkdHB8OHD6cd45udP38eTk5OaN++vbCQZFRUFFq3bo1Tp06hb9++lBNWz8/PDw0bNoSvry+ys7MBAA0bNsTs2bOxcOFCAEC/fv3g6OhIM2a12IozemS1SeXyAEWF+Ph44aBi69atYW1tTTmRbFlZWVLPc7GVemVt2rRBQkICTExM0LVrV/j6+kJJSQmBgYEwNTWlHY/hCsLIJT8/nyQkJJCEhASSn59PO45c7O3tyfz58wkhhGhoaJC0tDRCCCFRUVHEyMiIYjL5qKurkydPnhBCCGnatCm5efMmIYSQ9PR0oq6uTjOaTKtWrSLp6em0YzA8NGHCBLJ8+XJCCCH+/v5EVVWVODg4EB0dHeLu7k45nXQWFhbkwIEDhBDRz5xly5aRadOm0YwmF0tLS3Ls2DFCiGj+e/fukXr16lFMJpu2tjaJjIykHeO71L59e7Jw4UKx4wsXLiTW1tYUEn2b9+/fk/fv39OO8VVUVVVJZmYmIYQQfX19cvfuXUIIIcnJyURPT49mNLkUFBSQM2fOkG3btpHNmzeLPLjO3NyceHp6ksLCQtpRvlp2djbp3bs3EQgERFdXl+jq6hKBQED69OlDXr9+TTueVAKBgCgoKFT74Lpz586Rv/76ixBCSEpKCrGwsCACgYDUr1+fhIeHU07HcAVbQSEnDQ0NTrcKkyQ2Nhbbt28XO960aVO8evWKQqKvY2pqioyMDBgaGqJly5Y4fPgwunTpglOnTkFHR4d2PKmOHDkCb29vdO3aFWPHjsX//vc/1K9fn3asr5KXl4ddu3aJzC64u7vzZvvKx48fJW4z4PrfcWBgoHCp7LRp01CvXj1ER0fDyckJHh4elNNJx/ftKRkZGRJn0JSVlVFYWEghkfx0dXV5V42+tnj06BEOHz4sdtzd3Z1X+8W5Xp9HEj6vOLtz5w4GDhyIjx8/orCwEHp6enj79i3U1NTQoEEDzJw5k3ZEqfjaJhUAZsyYgfz8fDx48ACWlpYAytteuri4YObMmTh48CDlhNWrWqOhuLgYd+7cwcaNG3lRRLt///7Cn83MzJCUlITc3Fzo6uryauUf899iAxQy8Hlfr7KysrCQZ2XJycnQ19enkOjruLm5ISEhAba2tli0aBGGDBkCf39/FBcXY+PGjbTjSZWQkIAHDx5g//79WL9+PWbNmoW+fftizJgxGDZsGOe/0OPi4tC/f3+oqqqiS5cuACD88rtw4QI6dOhAOWH13rx5Azc3N/z9998Sz3O9BkVF0agKI0eOxMiRIykmkh+fbxYAwMTEBHfv3hUrenju3DnhRSxXrVq1Cl5eXggODub854skfK5doq+vj7t374q1cr179y4aNGhAKZV8srOzMW/ePOE1TtW/U65/Xvbp0wcnT56EtbU13NzcMHv2bISFhSEuLk5msWraZs+ejSFDhiAgIADa2tq4ceMG6tati7Fjx8LT05N2PJn69++PuLg4Xi7LP3fuHC5duiTyud6qVSts3boV/fr1o5hMtnbt2okd69SpE5o0aYLff/+d8+/7yp4+fQoAMDAwoJyE4Ro2QCEDn/f1Ojk5YeXKlcKZHYFAgKysLCxcuBA//vgj5XSyzZ49W/izg4MDkpKSEB8fDzMzM87PggPlKw58fHzg4+ODqKgoHDhwALNmzcKUKVMkDhxxyezZs+Hk5IQdO3agTp3yj4mSkhJMnDgRs2bNwrVr1ygnrN6sWbOQl5eHmzdvws7ODseOHUN2djZWr16NDRs20I4nUWJiItq0aQMFBQUkJiZKfa2GhgYMDAzECglyAZ9vFgBgzpw5mDZtGj5//gxCCG7duoWDBw9i7dq1nKwzVNmGDRuQlpaGhg0bwtjYWOz9weWbfL7XLpk0aRImT56M9PR04QqiqKgo/Pbbb5gzZw7ldNK5uroiKysLy5Yt4901DsDvFWd3797F9u3boaCgAEVFRXz58gWmpqbw9fWFi4sL5z8zBw0ahPnz5+Phw4e8apMKlBcolfQdWrduXd4WL7WwsEBsbCztGDKVlJRgxYoV2LJlCwoKCgCUX9fMmDED3t7enLy2YSigu8OE+/i8rzcvL0+4d11RUZEYGBiQunXrEhsbG1JQUEA7nkzBwcHk8+fPYse/fPlCgoODKST6dnfu3CFz584lTZs2JSoqKrTjyKSiokIePXokdvzBgwdEVVWVQiL5NWrUSFivRFNTkzx+/JgQQsiJEydIjx49aEarlkAgINnZ2cKfFRQUiEAgqPaho6NDQkNDKacWV1paSoqLi4XPDx48SGbMmEG2bNlCvnz5QjGZ/Pbt20fMzMyEv+umTZuSnTt30o4l0/Lly6U+uIzvtUvKysrIxo0bSdOmTUXeN5s2bSJlZWW040mloaFB7ty5QzvGd6l+/fokOTmZEFJez+HcuXOEEEIePXpE1NTUaEaTi7TvKK7XQnByciI2Njbk+fPnwmPPnj0jtra2ZNiwYRSTyVZRK6bikZeXRx49ekRGjBhB2rVrRzueTFOmTCENGjQgAQEBwtp+AQEBpFGjRmTKlCm04zEcISCEB+tuKTIxMcHZs2c5v7xXmsjISCQmJqKgoAAdOnQQtmHkOkVFRbx8+VJsiWxOTg4aNGjA+aWnGRkZOHDgAA4cOIDHjx/D1tYWo0ePxk8//cT5Og4NGzZESEiI2FLH8+fPY/z48cJq71ykpaWFxMREGBsbw8jICAcOHECPHj2QkZGB1q1b4+PHj7Qjinny5AkMDQ0hEAjw5MkTqa/98uULjhw5gh07diAzM7NmAsqhpKQEPj4+cHd3R7NmzWjH+cc+fvyIgoICzi/Rrw3U1NTw6NEjGBkZoUGDBrh48SLatWuHlJQUdOvWDTk5ObQjyq2i7kpFGz2ua9WqFfbv38+L7gWSGBsbw93dHa6urpzvXlBVv3794OrqitGjR2PSpElITEzEzJkzERISgnfv3uHmzZu0I9ZaT58+hZOTEx48eCDcXvD06VO0adMGJ0+e5PR3mIKCgthKJ0IIDAwMEBoaih9++IFSMvloa2sjNDQUAwYMEDl+9uxZjBo1Cu/fv6eUjOEStsVDBr7v6wWAnj17omfPnrRjfDVCiMTlps+ePeP8DX63bt0QGxuLtm3bws3NDaNGjULTpk1px5LbiBEjMGHCBKxfv15kyfL8+fMxatQoyumks7CwwOPHj2FsbIx27dph+/btMDY2RkBAABo3bkw7nkSVax5UrX8gyS+//IL4+Pj/MtJXq1OnDnx9fXnRWk4eampqvP3M5xu+1y6pjC8DExU2bdqERYsWCT8n+WbWrFkICgrCypUr0bt3b0yYMAHDhw+HsrIy7Wgy+fj4CAe01qxZg/Hjx2Pq1KkwNzfH7t27Kaer3QwMDHD79m1cunQJSUlJAABLS0teTOBVbaWuoKAAfX19mJmZCbfkcpmysrLEzxoTExMoKSnVfCCGk9gKChmsra2RlpYGQggv9/VKIhAIoKKiAjMzM9jY2EBRUbGGk0lnbW0NgUCAhIQEtG7dWuQDt7S0FBkZGXB0dJRYNZ0rlixZgjFjxqBVq1a0o3yToqIizJ8/HwEBASgpKQFQvjdz6tSpWLduHacv/vbt24eSkhK4uroiPj4ejo6OyM3NhZKSEoKCgjBixAjaEWXKy8vDrVu3JBbm5fIAwNChQ+Hs7AwXFxfaUeRW8XkjDy5/3peWlsLPz6/aQpO5ubmUksk2ceJEGBgYwNvbG1u3bsX8+fPRo0cPYe2SXbt20Y4opkOHDggPD4eurq7M9xCX3ze6urr4+PEjSkpKoKamJnaNw+X3TWW3b99GUFAQDh48iNLSUowePRru7u6cLuhcGxQWFiIiIkLiZw7Xu5AwdKxcuRJJSUnYs2eP8Fryy5cvmDBhAszNzeHt7U05IcMFbIBChhUrVkg9z+U/JBMTE7x58wYfP36Erq4uAODdu3dQU1ODhoYGXr9+DVNTU1y5coVTFXQrfucrVqzA3LlzoaGhITynpKQEY2Nj/Pjjj7wYaS0qKkJGRgaaN2/Oi5Htqj5+/Ii0tDQAQPPmzXk5o/zx40ckJSXB0NCQF61eT506hTFjxqCgoABaWloiNz4CgYDTNwwBAQFYsWIFxowZg44dO0JdXV3kPBeLplX+jP/8+TP+/PNPtGrVSrhM9saNG3jw4AF++eUXrF27llZMmby8vLBz507MnTsXS5cuxZIlS5CZmYnjx4/Dy8uL0zcLZWVlKCsrE35GhoaGIjo6Gubm5vDw8ODkZ/2KFSswf/58qKmp8fo6ITg4WOp5Pg02AuUtF//8808sXLgQxcXFsLKywsyZM+Hm5sa7AqBcJ6tNKte63FU3aScJ1z4vT548Kfdrufg9W7Xg66VLl6CsrCzsSJKQkICioiLY29vj6NGjNCIyHMMGKGqxgwcPIjAwEDt37kTz5s0BAKmpqfDw8MDkyZPRo0cPjBw5Eo0aNUJYWBjltOKCg4MxYsQIqKio0I7y1T59+oTp06cLL/6Sk5NhamqKGTNmoGnTpli0aBHlhLXXypUrMW/ePLHBlE+fPuH333+Hl5cXpWTyadGiBQYOHAgfHx/eDQhVbo9alUAg4HzdmIkTJ6Jx48ZYtWqVyHFvb288ffqU08uumzdvji1btmDQoEHQ1NTE3bt3hcdu3LiBAwcO0I5YK5WWliIqKgpt27aFjo4O7TjfreLiYhw7dgx79uzBxYsX0a1bN0yYMAHPnj3D1q1b0adPH078DdSWlTcAYGdnhxYtWgjbpCYkJIi0SeVaFxITExO5XicQCDg3uCLtu7Uyrn7Purm5yf3aPXv2/IdJGL5gAxS1WPPmzfHXX3+hffv2Isfv3LmDH3/8Eenp6YiOjsaPP/6Ily9f0glZS3l6eiIqKgqbNm2Co6MjEhMTYWpqihMnTmD58uW4c+cO7YhinJ2dERQUBC0tLZkXFlwe4eZ7cVV1dXXcu3ePl73l+U5bWxtxcXEwNzcXOZ6SkoJOnTpxuniXuro6Hj16BENDQzRu3BhnzpxBhw4dkJ6eDmtra85l/5rWulxvK62iooJHjx7JfQNE24cPH6ClpSX8WZqK13HV7du3sWfPHhw8eBAKCgoYP348Jk6ciJYtWwpfc//+fXTu3BmfPn2imLRcbVl5AwA6Ojq4efMmLCwsoKOjg5iYGFhaWuLmzZtwcXER1nZgGIb5Wvxbc14D9PT0kJycjPr160NXV1fqCDeXl1u/fPlSWD+gspKSErx69QoA0KRJE2GRJi6oLb/748eP49ChQ+jWrZvIv6F169bCLRNco62tLczK9SKk0lRXXDUhIQF6enoUEn2d/v37Iy4ujvcDFJ8/f+bd6idVVVVERUWJDVBERUVx/t/SrFkzvHz5EoaGhmjevDkuXLiADh06IDY2lpM1Y9q3b49Xr16hQYMGaN++PQQCgcSCmFydEaysTZs2SE9P580Aha6urnAQV0dHR+LnZcXnKNd/9507d0bfvn2xbds2DBs2TKyGBlA+cz5y5EgK6cRVHnTg+gCELHXr1hXO7Ddo0ABZWVmwtLSEtrY2nj59SjkdwzB8xgYoJPDz8xNW4t60aRPdMP9A79694eHhgZ07dwpbiN25cwdTp05Fnz59AAD37t3j1EVVbfndv3nzRmJ7wsLCQs7ug628rI6PS+wqBrQEAgFatGgh8nsuLS1FQUEBpkyZQjGhfAYNGoT58+fj4cOHsLKyErvg5uL+0gqlpaXw8fFBQEAAsrOzhVubli1bBmNjY0yYMIF2RKlmzZqFqVOn4vbt2+jSpQsA4ObNm9i9ezeWLVtGOZ10w4cPR3h4OLp27YoZM2Zg7Nix2LVrF7KysjB79mza8cRkZGRAX19f+DOfrV69GvPmzcOqVask1l7h2iqEy5cvCwdrq3YE4Jv09HSZnY/U1dV5+Z3GddbW1oiNjYW5uTlsbW3h5eWFt2/fIiQkBG3atKEdT6Znz57h5MmTEgt8bty4kVIq+fC9OGlYWFi1BZ25vrWJqRlsi0c18vPzZbYLi4iIgK2tbQ0l+nqvXr3CuHHjEB4eLrzJKSkpgb29PUJCQtCwYUNcuXIFxcXF6NevH+W0tYuNjQ1+/vlnzJgxA5qamkhMTISJiQlmzJiBlJQUnDt3jnbEb5KYmIhOnTqJfaFwQXBwMAghcHd3x6ZNm0RWgVQUV+V6f3CA33UcVq5cieDgYKxcuRKTJk3C/fv3YWpqikOHDmHTpk2IiYmhHVGmw4cPY/PmzXj06BGA8tZznp6e+N///kc52deJiYlBTEwMzM3NMWTIENpxarXKf7OVB0a5vArhxYsXaNKkidTXhIaGcmblgSzx8fHCv9lWrVrxontHdatEK3dac3V1/ar9+zUpLi4O+fn56N27N16/fo3x48cLi9vu3r1bWACRi8LDw+Hk5ARTU1MkJSWhTZs2yMzMBCEEHTp0wOXLl2lHrBbfipNWtWXLFixZsgSurq4IDAyEm5sb0tLSEBsbi2nTpmHNmjW0IzIcwAYoqmFnZ4fz589XuzQ2IiICgwcP5tT2iMoIIXj69Cn09fWRlZWFx48fAwAsLCxgYWFBOZ38SktLcezYMZELj6FDh3K+I0ZkZCQGDBiAsWPHIigoCB4eHnj48CGio6MRERGBjh070o74TRISEmBtbS3W+pJLIiIi0L17d4lLfZn/lpmZGbZv3w57e3toamoiISFBeAH4ww8/4N27d7QjMhzB96r0lUVEREg9z8WJjDZt2iAyMrLawp6hoaEYP348JwejK3v9+jVGjBiBiIgI4b8lLy8PvXv3RmhoqHCVDhf5+flhzZo1GDBggHDF1q1bt3Du3DnMnj0bGRkZCAkJwR9//IFJkyZRTlu7dOnSBQMGDMCKFSuE31UNGjTAmDFj4OjoiKlTp9KOWC2+FSetqmXLlvD29saoUaNErhO8vLyQm5sLf39/2hEZLiCMRG3atCFOTk6ktLRU7FxERARRV1cn06dPp5BMPqWlpaRu3bokOTmZdpRvdv/+fWJqakrU1NSItbU1sba2Jurq6sTY2Jjcu3ePdjyZUlNTycSJE0nnzp2JpaUlGTNmDElMTKQd6x+5e/cuUVBQoB1DzPv370V+lvZg/jsqKiokMzOTEEKIhoYGSUtLI4QQ8uDBA6Kurk4zWq104sQJUlRUJPxZ2oNrBAKByENBQUHsecWDy4qKikifPn14911rZ2dHunXrRgoLC8XOHTp0iNSpU4f4+vpSSPZ1/ve//5FOnTqRhw8fCo89ePCAdOrUiYwcOZJiMtmcnZ3Jtm3bxI4HBAQQZ2dnQgghW7ZsIW3atKnpaLWehoYGSU1NJYQQoqOjQ+7fv08IKb/GMTIyophMNm1tbZKUlCT8ueK9f+PGDWJhYUEzmlxUVVWF1wn6+vrk7t27hBBCkpOTiZ6eHs1oDIdwexqaovPnz6NXr15wdXXF3r17hcevX7+OwYMHw8XFBX/88QfFhNIpKCjA3NwcOTk5YgXf+GLixIlo3bo14uLioKurCwB49+4dXF1dMXnyZERHR1NOKF3z5s2xY8cO2jG+C7Wp6NvKlSulnudym9RWrVrh+vXrYnvCw8LCxLoJcQWfC/MOGzZMWGhy2LBh1b6Oi+/7yquwLl26hIULF8LHx0e4DSsmJgZLly6Fj48PrYhyqVu3rswuJFx06tQp2NnZYdiwYThz5oxwxdmRI0cwbtw4rF69GvPnz6ecUrZz587h0qVLsLS0FB5r1aoVtm7dyvmtq+fPn8dvv/0mdtze3h5z584FAAwcOJBTbclrS5tUdXV14eqgxo0bIy0tDa1btwYAvH37lmY0mfhenLRRo0bIzc2FkZERDA0NcePGDbRr1w4ZGRkSCyUz3yc2QFGNJk2a4MKFC+jVqxc8PT2xefNmREZGYuDAgRgzZgy2bt1KO6JM69atw/z587Ft2zZeFCyq6u7duyKDE0D5jeiaNWvQuXNniskkk9WurTKuFU2rIOvfwNUtTbWp6NuxY8dEnhcXFyMjIwN16tRB8+bNOT1A4eXlBRcXFzx//hxlZWU4evQoHj9+jL179+L06dO040nE58K8lW/yubztSpZZs2YhICAAPXv2FB7r378/1NTUMHnyZOEWP66qKEi6bt062lHkpqGhgb///hs2NjYYPXo0Dh8+jL/++gtjxozB8uXLsXDhQtoR5VJWViZxO1/dunU5/zehp6eHU6dOiRWxPXXqlPD7rLCwUGY9tJo0dOhQ4dZnaYOiXNetWzdERkbC0tISAwcOxNy5c3Hv3j0cPXoU3bp1ox1PKr4XJ+3Tpw9OnjwJa2truLm5Yfbs2QgLC0NcXBznt6cwNYfVoJAhMTERdnZ2cHJywrFjxzBixAgEBgbSjiUXXV1dfPz4ESUlJVBSUoKqqqrIea7NBlbVrl07+Pn5CTuOVLh8+TI8PT1x7949SskkU1BQkLtDB9dmMyvI+jdweRWCqakpYmNjUa9ePdpR/nUfPnyAq6srhg8fjnHjxtGOI9X169excuVKJCQkoKCgAB06dICXlxe6d+8ODQ0N2vEYDlJVVUVsbKzYxXViYiK6du2KT58+UUomnxkzZmDv3r0wNzeX2MWDyx0Bnj59ip49e8Lc3BzXr1/HsmXLsHTpUtqx5DZ06FDk5eXh4MGDwqKfz58/x5gxY6Crqys24MslO3bswNSpUzFw4EBhDYrY2FicPXsWAQEBmDBhAjZs2IBbt27h0KFDlNPWLunp6SgoKEDbtm1RWFiIuXPnCgt8bty4UWZnGJr4XJwUKB9ULCsrE9aSCw0NFeb38PCAkpIS5YQMF7ABimpUnkmOiorC8OHDMWzYMGzfvl3kBo6rM+FAeVcDaVxcXGooybc5e/YsFixYgOXLlwtHtG/cuIGVK1di3bp1IrNtXPj/ULlQWmZmJhYtWgRXV1eRJcvBwcFYu3YtZ3/3soq9VeBi0TcFBQXhcvfa6N69exgyZAgyMzNpRxHj5+cntZVlfn4+HB0dERUVVYOp/j23b9+Gl5cXJ1eBfPr0CeHh4Rg8eDAA4Ndff8WXL1+E5xUVFbFq1SqoqKjQiiiTjY0NVFRUhN2lACA7Oxvjx4/H58+f5f5coqV3797VnhMIBJzsCFB5W0pSUhLGjx+PoUOHYsmSJSKva9u2bU1H+ypPnz6Fk5MTHjx4AAMDA+GxNm3a4MSJE8JjXBUVFQV/f3+RQuYzZsxA9+7dKSdjmH9fSUkJfHx84O7ujmbNmtGOw3AYG6CoRtWZ5IpfU8UxLs8k1xaSWrfx5f+Dvb09Jk6ciFGjRokcP3DgAAIDA3H16lU6wWqx2j5AERkZiSFDhnCyE4aqqiq2b9+O8ePHi50rLCxEv379kJOTg6SkJArp5HP+/HlcvHgRSkpKmDhxorD7yKJFi3Dq1Cn0798fZ8+epR1TTEBAAM6cOYNTp04BADQ1NdG6dWvhirmkpCQsWLBA6gASbampqRg+fDiSk5NFbjLNzc1x/PhxmJmZUU5Y+1Rc41R8h1b+bq38M9e+WyUhhODSpUvCzxdLS0s4ODhQTiVdcXExPDw8sGzZMpiYmNCO80343iaVoUNDQwP379+HsbEx7SgMh7EaFNXg+z72qj5//izWLowLqw6k4fP/g5iYGAQEBIgd79SpEyZOnEgh0ffh/Pnz0NbWlvoarrcs3LJli8hzQghevnyJkJAQDBgwgFIq6UJCQjBu3Djo6OiI/H4LCgrg6OiIN2/ecHoWfNeuXZg0aRL09PTw7t077Ny5Exs3bsSMGTMwYsQI3L9/X6QIH5fs378fCxYsEDl24MABmJqaAgD27duHrVu3cnqAwszMDImJibh48aLYTaa82+aYr5ORkUE7wr9GIBCgb9++6Nu3r/AYl1c9AeU1Mv766y8sW7aMdpRv5uXlVW2b1GnTpiEjIwNTp05FSUkJ59qk8nlwpbripFWzS1vZRZO9vT0iIiLYAAUjFVtBUYsVFhZi4cKFOHz4MHJycsTO82FmhK8sLCwwdOhQ+Pr6ihxfsGABTpw4IVzOyfx7Kq+4qQ4fZgSrzqYpKChAX18fffr0wa+//sqpgmmV7dy5E56enjhz5gzs7OxQWFgIR0dHvHr1ChEREcL94VzUtm1bjBs3DvPnz8dff/2Fn3/+Gd26dcPhw4c5vwy1cePGiImJEV7s6evrIzY2Vvg8OTkZnTt3xvv37+mF/A7ExcXh8OHDyMrKEpsMOHr0KKVUtRtfVz1VcHFxQfv27Tk9eCjNjz/+iL59+2LKlCkix7dv344LFy7gr7/+wh9//IHAwEDO1Qzz8/OrdnBl9uzZyMjIQEhICP744w/ODa78+uuv2LZtG6ysrERqlyQmJsLV1RUPHz5EeHg4jh49iqFDh1JOKy4gIAArVqzAmDFjJNbs4fokElMz2ABFLTZt2jRcuXIFq1atwrhx47B161Y8f/4c27dvx7p16zBmzBjaEeXy8eNHiRd9XN4be/bsWfz4448wMzND165dAZR/+aWkpOCvv/7CwIEDKSesfWr7Fg8+8PX1xZo1a3DixAl4eXnh+fPniIiI4PxNvrq6Oh48eABjY2MQQqCsrIwrV66gR48etKPJpKqqirt378LCwkLi+aSkJLRv3x6fP3+u4WRfJzw8HOHh4Xj9+rVY94Xdu3dTSiWf0NBQjB8/Hv3798eFCxfQr18/JCcnIzs7G8OHD8eePXtoR6x1qq56qlevnsiqJ09PT86ueqqwevVqbNiwAfb29hJv1GbOnEkpmXw0NDRw9+5dsS1YqampaN++PQoKCpCWliYsRMklfB5cmTRpEgwNDcVW36xevRpPnjzBjh074O3tjTNnziAuLo5SyupJm0ziwyQSU0MIU2sZGBiQK1euEEII0dTUJCkpKYQQQvbu3UsGDBhAMZl8Xr9+TQYNGkQUFBQkPrguKyuL/Prrr2T48OFk+PDhZPHixSQrK4t2rFpLQUGBZGdn047xj4SGhpLRo0eTn376iWzbto12nG+ycOFCoqCgQExNTXnzfhcIBCLvHQ0NDZKWlkYxkfzMzMxIWFhYtecPHTpEmjdvXoOJvt7y5cuJgoIC6dKlCxk6dCgZNmyYyIPrrKysiL+/PyHk/947ZWVlZNKkScTLy4tyutrJysqK+Pr6EkIICQsLIwKBgPzwww/k6dOnlJPJz9jYuNqHiYkJ7XgyGRgYkI0bN4od37hxIzEwMCCEEJKQkEAaNmxY09FkUldXF14TV5aSkkLU1dUJIYSkpqYSNTW1mo4mk5aWVrXZtbS0CCGEPHr0iGhoaNR0NIb517AaFLVYbm6ucB+ylpaWsK1oz549MXXqVJrR5DJr1izk5eXh5s2bsLOzw7Fjx5CdnS2cdeA6AwMD+Pj40I7xTdzd3bF582ax7QSFhYWYMWMGJ2c0Cc8Xg23btg3Tpk2Dubk5VFVVcfToUaSlpeH333+nHU2mqr3L69ati/r168PT01PkOJeXuu/cuVPYBrWkpARBQUGoX7++yGu4OKM5cOBAeHl5YdCgQWKdOj59+oQVK1Zg0KBBlNLJJyAgAEFBQZxvoVudtLQ04e9YSUkJhYWFEAgEmD17Nvr06YMVK1ZQTlj7pKWl4eeffwZQ/vlTp04d/P7775xfrVUZ3+uALFu2DFOnTsWVK1cktkkFgIsXL3Ky65eenh5OnToltr3m1KlT0NPTA1B+vcPFLZUqKiqIjo4WW7kSHR0t/A4oKyvjdOemCp8/f+ZFTqbmsQGKWszU1BQZGRkwNDREy5YtcfjwYXTp0gWnTp2Cjo4O7XgyXb58GSdOnECnTp2goKAAIyMj9O3bF1paWli7di3nL7qvX7+O7du3Iz09HUeOHEHTpk0REhICExMTkRapXBQcHIx169aJfTl/+vQJe/fu5eQAhYuLi7BzAR/5+/vD29sb3t7eAMqLG3p4ePBigKJqYdKq3Wu4ztDQEDt27BA+b9SoEUJCQkReIxAIODlAsXjxYhw+fBgWFhaYPn06WrRoAQB4/Pgx/P39UVJSgsWLF1NOKV1RURGv2yrq6uoiPz8fANC0aVPcv38fVlZWyMvLw8ePHymnq50+ffoENTU1AOV/m8rKymjcuDHlVN+mqKgIGRkZaN68OerU4c9l+aRJk9CqVSv4+/sLB58tLCwQEREh/HueO3cuzYjV4vPgyowZMzBlyhTEx8ejc+fOAMqz79y5U/hZf/78ebRv355iyuqVlpbCx8cHAQEByM7ORnJyMkxNTbFs2TIYGxtjwoQJtCMyXEB7CQeXFRUVEUVFRXLv3j3aUb7Jxo0byebNmwkhhFy8eJGoqKgQZWVloqCgQDZt2kQ5nWyampokIyODEEKIoaEhiYyMJIQQkp6eTlRVVSkmky0sLIyoqqqSiRMnEmVlZeFy8T/++IPT22vev39P8vLyiEAgIKmpqeT9+/fCR25uLgkODiaNGzemHbNWUlFREb7fCSGktLSUKCkpkRcvXtALxfBCeno66d+/P1FQUCACgYAIBAKioKBA+vfvz4utKgsWLCArV66kHeObjRo1imzYsIEQQsjKlSuJvr4+mThxIjEyMiLDhw+nnE4+2dnZ5Nq1a+TatWu82ConEAjImjVryObNm8nmzZuJiooKWbZsmfB5xYPLCgsLibu7O1FUVCSKiorCv9Xp06eTtWvXUk4nXVFREXFzcyPp6em0o3yzyMhIMnLkSGJtbU2sra3JyJEjSVRUFO1Yctm3bx/p1q0b0dXVJbq6uqRbt25k//79wvMfP34knz59opiweitWrCCmpqZk3759RFVVVfi+Dw0NJd26daOcjuEKViRTBlNTUxw7dgzt2rWjHeUfe/LkCeLj42FmZsbpApMVOnfujNWrV6N///5wcnKCjo4O1q5diy1btiAsLAxpaWm0I1bL2toas2fPxvjx46GpqYmEhASYmprizp07GDBgAF69ekU7okQKCgpS2/oJBAKsWLECS5YsqcFU3wcFBQVkZ2dDX19feKzye4dhZMnNzUVqaiqA8tadFUuVuc7T0xN79+5F27Zt0bZtW9StW1fk/MaNGyklk09ubi4+f/6MJk2aoKysDL6+voiOjoa5uTmWLl0KXV1d2hGrlZ+fj19++QWhoaHC4nSKiooYMWIEtm7dKrNtMy3GxsYyW9AKBAKkp6fXUKKv5+npiaioKGzatAmOjo5ITEyEqakpTpw4geXLl+POnTu0I0qlra2Nu3fvinWeYhhpzMzMsH37dtjb24tc4yQlJeGHH37Au3fvaEdkOIA/a8koWbJkCRYvXoyQkBDeXOxVx8jICEZGRrRjyM3T0xMvX74EAHh7e8PR0RH79++HkpISgoKC6IaT4fHjx7CxsRE7rq2tjby8vJoPJKcrV66AEII+ffrgr7/+EnnPKykpwcjIiNPtIvlu2bJlwmXLQPnS3zVr1ojcJHD9Zo2hR09PT7hcmU8SExOFy5Hv378vck7WTShNLi4usLe3h52dHQwNDQGUDzQuWrSIcjL5TZw4EXfu3MHp06fxww8/AABiYmLg6ekJDw8PhIaGUk4oWWZmJu0I/9jx48dx6NAhdOvWTeR93rp1a05PwFQYNmwYjh8/zts2qWVlZUhNTZXYOUjS9RvXFBUVScxe8VnEVc+fPxernwGU//8oLi6mkIjhIjZAIYO/vz9SU1PRpEkTGBkZibWBun37NqVk8uFz67axY8cKf+7YsSOePHmCpKQkGBoaihWv45pGjRohNTUVxsbGIscjIyM5PRtesd8yIyMDBgYGUttBMf8uGxsbPH78WORY9+7dRWYAuXyzxjDf6sqVK7QjfJMnT57Aw8MDRUVFMDY2Ru/evdG7d2/06dOHN/UQTp8+jfPnz4vURerfvz927NgBR0dHislqvzdv3khsi11RZJXrzM3NsXLlSkRFRfGuTeqNGzcwevRoPHnyRKzANtdbXaakpMDd3R3R0dEixwkhnM8OAK1atcL169fFJkzDwsJgbW1NKRXDNWyAQoZhw4bRjvDNVqxYgZUrV6JTp05o3LgxL77wKnz48AEaGhoiN8hqamrC3tpcN2nSJHh6emL37t0QCAR48eIFYmJiMG/ePLHe1VxU8cXx8eNHZGVloaioSOQ8l7cI8bEDCQBcvXqVdgSGYb7C1atX8eXLF0RHR+Pq1au4evUq9u3bh+LiYpibmwsHKyq6TXBRvXr1JG7j0NbW5vTWlNqgU6dOOHPmDGbMmAHg/wagd+7cKVzNwmW7du2Cjo4O4uPjER8fL3KOq0WFK0yZMkX4++fb9bGrqyvq1KmD06dP8y47AHh5ecHFxQXPnz9HWVkZjh49isePH2Pv3r04ffo07XgMR7AaFLVY48aN4evry7vWbceOHcPChQtx9+5dkeXuQPlNZocOHbB+/XoMGTKEUkLZCCHw8fHB2rVrhVXclZWVMW/ePKxatYpyOtnevHkDNzc3/P333xLPc3mEXlFRES9fvhSbmXr79i0aNWqEkpISSskYhqmsanva6nC5PW1Vnz9/RnR0NP7++28EBgaioKCA05+XgYGBOHLkCEJCQtCoUSMAwKtXr+Di4gJnZ2d4eHhQTlh7RUZGYsCAARg7diyCgoLg4eGBhw8fIjo6GhEREejYsSPtiLWWuro6EhISJG414Dp1dXXEx8ejZcuWtKN8s+vXr2PlypVISEhAQUEBOnToAC8vL/Tr1492NIYj2AoKOeTl5QmLMs6fPx96enq4ffs2GjZsiKZNm9KOVy2+tm7btm0bFixYIDY4AZR/MC9cuBD+/v6cHaAoLS1FVFQUpk2bhvnz5yM1NRUFBQVo1aoVNDQ0aMeTy6xZs5CXl4ebN2/Czs4Ox44dQ3Z2NlavXo0NGzbQjifRhw8fQAgBIQT5+fkivbVLS0tx9uxZictpmX9PcHAw6tevL2wBvGDBAgQGBqJVq1Y4ePAg52vgVDe4lZOTgwYNGnD2RrO4uBgeHh5YtmwZrwrWcbUA47coKipCTEwMrl69iitXruDmzZto0qQJfvzxR9rRxFhbW4vMuqakpMDQ0FC4dz0rKwvKysp48+YNG6D4D/Xs2RN3797FunXrYGVlhQsXLqBDhw6IiYmBlZUV7Xhy42Ob1K5duyI1NZWXAxStWrXC27dvacf4R3r16oWLFy/SjsFwGFtBIUNiYiIcHBygra2NzMxMPH78GKampli6dCmysrKwd+9e2hGrtXDhQmhoaPBiS0FlTZo0wbVr16r94khNTYWNjQ1evHhRw8nkp6KigkePHvHqZqGyxo0b48SJE+jSpQu0tLQQFxeHFi1a4OTJk/D19UVkZCTtiGJYBxL6LCwssG3bNvTp0wcxMTFwcHCAn58fTp8+jTp16nB+JlxBQQGvXr0SG6B48eIFmjdvjk+fPlFKJhurqF/zrl27JjIgYWhoCFtbW9ja2sLGxgbNmjWjHVGiFStWyP1ab2/v/zAJw2cfP37EjBkzEBwcDABITk6GqakpZsyYgaZNm3K6WOyxY8ewdOlSzJ8/H1ZWVmKdg7i8jfXy5ctYunQpfHx8JGbX0tKilIxh/j38GOqkaM6cOXB1dYWvr6/InvaBAwdi9OjRFJNJNmfOHOHPZWVlCAwMxKVLl3jVuu3du3dSl+EXFxdzvg1RmzZtkJ6eztubhcLCQuFNmq6uLt68eYMWLVrAysqKs4VhWQcS+p4+fSocWDx+/Dh+/PFHTJ48GT169ICdnR3dcFJs2bIFQPkg1s6dO0VWOpWWluLatWucX07L94r6fFTRvWPhwoUIDQ1Fw4YNaUeSS20bdOBzN4bS0lIcO3YMjx49AlA+Oz506FBerET49ddfkZCQgKtXr4oUVHVwcMDy5cs5PUBRsbLJ3d1deEwgEPCi0KSDgwMAwN7eXuQ4l7Pr6urKXSsjNzf3P07D8AH3PwEpi42Nxfbt28WON23aFK9evaKQSLqqfbP52LrN2NgYcXFx1d4QxMXFcX6p+OrVq4X1JiRVt+b6CLeFhQUeP34MY2NjtGvXDtu3b4exsTECAgI4W52edSChT0NDAzk5OTA0NMSFCxeEA6YqKiqcXn3g5+cHoPwCLyAgAIqKisJzSkpKwvc+l/G5oj5fLViwAFevXsWsWbOwbds22Nraws7ODra2tpzvNFVb8Lkbw4MHD+Dk5IRXr17BwsICAPDbb79BX18fp06dQps2bSgnlI7PbVIzMjJoR/hmfOx6tGnTJuHPOTk5WL16Nfr37y/S2vj8+fO8W/HN/HfYFg8ZGjRogPPnz8Pa2hqamppISEiAqakpLl68CHd3dzx9+pR2xFpnyZIl2LdvH27duiU2I/Xq1St07doVY8eOxZo1aygllK3yzXHlL24uj3BXtm/fPpSUlMDV1RXx8fFwdHREbm4ulJSUEBQUhBEjRtCOKBPfOpAkJibK9Tqu5geAMWPGICkpCdbW1jh48CCysrJQr149nDx5EosXLxYbKOWa3r174+jRo7zsXiBttZZAIBBpV8v8uwoKCnD9+nVhJ487d+6gRYsWsLW1Re/evfHTTz/Rjlit0tJS+Pn54fDhwxI/L7k+m9m+fXu0aNECK1askNjRgMt1Tn744Qfo6+sjODhY+Jnz7t07uLq64s2bN2JtJLlGTU0N9+/fh6mpqcj1cUJCAmxsbPD+/XvaERkO+vHHH9G7d29Mnz5d5Li/vz8uXbqE48eP0wnGcAoboJBh4sSJyMnJweHDh6Gnp4fExEQoKipi2LBhsLGxERkV5IrS0lI8ePAA5ubmUFVVFTn36dMnpKSkoE2bNpydYc7Pz8cPP/yArKwsjB07VjizkJSUhP3798PAwAA3btwQayPJJREREVLPV8z288XHjx+RlJQEQ0NDzs8M8rUDSUUNDUkfyXxZepqXl4dly5YhKysLU6dOFS779fb2hpKSEqv/wXwXcnNzsXHjRvzxxx+c7+Lh5eWFnTt3Yu7cuVi6dCmWLFmCzMxMHD9+HF5eXpxfecPnbgyqqqqIi4tD69atRY7fv38fnTt35vSqM6B8+8zPP/+MGTNmQFNTE4mJiTAxMcGMGTOQkpKCc+fO0Y4o08OHDyUOzDk5OVFKJJ/r169j+/btSE9Px5EjR9C0aVOEhITAxMQEPXv2pB1PKg0NDdy9e1fsbzY1NRXt27dHQUEBpWQMpxBGqry8POLg4EB0dHSIoqIiMTAwIHXr1iU2NjakoKCAdjyJ9uzZQzp27EhKSkrEzhUXF5OOHTuSkJAQCsnkl5eXR6ZOnUr09PSIQCAgAoGA6OrqkqlTp5Lc3Fza8Wq1oqIiYmpqSh4+fEg7yjcZPXo06dGjB4mNjSXq6urkwoULJCQkhFhYWJDTp0/TjletzMxMuR5cVVxcTFasWEGePn1KO8o3KykpITt37iSjRo0i9vb2pHfv3iIPPvjy5QtJSkoixcXFtKN8N0pLS8mNGzfIunXriKOjI9HU1CQCgYAYGRkRV1dX2vGkMjU1FX4uamhokNTUVEIIIZs3byajRo2iGU0uvXv3Jn///TftGN+kbdu2JDw8XOx4eHg4adOmDYVEX+f69etEQ0ODTJkyhaioqBBPT0/St29foq6uTuLi4mjHkyotLY20bduWCAQCoqCgILzOVFBQIAoKCrTjSRUWFkZUVVXJxIkTibKyMklLSyOEEPLHH3+QAQMGUE4nm6GhIVm/fr3Y8fXr1xNDQ0MKiRguYiso5BQZGYnExERhv96KIjVc1KtXL0ybNg0jR46UeP7w4cPw9/fHtWvXajjZ1yOE4O3btyCEQF9fn9O1MyTh2zaDCk2bNsWlS5dgaWlJO8pX42MHktpCQ0MD9+/fh7GxMe0o32T69OkICgrCoEGDJC4Xr6hVwUV8q6h/8uRJDBgwAHXr1sXJkyelvpars5m+vr64evUqoqKikJ+fj6ZNm8LOzg69e/dG7969eVEkWV1dHY8ePYKhoSEaN26MM2fOoEOHDkhPT4e1tTXnl+nzuRvD2bNnsWDBAixfvhzdunUDUF5TY+XKlVi3bp3ITDhX61alpaVh3bp1SEhIEF4fL1y4kPNtUocMGQJFRUXs3LkTJiYmuHXrFnJycjB37lysX78evXr1oh2xWtbW1pg9ezbGjx8vsrXmzp07GDBgACfr41UWFBSEiRMnYsCAAejatSsA4ObNmzh37hx27NgBV1dXugEZbqA7PsL8F/T19UlGRka159PT00n9+vVrLtB36PXr12TQoEHC0fiqD65bs2YNcXFx4eUsrKampvD9b2hoSCIjIwkh5e97VVVVismkW7p0qdTf95MnT4iDg0MNJvp6Tk5OJCgoiHaMb1avXj1y5swZ2jG+ycyZM0nHjh3J9evXibq6unBW7fjx46R9+/aU04kTCAQkOztb+HN1Dy5/XjZu3JiMGjWKBAYGkpSUFNpxvkmLFi3IjRs3CCGE9OjRg6xdu5YQQkhoaCjR19enGU0u1b1nuP7eIYSIZZY0k8+Hfwcf1atXjyQkJBBCCNHS0iJJSUmEkPLVK1z8vKxMVVVVeI2joaEh/KxPS0sjysrKFJPJ78aNG2T06NHE2tqaWFtbk9GjRws/hxiGEEJYFw85hIeHw8/PT9gGytLSErNmzeLsKorCwkJ8+PCh2vP5+fn4+PFjDSb6/syaNQt5eXm4efMm7OzscOzYMWRnZ2P16tXYsGED7XgyxcbGIjw8HBcuXICVlZVYR4CjR49SSiYbHzuQAEBwcDBOnz6NkJAQsert27dvx/z589GjRw9K6eQzYMAALFq0CPfu3ZPYSYKrM+EVlJSUeLmXHeBfRf3K7SCrtobkixcvXtCO8I8NHz4c4eHh6Nq1K2bMmIGxY8di165dyMrK4kXLWtaNgS6+tkktLS0V1jGrX78+Xrx4AQsLCxgZGeHx48eU00nXqFEjpKamiq1UjIyMhKmpKZ1QX6lr167Yv38/7RgMh3H7E4QD/vzzT3h6euKnn36Cp6cngPIleAMHDoSfnx+mTZtGOaE4c3NzREdHV7u0MTIyEubm5jWc6vty+fJlnDhxAp06dYKCggKMjIzQt29faGlpYe3atRg0aBDtiFLp6OgI+4TzjaenJ16+fAmgvDijo6Mj9u/fL+xAwlX379/H9OnT0alTJ3h7e2PhwoV49uwZ3N3dERsbi/Xr12Py5Mm0Y0r1yy+/AAA2btwodo7rBT4BYO7cudi8eTP8/f15t53szZs3aNCggdjxwsJC3v1bmJqzbt064c8jRoyAoaEhYmJiYG5ujiFDhlBMJh+utxyXhm/Fsqvic5vUNm3aICEhASYmJujatSt8fX2hpKSEwMBAzt/kT5o0CZ6enti9ezcEAgFevHiBmJgYzJs3jxdtOm1tbTFhwgT8/PPPYoX8GaYCq0EhQ7NmzbBo0SKxdjhbt26Fj48Pnj9/TilZ9Xx9feHr64vLly+LDVIkJCTA3t4eCxYswIIFCyglrP20tLSQmJgIY2NjGBkZ4cCBA+jRowcyMjLQunVrtoKlBvGpAwkAnDhxAh4eHmjUqBEyMjLQpUsX7Ny5k9cX4lzm7Ows8vzy5cvQ09ND69atxfazc3nlEN8r6hcWFiIiIkJizR6ud5Jg6ONjNwZZdcBsbGxqKMm34XOb1PPnz6OwsBDOzs5ITU3F4MGDkZycjHr16uHQoUPo06cP7YjVIoTAx8cHa9euFV5LKisrY968eVi1ahXldLLNmjULBw4cwJcvX/C///0PEyZMENZgYZgKbIBChura4aSkpMDa2pqT7XCKi4vRr18/REZGwsHBAS1btgRQ3qbz0qVL6NGjBy5evCh28c38ezp37ozVq1ejf//+cHJygo6ODtauXYstW7YgLCyMk0uua4Pi4mK0bNkSp0+f5mWBTwDIzs7G2LFjER4eDnV1dZw+fZqXM22fP3+GiooK7Rgyubm5yf3aPXv2/IdJ/pnIyEgMGDAAY8eORVBQEDw8PPDw4UNER0cjIiICHTt2pB2xWnfu3MHAgQPx8eNHFBYWQk9PD2/fvoWamhoaNGiA9PR02hFrla8pUKqhoYGWLVuiSZMmNZTu66Snp2P48OG4d++eSJvmilVDXF61JanVe+XVTlzODvC/TWpVubm50NXV5c2Ks6KiIqSmpqKgoACtWrWChoYG7UhyKykpwcmTJxEcHIy///4bZmZmcHd3x7hx49CwYUPa8RgOYAMUMowePRrW1taYP3++yPH169cjLi4OoaGhlJJJV1xcDD8/Pxw4cAApKSkghKBFixYYPXo0Zs2aBSUlJdoRJdqyZQsmT54MFRUVbNmyRepruTyrtm/fPpSUlMDV1RXx8fFwdHREbm6ucJvBiBEjaEeUKSwsDIcPH5Y4K3X79m1KqWTjcweSgwcPYvr06Wjfvj3+/PNP7Nq1C5s3b8Yvv/yCtWvXcv6Gv7S0FD4+PggICEB2drawk8SyZctgbGyMCRMm0I5Yq/G1or6dnR1atGiBgIAAaGtrIyEhAXXr1sXYsWPh6ekptsqF+WcUFBTw6tUrNGjQQOJNclWKiorw9fXlZE0KPndjqNohpbi4GHfu3MGyZcuwZs0a2NvbU0omn3bt2sHPz09stcHly5fh6emJe/fuUUrG8Mnr168RGBiINWvWoLS0FAMHDsTMmTM5vYqFqQHUynPyxKpVq4i2tjYZOHAgWbVqFVm1ahUZNGgQ0dHRIatWrSKbN28WPph/ztjYmLx9+1b4c3UPExMTykm/TmFhIYmPjydv3ryhHUUumzdvJhoaGmT69OlESUmJeHh4EAcHB6KtrU0WL15MO55UfO1A4uzsTNTV1cmWLVtEjkdFRZEWLVqQFi1akOjoaErp5LNixQpiampK9u3bR1RVVYXVxUNDQ0m3bt0op2O4SltbW1hFX1tbmzx8+JAQUl7p3cLCgmY0uRUXF5OLFy+SgIAA8uHDB0IIIc+fPyf5+fmUk/0zX758IXv27CGNGjWiHUUiPndjqM7Vq1dJhw4daMeQ6cyZM6R169bkyJEj5OnTp+Tp06fkyJEjxMrKipw5c4a8f/9e+OCSy5cvk/Xr1ws7fAUEBBADAwNSv359MnHiRPLx40fKCavH5+yS3Lx5k0yZMoXo6OgQQ0ND4uXlRSZMmEBUVVXJ3LlzacdjKGIrKGSQt4+5QCBgy1CZWqNly5bw9vbGqFGjRPpse3l5ITc3F/7+/rQjVquiKr2GhgavOpD06NEDQUFBEgvYfvr0CYsWLcK2bdvEVrNwiZmZGbZv3w57e3uR901SUhJ++OEHvHv3jnZEqaytrSUu7xUIBFBRUYGZmRlcXV3Ru3dvCulk42tFfX19fURHR8Pc3BwtWrTAH3/8gf79+yMpKQkdO3ZEYWEh7YhSPXnyBI6OjsjKysKXL1+EK4c8PT3x5csXBAQE0I74j+Tn58Pb21ti8VvadHV1cfv2bZiYmKB58+bYuXMnevfujbS0NFhZWfGy3lNSUhI6derEyS3ElVVefVPxuUmqbLEhhHCqQPKOHTswdepUmJiY4OnTp/D29saaNWswbtw4KCgoYN++fZg6dapI8Viu4HP2yl6/fo2QkBDs2bMHKSkpGDJkCCZOnIj+/fsL3zeRkZFwdHTk/N8A89/h9lULB/C5hRVDR2FhIX777TccPXoUmZmZEAgEMDExwU8//YR58+ZBTU2NdkSZsrKy0L17dwDl+0zz8/MBAOPGjUO3bt04PUDB1w4k169fr3a5taqqKjZv3sz5f9fz588ltuksKytDcXExhURfx9HREdu2bYOVlRW6dOkCoLzlbmJiIlxdXfHw4UM4ODjg6NGjGDp0KOW0ovhcUd/a2hqxsbEwNzeHra0tvLy88PbtW4ktd7nI09MTnTp1QkJCAurVqyc8Pnz4cEyaNIliMvmkpKTgypUreP36tVjLVy8vL2hqanJycALgdzeGxMREkeeEELx8+RLr1q1D+/bt6YT6Cnxsk7p582b4+flhxowZOHfuHIYMGYKdO3fCxcUFQPl2s19//ZWTN/l8zl5Zs2bN0Lx5c7i7u8PV1RX6+vpir2nbti06d+5MIR3DFWwFBcNZpaWlCAoKQnh4uMQLp8uXL1NKVr2ioiJ0794d9+/fx4ABA9CyZUsQQvDo0SOcO3cOHTp0wLVr1zhfoNTU1BR//fUXrK2t0alTJ0yaNAkeHh64cOECRo4cidzcXNoRGQ7q2LEjZs+ejbFjx4qsoFi5ciUuXryI69ev044o1aRJk2BoaCjWqm316tV48uQJduzYAW9vb5w5cwZxcXGUUkrG54r6cXFxyM/PR+/evfH69WuMHz9euKJi9+7daNeuHe2IUtWrVw/R0dGwsLAQed9nZmaiVatWnJ7Fr5iVrV+/Pho1aiSygkggEHC63hDA724MCgoKIoU9K3Tr1g27d+8WFjhn/j1qamp49OiRsCuWkpISEhIShDWrsrKyYG5uji9fvtCMKRGfs1d2/fp1TteGYbiBraCQwd3dXer53bt311CS74+npyeCgoIwaNAgtGnThheVlbdt24Znz54hISFBOItZISkpCXZ2dggICMCMGTMoJZRPnz59cPLkSVhbW8PNzQ2zZ89GWFgY4uLiWME6plpeXl5wcXHB8+fPUVZWhqNHj+Lx48fYu3cvTp8+TTueTIcPH0Z8fLzY8ZEjR6Jjx47YsWMHRo0axcnZ5Lt37yIuLk44OAGUL39fs2YN52eiOnXqJPy5QYMGnG+JWlVZWZnEJezPnj2DpqYmhUTyW716NdasWYOFCxfSjvJN+vfvL/zZzMwMSUlJvOnGUHWFroKCAvT19TlfDLkCH9ukfv78GaqqqsLnysrKUFZWFnleUlJCI5pMfM5eGRucYOTBBihkqLpnuri4GPfv30deXh6nR+Zrg9DQUBw+fBgDBw6kHUVuR48exbJly8QGJ4Dyug5LlixBWFgY5wcoAgMDhStWpk2bJpwhdHJygoeHB+V0svG1AwnfDR06FKdOncLKlSuhrq4OLy8vdOjQAadOnULfvn1px5NJRUUF0dHRYttUoqOjhTcNZWVlnLyBaNGiBbKzs8Va/r1+/Vrithsuev36NR4/fgyg/PNS0tJfLurXrx82bdqEwMBAAOUrDwoKCuDt7c357693797h559/ph3jX6Wnp0c7glwqZsL5ys7OTuwY19ukCgQC5OfnQ0VFRVgfo6CgAB8+fAAA4X+5iM/ZgeprPFXFrtEYgA1QyHTs2DGxY2VlZZg6dSqaN29OIZH8+LhFojIlJSXeXFhXePjwocQv7Qq9e/fGypUray7QN1JQUBCphzBy5EiMHDmSYiL5bdmyBUuWLIGrqytOnDgBNzc3pKWlITY2FtOmTaMdr1Z79uwZevXqhYsXL4qdu3HjBrp160YhlfxmzJiBKVOmID4+XrjqIDY2Fjt37sTixYsBlC8p5+L+8LVr12LmzJlYvny58Pd848YNrFy5Er/99pvIxauWlhatmBLl5+fjl19+QWhoqPCmRlFRESNGjMDWrVuhra1NOaF0GzZsQP/+/dGqVSt8/vwZo0ePRkpKCurXr4+DBw/SjifVzz//jAsXLmDKlCm0o3yTwsJCrFu3rtrrHC4WL4+JiUFOTg4GDx4sPLZ37154e3ujsLAQw4YNwx9//CEyO85FkibwKrdJ5SJCCFq0aCHy3NraWuQ5V1fe8Dk7AAwbNkz4MyEEa9euxZQpU3gzoMjULFaD4hs9fvwYdnZ2ePnyJe0o1Zo+fbpwi0Tjxo3FPrj8/PwoJZPPhg0bkJ6eDn9/f05/6FZWt25dPH36FI0aNZJ4/uXLlzAyMuJkJ4bExES0adMGCgoKYsW7qtLQ0ICBgQEna2nwuQMJ37Vq1QqRkZFiFxxRUVEYNGgQ8vLy6AT7Cvv374e/v79wJt/CwgIzZszA6NGjAZR3VKno6sElfKyoX2HEiBG4c+cO/vjjD/zwww8Aym/iPD090b59e4SGhlJOKFtJSQlCQ0ORmJiIgoICdOjQAWPGjBFZks1Fa9euxcaNGzFo0CBYWVmJfabPnDmTUjL5jBo1ChERERg3bpzE6xxPT09Kyao3YMAA2NnZCbfV3Lt3Dx06dICrqyssLS3x+++/w8PDA8uXL6cb9BtFRERgzpw5ErfL0RYRESHX62xtbf/jJF+Pz9klqXx9xjBVsQGKb3T27Fm4uLjgzZs3tKNUq379+ti7dy/nl5hWVrW+weXLl6Gnp4fWrVuLXThxsV2koqIiXr16Ve3S5OzsbDRp0oRzNwhA+Q3Oq1ev0KBBg2qLd1Wmra2NgIAAjBgxogZTyla5kFSDBg1w8eJFtGvXDikpKejWrRtycnJoR5QqODgY9evXx6BBgwAACxYsQGBgIFq1aoWDBw9yelmwu7s7EhMTceXKFeHe+2vXrmHIkCFYvnw5Zs+eTTlh7SXvxSvAvQtYdXV1nD9/Hj179hQ5fv36dTg6OnK+zSifSWulzof26To6Ojhz5gx69OhBO4rcGjdujFOnTglrryxZsgQRERGIjIwEABw5cgTe3t54+PAhzZjfjC9tUhm62AAFIw3b4iHDnDlzRJ5XtIE6c+aMsLUPV/Fxi0TVpbzDhw+nlOTbEEJgb2+POnUk/2lxuYBRRkaGcGBFVnvdL1++4MiRI1i4cCHnBigaNWqE3NxcGBkZwdDQEDdu3EC7du2QkZEhdcCFK3x8fLBt2zYA5bPIW7duhZ+fH06fPo3Zs2dzcmCuws6dO/HTTz9hyJAhOH/+vLBuyerVqzk5k1mbcG3Q4WvUq1dP4jYObW1tkaKfXCarVSdX8b2Vuq6uLu+WiL979w4NGzYUPo+IiMCAAQOEzzt37oynT5/SiPZV+N4mlWEY7mIrKGTo3bu3yPOKKst9+vSBu7t7tTeiXMDHLRJ8t2LFCrle5+3t/R8n+e+9e/cOEyZM4NwN88SJE2FgYABvb29s3boV8+fPR48ePYQdSHbt2kU7olRqampISkqCoaEhFi5ciJcvX2Lv3r148OAB7OzsOL1qCyhvtTto0CB8/PgRiYmJWLt2LaZPn047VrX09PSQnJyM+vXry6z8z+X2unysqF8hMDAQR44cQUhIiHB73KtXr+Di4gJnZ2fOF+ble6tOPtu3bx9OnDiB4OBgqKmp0Y4jFyMjI4SEhMDGxgZFRUXQ0dHBqVOnYG9vD6B8y4etrS2nP28A1iaV+WfYCgpGGjZAUYsNHz4cV65c4dUWCYYb+HyzU1ZWhrKyMuHgYWhoKKKjo2Fubg4PDw8oKSlRTihdgwYNcP78eVhbW8Pa2hpz5szBuHHjkJaWhnbt2nFu2aykeiX5+fkYNWoUBg0ahKlTpwqPt23btiajySU4OBgjR46EsrIygoODpb6Wy6vmKtegqMDlivpVK7qnpKTgy5cvMDQ0BABkZWVBWVkZ5ubmnL/BNzIywi+//MLLVp18bKVe9b2TmpoKQgiMjY3FrnO4+N6ZOnUqEhIS8Ntvv+H48eMIDg7GixcvhN9N+/fvx6ZNmxAbG0s5qXRPnjwRec63NqlMzdqyZYvI84ULF2L+/PmoX7++yHGu171hagYboPhKERERKCwsxA8//MD5padubm5Sz+/Zs6eGkshP3jZEADcvPGoLvt3s1CZjxoxBUlISrK2tcfDgQWRlZaFevXo4efIkFi9ejPv379OOKELSLFrl5xU/c7E4Y23y/v17kedVK+pXzM5yhbyrzQDurzjT0tLC3bt3eTkTWHUbZdVW6lycyOD7e+ft27dwdnZGZGQkNDQ0EBwcLPL/wd7eHt26deNsJwyG+RbS6t1U4EPdG6ZmsAGKavz2228oKCjAqlWrAJTvrRswYAAuXLgAoHyWMzw8XKznPPPP8P3Co7bg281ObelAAgB5eXlYunQpnj59iqlTp8LR0RFA+ftdSUkJS5YsoZxQVNVZNGm4XOCzQllZGVJTUyXWEuDyyqHqcLmifm0xYcIEdO7cmbetOquq3Ep9wYIFtOPUWu/fv4eGhgYUFRVFjufm5kJDQ4Ozq/1qS5vUyj58+IDLly/DwsIClpaWtON8FT5nZ5jqsAGKanTo0EGkAOCRI0fg4uKCixcvwtLSEuPHj4eamhoOHz5MOSnD1Byu3uzUlg4kDF03btzA6NGj8eTJE7H3D19XgPCton5BQYHYwJCWlhalNPLhe6tOSfjQSh0ATE1NERsbi3r16okcz8vLQ4cOHdhs7H+gNrRJ/d///gcbGxtMnz4dnz59Qrt27ZCZmQlCCEJDQ/Hjjz/SjlgtPmdnGHmxAYpq6OrqIjo6Wjga6ebmhtLSUuzduxdA+YXszz//zPlKy2FhYTh8+DCysrJQVFQkco4PWyTy8vIQFhaGtLQ0zJ8/H3p6erh9+zYaNmyIpk2b0o733eHqzc6TJ09gaGgIgUAgc0a/ogPJjh07kJmZWTMBv0J1K0AEAgFUVFRgaGjI2ZkpPrdIBYD27dujRYsWWLFiBRo3biy23UxSpwmukFZRv6SkRNjCkIsyMjIwffp0XL16FZ8/fxYe58vWIL636pSED63UAdHB6cqys7NhYGAgdt3D/HO1oU1qo0aNcP78ebRr1w4HDhyAt7c3EhISEBwcjMDAQNy5c4d2xGrxOTvDyIu7LSgoKykpEbkJiImJwaxZs4TPmzRpgrdv31JIJr8tW7ZgyZIlcHV1xYkTJ+Dm5oa0tDTExsZi2rRptOPJlJiYCAcHB2hrayMzMxOTJk2Cnp4ejh49iqysLOFgEfPv41v7sMo3vvLcBP/yyy+cWwVSoX379lLrsNStWxcjRozA9u3bOVeMrGqLVH9/f2zatIkXLVKB8kKNYWFhvGvPDPzf+6a6ivpcNnbsWBBCsHv3bjRs2JB3Xaf43KqTr63UT548Kfz5/PnzIoOHpaWlCA8Pl2vPO/P1akOb1Pfv3wvb0547dw4//vgj1NTUMGjQIMyfP59yOun4nJ1h5MUGKKrRvHlzXLt2DaampsjKykJycrLI/uNnz56JLSnkmj///BOBgYEYNWoUgoKCsGDBApiamsLLy4vz7auA8gsnV1dX+Pr6QlNTU3h84MCBGD16NMVkkm3ZsgWTJ0+GioqKWLXiqri+5JfPNzvydCDR1dXl7M3ysWPHhNWtu3TpAgC4desWNmzYAG9vb5SUlGDRokVYunQp1q9fTzmtqKdPnwpv7o8fP46ffvoJkydPRo8ePWBnZ0c3nBy6du2K1NRUXg5QVL1J5lNF/YSEBMTHx8PCwoJ2lO9O1dnWivfNhg0bZHb4oGnYsGEAyleoVB1IqVu3LoyNjbFhwwYKyWq/hg0bIiMjQ7hC5fbt2yL1w/Lz8zlb46mCgYEBYmJioKenh3PnziE0NBRA+eAL1z8z+ZydYeTFBiiqMW3aNEyfPh3Xr1/HjRs38MMPP6BVq1bC85cvX4a1tTXFhLJlZWWhe/fuAABVVVXk5+cDAMaNG4du3brB39+fZjyZYmNjsX37drHjTZs2xatXrygkks7Pzw9jxoyBiooK/Pz8qn2dQCDg/AAFn292JN0I86kDyZo1a7B582b0799feMzKygrNmjXDsmXLcOvWLairq2Pu3LmcG6DQ0NBATk4ODA0NceHCBeHsrIqKCj59+kQ5nWwzZszA3Llz8erVK4m1BLjYJrUC17fPSFMx48rXAQo+tuqscOXKFdoRvklFnRITExPExsaKtSpk/jsDBw7EokWLhG1S1dTU0KtXL+H5xMRENG/enGJC2WbNmoUxY8ZAQ0MDRkZGwuuGa9euwcrKim44GficnWHkxQYoqjFp0iQoKiri1KlTsLGxEesY8eLFC07PLgDl+9Ryc3NhZGQEQ0ND3LhxA+3atUNGRobUAoJcoaysjA8fPogdT05Ohr6+PoVE0lW+qefzkl+A3zc77969E3letQMJ1927d0/i79/IyAj37t0DUL7ChYvF6/r27YuJEyfC2toaycnJGDhwIADgwYMHMDY2phtODhXFxSp/tnO9TWptqKi/c+dOTJkyBc+fP0ebNm14NTAESP7Mqdyqk4vKysrw+++/4+TJkygqKoK9vT28vb2hqqpKO9pXkfRdm5eXBx0dnZoP8w1CQkIQEBCAjIwMxMTEwMjICJs2bYKJiQmGDh1KO55Eq1atgrOzM2xtbYVtUit3HNm9ezf69etHMaFsv/zyC7p27YqsrCz07dtX2Frd1NQUq1evppxOOj5nB8rr39WtW1c4mHLixAns2bMHrVq1wvLlyznbvYapYYSptSZMmECWL19OCCHE39+fqKqqEgcHB6Kjo0Pc3d0pp5NtwoQJZNiwYaSoqIhoaGiQ9PR08uTJE2JtbU08PT1px6uVPn78SE6dOiV8vmjRIjJ79mzhY968eeTTp08UE367q1evkg4dOtCOIVP79u2Ji4sL+fLli/BYUVERcXFxIe3btyeEEBIZGUmMjY1pRazWu3fvyLRp04iTkxP5+++/hce9vLzI6tWrKSaTT2ZmptQHFzk6OpJ169YJnycmJpI6deqQiRMnkg0bNpBGjRoRb29vegHlEBMTQ0xMTIhAIBA+FBQUhP/lo9LSUjJ58mTy22+/0Y4i0cqVK4mCggLp168fGTp0KFFRUSFubm60Y321devWkdDQUOHzn376iQgEAtKkSRNy9+5dislk+/PPP0n9+vXJ6tWriaqqKklLSyOEELJnzx5iZ2dHOZ1seXl5pKSkROx4Tk6OyPcX1xQVFRFTU1Py8OFD2lG+Gp+zV+jUqRMJCwsjhBCSlpZGVFRUyKhRo4iZmRm7tmeE2ABFLVZaWkqKi4uFzw8ePEhmzJhBtmzZwukvjwp5eXnCARVFRUViYGBA6tatS2xsbEhBQQHteFKVlJSQnTt3klGjRhF7e3vSu3dvkQdXbdu2jQwePFj4XENDg3Tt2pXY2dkROzs70qhRI7Jx40aKCb/do0ePiLq6Ou0YMkVFRZF69eoRfX19Ym9vT+zt7UmDBg1IvXr1SExMDCGEkL179xJfX1/KSWuPBw8eyHwNV3/fjRo1IrGxscLnixcvJj169BA+P3z4MLG0tKQRTW6WlpbE2dmZ3Lhxg2RkZPBiYEgeSUlJpFGjRrRjSGRmZkYCAgKEzy9evEiUlJRIaWkpxVRfz9jYmERFRRFCCLlw4QLR0dEh58+fJxMmTCB9+/alnE46S0tLcuzYMUJI+XdtxQDFvXv3SL169Sgmq/2aNGnC25t8PmcnhBAtLS2SmppKCCkfYOzXrx8hpHzipVmzZjSjMRzC2owynBcZGYnExEQUFBSgQ4cOcHBwoB1JpunTpyMoKAiDBg2S2K5QWo0Kmnr16oUFCxZgyJAhAABNTU0kJCTA1NQUALBv3z5s3boVMTExNGNKxed2ixXy8/Oxf/9+JCcnAwAsLCwwevRokWKxXCRPgVIuMjAwQFRUFAwNDSWeX79+PRYvXszJloUqKipISUmBgYEBAKBnz54YMGAAlixZAgDIzMyElZWVsAYRF6mrqyMhIYGXxUml4XKrTmVlZaSmpgrfN0D5eyk1NRXNmjWjmOzrqKqqIjk5GQYGBvD09MTnz5+xfft2JCcno2vXrmLbb7hEVVUVSUlJMDIyEvmuTUlJQdu2bXlRt4evfHx8kJycjJ07d6JOHX7tdudzdgDQ0tJCfHw8zM3N0bdvXwwePBienp7IysqChYUFe98zAFgNilptz5490NDQwM8//yxy/MiRI/j48SOnW4hV1rNnT/Ts2ZN2jK8SGhqKw4cPC/fg80VqaqpIkSUVFRXh/kYA6NKlC+db1PK5A0kFTU1NTJkyhXaMr8bXAqU9e/aEg4MDoqKixOrbbNiwAb/++itCQkIopZOuNlTU79OnD68HKPjYqrOkpESs6HHdunVRXFxMKdG30dXVxdOnT2FgYIBz584J9+ATQjj7eVPBxMQEd+/eFas5dO7cOVhaWlJK9X2IjY1FeHg4Lly4ACsrK6irq4uc52qXL4Df2QGgU6dOWL16NRwcHBARESFsTZ6RkSHSvpb5vrEBilps7dq1ErtgNGjQAJMnT+bshRNQXsArKCgIR48eRWZmJgQCAUxMTPDTTz9h3LhxYisSuEZJSYmXF9t5eXn48uWL8HnVmb+ysjKR81zE5w4kFVJSUnDlyhW8fv1aWK2+gpeXF6VUsvG1QGlISAiGDBmC/v374+rVq9DS0gJQvtJp0aJFCA4OxsiRIymnlKw2VNQfMmQIZs+ejXv37knsnuLk5EQpmXz42KqTEAJXV1eR4qmfP3/GlClTRG54uH6z4+zsjNGjR8Pc3Bw5OTkYMGAAgPL/J1z/Dp4zZw6mTZuGz58/gxCCW7du4eDBg1i7di127txJO16tpqOjIyyKzDd8zg4AmzZtwpgxY3D8+HEsWbJE+HcaFhYm7DzIMGyLRy2moqKCpKQkser5mZmZsLS05OwyKkIIhgwZgrNnz6Jdu3Zo2bIlCCF49OgR7t27BycnJxw/fpx2TKk2bNiA9PR0+Pv7c34wpTJzc3OsW7eu2i+/w4cPY/HixUhNTa3hZN+PHTt2YOrUqahfvz4aNWok8v4RCAS4ffs2xXTfJiIiAnPmzEF8fDztKNX69OkTHBwcoKioiAsXLiAgIADz5s1DUFAQxo4dSztetd6+fQtnZ2dERkYKK+oPHz5ceN7e3h7dunXj9ABR5VVaVXG1ewrfubm5yfW6PXv2/MdJ/pni4mJs3rwZT58+haurq7D9u5+fHzQ1NTFx4kTKCaXbv38/li9fjrS0NABAkyZNsGLFCkyYMIFyMob595WWliIqKgpWVlbQ1dUVOff582coKipyfsUfUzPYAIUEzs7OCAoKgpaWFpydnaW+lsuzC4aGhvD39xebfTpx4gSmTZuGZ8+eUUom3Z49e+Dp6YkTJ06gd+/eIucuX76MYcOGwd/fH+PHj6eUULKq75XLly9DT08PrVu3FvvA5er7xtPTE5cuXUJ8fLzYioNPnz6hU6dOcHBwwObNmyklrN6nT58QHh4ubLf466+/iqz2UFRUxKpVqzi/ksLIyAi//PILFi5cSDvKvyYpKQmdOnVCQUEB7ShSvX//Hra2tiguLkZycjJ2796NcePG0Y4ll/fv30NDQwOKiooix3Nzc6GhocFat/0HakurToa+jx8/oqCgAA0aNKAd5avwsU1qhZKSEly9ehVpaWnCGk8vXryAlpYWNDQ0aMeTis/ZVVRU8OjRI5iYmNCOwnAY2+Ihgba2tnDWUltbm3Kabzdq1CjMnDkTmpqawuJ0ERER8PT05OxyZQA4ePAgFi9eLDY4AZTvVV60aBH279/PuQGKqu+VyrOYfLF48WIcPnwYFhYWmD59Olq0aAEAePz4Mfz9/VFSUoLFixdTTilZcHAwzpw5Ixyg8Pf3R+vWrYU3C0lJSWjSpAlmz55NM6ZM7969E6sbwxfSCpS2b9+eTig5nDx5Uvjz1KlT4enpiWHDhkFbW1vkHJe3GlT3XaWnp1fDSb4fa9aswfLly+Hg4ABVVVVs3rwZr1+/5k2tm9rk4cOHyMrKEitky+W/2crU1NSgpqZGO8ZX2bZtG7y8vDBr1iysWbNGuNJJR0cHmzZt4vQAxZMnT+Do6IisrCx8+fIFffv2haamJn777Td8+fIFAQEBtCNWi8/ZAaBNmzZIT09nAxSMVGwFRS1WVFSEcePG4ciRI8JKv2VlZRg/fjwCAgI4O6PWqFEjnDt3rtobmjt37mDAgAF49epVzQb7TmRkZGDq1Km4ePGisNCkQCBA37598eeffwo7enBNbehAAgATJkxA586deVUk09TUFLGxsdDX15daoLRly5aUEkonbYtBBbbV4L+zcuVKqee5WnfF3Nwc8+bNg4eHBwDg0qVLGDRoED59+iTXe4r559LT0zF8+HDcu3dP5LOnYpKJy3+z2dnZmDdvHsLDw/H69Wuxz00uZweAVq1awcfHB8OGDRP5vr1//z7s7Ozw9u1b2hGrVZF5165dqFevnjD71atXMWnSJKSkpNCOWC0+ZwfKi8D++uuvWLVqFTp27ChW5LOiBhTzfWMrKGoxJSUlHDp0CKtXr8bdu3ehqqoKKysrsYrRXJObmyu1km/Dhg053TqM70xMTHDu3Dnk5uYKa02YmZlxfia2NnQgAcp/18uWLcONGzckFgycOXMmpWTVy8zMRGlpKW8LlFYtRMrUrGPHjok8Ly4uRkZGBurUqYPmzZtzdoAiKytLpFOTg4MDBAIBXrx4watWnXzm6ekJExMThIeHw8TEBLdu3UJOTg7mzp2L9evX044nlaurK7KysrBs2TKJ7ci5LiMjQ1jzozJlZWUUFhZSSCS/69evIzo6WmyiztjYGM+fP6eUSj58zg5A+Jnp5OQk8p4nhLCJAEaIDVDIISwsDIcPH5a4fJAPBevMzc1hbm5OO4bcSktLpfZ2VlRURElJSQ0mko+1tbXcFxh8eN/o6emhS5cutGPIrTZ0IAGAwMBAaGhoICIiAhERESLnBAIBJwcoKnB98JPhpqpdMADgw4cPcHV15fRWudrSqpPPYmJicPnyZdSvXx8KCgpQUFBAz549sXbtWsycOVPie4srIiMjcf36dU5vf5OGz21Sy8rKJN4IP3v2DJqamhQSyY/P2QHgypUrtCMwPMAGKGTYsmULlixZAldXV5w4cQJubm5IS0tDbGws52djf/zxR3Tp0kWs2J6vry9iY2Nx5MgRSsmkk9T+rDKu3mQOGzaMdoTvWrNmzXD//n1YWFhIPJ+YmMiLWc2qqxD44vz58zJr9vBlPzhDn5aWFlasWIEhQ4ZwtlBpbWnVyWelpaXCm7L69evjxYsXsLCwgJGRER4/fkw5nXQGBgZi2zr4hM9tUvv164dNmzYhMDAQQPngf0FBAby9vUVWRXERn7MDgK2tLe0IDA+wGhQytGzZEt7e3hg1apTIHjsvLy/k5ubC39+fdsRq6evr4/LlyyLL3gHg3r17cHBwQHZ2NqVk0tWW9mdMzeJzBxK+YzUc6DM0NISdnR1sbW1hZ2eH5s2b0470j0VGRmLIkCGc3dLHvqvo69WrF+bOnYthw4Zh9OjRePfuHZYuXYrAwEDEx8fj/v37tCNW68KFC9iwYQO2b98u1g6eL/jaJvXZs2fo378/CCFISUlBp06dkJKSgvr16+PatWuc7qbC5+wVrl+/ju3btyM9PR1HjhxB06ZNERISAhMTE/Ts2ZN2PIYD2ACFDGpqanj06BGMjIzQoEEDXLx4Ee3atUNKSgq6deuGnJwc2hGrpaqqirt374rNKCclJcHa2hqfPn2ilOz7kJeXh7CwMKSlpWH+/PnQ09PD7du30bBhQzRt2pR2vFonOzsb7du3h5KSUrUdSO7cuSO1vgktc+bMwapVq6Curo45c+ZIfe3GjRtrKJX8FBQU8OrVK15cGNVW+/btw7Vr13D16lWkpqaiadOmsLW1FQ5YcHmb35YtW0SeV3R/CQkJga2tLQ4cOEApGcN158+fR2FhIZydnZGamorBgwcjOTkZ9erVw6FDh9CnTx/aEaulq6uLjx8/oqSkBGpqamL1hnJzcykl+3p8bJNaUlKC0NBQJCYmoqCgAB06dMCYMWN40SaYz9n/+usvjBs3DmPGjEFISAgePnwIU1NT+Pv74+zZszh79iztiAwHsAEKGUxNTfHXX3/B2toanTp1wqRJk+Dh4YELFy5g5MiRnP4C6dKlCwYPHixWYGz58uU4deoU4uPjKSWr/RITE+Hg4ABtbW1kZmbi8ePHMDU1xdKlS5GVlYW9e/fSjlgr8bUDSe/evXHs2DHo6OhIbK9bGRf3byoqKuLly5e8ujitzV6+fImIiAicPn0ahw4dqnbPMldUbTdXUVy1T58++PXXX3mxr5rhjtzcXOjq6nK+6GRwcLDU8y4uLjWUhGFqjrW1NWbPno3x48eLrExnHfqYylgNChn69OmDkydPwtraGm5ubpg9ezbCwsIQFxcHZ2dn2vGkWrZsGZydnZGWliacRQgPD8fBgwc5W3+itpgzZw5cXV3h6+srcnE9cOBAjB49mmKy2o2vHUgqDzpIG4DIz8+viThfjY1zc8PHjx8RGRmJq1ev4sqVK7hz5w7atGkDOzs72tGk4mvdFYabuP55X4HvAxB8bpN68uRJiccFAgFUVFRgZmYmNnDKFXzODpSvarWxsRE7rq2tjby8vJoPxHASG6CQITAwUNiCbtq0aahXrx6io6Ph5OQk7H3OVUOGDMHx48fh4+ODsLAwqKqqom3btrh06RIrUvMfi42Nxfbt28WON23alI0O1wC+dSABAD8/P8yePbva8/n5+XB0dERUVFQNppKPi4sLL5aWylJaWgo/P79quzZxecVc9+7dcefOHVhaWsLOzg6LFi2CjY0NdHV1aUdjmH+Vs7MzgoKCoKWlJXOiSENDA61bt8aUKVNkFvGtaVlZWVLPGxoa1lCSb8PnNqnDhg2DQCAQG1SpOCYQCNCzZ08cP36cc5+hfM4OAI0aNUJqaqpY3ZXIyEjOrnJlah4boJChom1VhZEjR2LkyJEUE32dQYMGYdCgQbRjfHeUlZXx4cMHsePJycnQ19enkIjhusWLF6NevXoYP3682LmCggI4OjpytuZNbSkCuGLFCuzcuRNz587F0qVLsWTJEmRmZuL48eNiW+W4JikpCerq6mjZsiVatmwJS0tLTl6cVubu7i7X63bv3v0fJ2H4RFtbW3gzLGvQ4cuXLwgICEBUVFS1M8+0GBsbS72p5/IKBIDfbVIvXryIJUuWYM2aNcLJjFu3bmHZsmVYunQptLW14eHhgXnz5mHXrl2U04ric3YAmDRpEjw9PbF7924IBAK8ePECMTExmDdvHpYtW0Y7HsMRrAaFHPLy8nDr1i28fv1auJqigqSbCS6pKNSYnp6OefPmsUKNNWTixInIycnB4cOHoaenh8TERCgqKmLYsGGwsbHBpk2baEdkOCYsLAzjxo3DoUOHRNpxFhYWon///nj9+jUiIiLQuHFjiilrt+bNm2PLli0YNGgQNDU1cffuXeGxGzducLpYIyEE9+7dw9WrVxEREYFr165BSUkJtra26N27NyZNmkQ7ohgFBQUYGRnB2tpa6jahY8eO1WAqprZ5+PAhOnfujMLCQtpRRCQkJIg8Ly4uxp07d7Bx40asWbOG89uIW7Vqhf3798Pa2pp2lK/Wpk0bBAYGonv37iLHo6KiMHnyZDx48ACXLl2Cu7u7zJUuNY3P2YHy7yofHx+sXbsWHz9+BFA+qTdv3jysWrWKcjqGMwgj1cmTJ4mmpiYRCAREW1ub6OjoCB+6urq040mVkJBA9PX1iZmZGalTpw5JS0sjhBCyZMkSMm7cOMrpare8vDzi4OBAdHR0iKKiIjEwMCB169YlNjY2pKCggHY8hqN27NhB1NTUyJUrVwghhBQUFJCePXsSMzMz8vz5c7rhvgNqamrkyZMnhBBCGjVqROLj4wkhhKSlpREtLS2a0b5KWVkZiY2NJS4uLqROnTpEQUGBdiSJfvnlF6Krq0vat29PNm/eTHJycmhHYmqhkpIScvfuXdox5Hb69Glia2tLO4ZM58+fJ/369SMZGRm0o3w1FRUVcu/ePbHjiYmJREVFhRBCSGZmJlFVVa3paDLxOXtlX758IQ8ePCA3b94k+fn5tOMwHMNWUMjQokULDBw4ED4+PlBTU6Md56s4ODigQ4cOwkKNFZVyo6OjMXr0aGRmZtKOWOtFRkaKtIFycHCgHYnhOF9fX6xZswYnTpyAl5cXnj9/joiICDRr1ox2tFrPwsICe/fuRdeuXdGzZ08MHjwYixYtwqFDhzBjxgy8fv2adsRq3b59G1evXsXVq1cRGRmJ/Px8WFlZwc7ODra2thg6dCjtiBJ9+fIFR48exe7duxEdHY1BgwZhwoQJ6NevH6/2tDP0xMXFVVs35ujRo5RSfbvU1FS0a9eOcys+quJzm9SePXtCU1MTe/fuFW67ffPmDcaPH4/CwkJcu3YNly5dwrRp0/D48WPKaUXxObskHz58wOXLl2FhYQFLS0vacRiOYDUoZHj+/DlmzpzJu8EJgBVq5IKePXuiZ8+etGMwPLJgwQLk5ubC3t4exsbGuHr1KhucqCHDhw9HeHg4unbtihkzZmDs2LHYtWsXsrKypBYw5YIuXbrA2toatra2mDRpEmxsbDhXFFASZWVljBo1CqNGjcKTJ08QFBSEX375BSUlJXjw4AE0NDRoR2Q4LDQ0FOPHj0f//v1x4cIF9OvXD8nJycjOzsbw4cNpx5Oqap0qQghevnyJ5cuXw9zcnFIq+fF5q+quXbswdOhQNGvWDAYGBgCAp0+fwtTUFCdOnABQXvtp6dKlNGNKxOfsAPC///0PNjY2mD59Oj59+oTOnTsjIyMDhBCEhobixx9/pB2R4QA2QCFD//79ERcXx8vKsqxQIx1lZWUICgrC0aNHkZmZCYFAABMTE/z0008YN24cmxVkJKq637hu3bqoX78+PD09RY5zbUbwayrqcy17VevWrRP+PGLECBgZGSE6Ohrm5uYYMmQIxWSy5ebmQktLi3aMf0RBQUFYiZ7rBQIZbvDx8YGfnx+mTZsGTU1NbN68GSYmJvDw8OB8vR4dHR2x6wFCCAwMDBAaGkoplfz43CbVwsICDx8+xIULF5CcnCw81rdvX2Fh/GHDhlFMWD0+ZweAa9euYcmSJQDK6wuVlZUhLy8PwcHBWL16NRugYACwIpky7dq1CytXroSbmxusrKzElrBVLmbHNaxQY80jhGDIkCE4e/Ys2rVrh5YtW4IQgkePHuHevXtwcnLC8ePHacdkOMjNzU2u13GtY4abmxu2bNkCTU1Nmf8GrmWv6tq1a+jevTvq1BEduy8pKUF0dLTE3u1cEx8fj0ePHgEoL2LXoUMHyomkq7zFIzIyEoMHD4abmxscHR1FOmgxjCTq6up48OABjI2NUa9ePVy9ehVWVlZ49OgR+vTpg5cvX9KOWK2IiAiR5woKCtDX14eZmZnYZxAX8b1NKkOHqqoqkpOTYWBggPHjx6NJkyZYt24dsrKy0KpVKxQUFNCOyHAAG6CQQdoFkkAg4PQsz/v37/HTTz8hLi4O+fn5aNKkCV69eoUffvgBZ8+ehbq6Ou2Itc6ePXvg6emJEydOoHfv3iLnLl++jGHDhsHf35/z3V8Y5nukqKiIly9fokGDBiLHc3Jy0KBBA05/3r9+/RojRoxAREQEdHR0AJR3cerduzdCQ0M5uWrul19+QWhoKAwMDODu7o4xY8agfv36tGMxPNKsWTP8/fffsLKyQtu2bfHrr79i1KhRiImJgaOjI96/f087okQfPnzAzZs3UVRUhC5dunDy71OWihVP1eHy5yUAhIeHIzw8XGKHPq63NuZz9hYtWmD16tUYNGgQTExMEBoaij59+iAhIQH29vZ4+/Yt7YgMB3B/iJayqn/4fKKtrY2LFy+yQo016ODBg1i8eLHY4AQA9OnTB4sWLcL+/fvZAAXDcBAhROIFd05ODucHdGfMmIGCggI8ePBAWGjs4cOHcHFxwcyZM3Hw4EHKCcUFBATA0NAQpqamiIiIEJtRrsD1rUEMPTY2Nrh48SKsrKzw888/w9PTE5cvX8bFixdhb29PO55Ed+/excCBA5GdnQ1CCDQ1NXH48GH079+fdrSvcufOHZHnVdukctmKFSuwcuVKdOrUCY0bN+bV1ls+ZweAWbNmYcyYMdDQ0ICRkRHs7OwAlK9gtLKyohuO4Qy2goJh/kWNGjXCuXPn0L59e4nn79y5gwEDBrAipUytlJ2djXnz5glndqp+vXB1Rq2idsaJEyfg6OgIZWVl4bnS0lIkJibCwsIC586doxVRJm1tbVy6dAmdO3cWOX7r1i3069cPeXl5dIJJ4erqKtfFNde3BjH05Obm4vPnz2jSpAnKysrg6+srrBuzdOlS6Orq0o4opn///igoKMD69euhoqKCVatW4d69e0hJSaEd7V9x5swZ/P7777h69SrtKNVq3LgxfH19MW7cONpRvhqfs1eIi4vD06dP0bdvX2Eh5DNnzkBHRwc9evSgnI7hAraCQg58XErFCjXSkZubi4YNG1Z7vmHDhnj37l0NJmKYmuPq6oqsrCwsW7aMVzM7Fd0uKmYzVVVVheeUlJTQrVs3TJo0iVY8uZSVlYnVSALKi61ydSVgUFAQ7QgMz+np6Ql/VlBQwKJFi4TPP336RCOSTPHx8bhw4YKwPszu3buhp6eHDx8+8L7QLVBesDE2NpZ2DKmKiorQvXt32jG+CZ+zV+jUqRM6deokcmzQoEGU0jBcxFZQyCBrKdWxY8coJaseK9RIj6KiIl69elXtftLs7Gw0adKEszPJDPNPaGpq4vr169WuIOK6FStWYN68eZzfziHJ0KFDkZeXh4MHD6JJkyYAyttkjxkzBrq6upz8rmKY/8KXL1+wdetW+Pr6cnK1ooKCAl69eiVS60ZTUxOJiYkwMTGhmOzrSGuTmpSUhLt379IJJoeFCxdCQ0MDy5Ytox3lq/Ex+5w5c7Bq1Sqoq6tjzpw5Ul+7cePGGkrFcBlbQSFDQEAAgoKCeLWUKigoCNeuXUN4eHi1hRr37t3L6iD8BwghcHV1FVkiXtmXL19qOBHD1BwDAwOxbR184u3tTTvCN/P394eTkxOMjY1hYGAAAHj69CnatGmDffv2UU7HMP+uL1++YPny5bh48SKUlJSwYMECDBs2DHv27MGSJUugqKiI2bNn045ZrYcPH4oMnlRMIuXn5wuPtW3blkY0ufG5Ternz58RGBiIS5cuoW3btmKrz7h8k8zH7Hfu3EFxcTEA4Pbt29WuruTLqkvmv8dWUMhQr1493Lp1C82bN6cdRW79+vUTFmSUxMfHBxERETh//nwNJ6v9+NoqkmH+DRcuXMCGDRuwfft2GBsb047zTcLCwnD48GFkZWWhqKhI5Nzt27cppZIPIQSXLl1CUlISAMDS0pIVRWZqpYULF2L79u1wcHBAdHQ03rx5Azc3N9y4cQOLFy/Gzz//DEVFRdoxJarofiHp8rviONe7xAH8bpMqqZB5BYFAgMuXL9dgmq/D5+wMIy82QCEDH5dSsUKNDMPUFF1dXZFZj8LCQpSUlEBNTU1sZic3N7em432VLVu2YMmSJXB1dUVgYCDc3NyQlpaG2NhYTJs2jfOV6Rnme2FqaopNmzbByckJ9+/fR9u2beHq6opdu3Zxfhb2yZMncr3OyMjoP07y7WpDm1Sm5hUXF0NVVRV3795FmzZtaMdhOIzbQ5wcwMelVKxQI8MwNWXTpk20I/xr/vzzTwQGBmLUqFEICgrCggULYGpqCi8vL84PrgD8LOjMMN/i2bNn6NixIwCgTZs2UFZWxuzZszk/OAFwe+BBHrWlTSoApKamIi0tDTY2NlBVVa221TQX8TF73bp1YWhoyPnVQQx9bAWFDHxcSsUKNTIMw3w9NTU1PHr0CEZGRmjQoAEuXryIdu3aISUlBd26dUNOTg7tiNXiY0FnhvlWVa9z+Fhkkq9qQ5vUnJwc/O9//8OVK1cgEAiQkpICU1NTuLu7Q1dXFxs2bKAdsVp8zg4Au3btwtGjRxESEiLShYdhKmMrKGS4cuUK7QhfjRVqZBiGhrNnz0JRUVFsJu3ChQsoLS3FgAEDKCWTT6NGjZCbmwsjIyMYGhrixo0baNeuHTIyMjhf/JOPBZ0Z5ltVvc75/PkzpkyZItaB5+jRozTi1Wq1oU3q7NmzUbduXWRlZcHS0lJ4fMSIEZgzZw6nb/L5nB0oL+icmpqKJk2awMjISOxvluu1npiawQYo5MSnpVQuLi4yX8M6eDAM829btGgR1q1bJ3a8rKwMixYt4vwARZ8+fXDy5ElYW1vDzc0Ns2fPRlhYGOLi4uDs7Ew7nlRFRUXo3r077RgMUyOqXueMHTuWUpLvT25uLpo1ayZ8rqOjA3V1deTk5PBmgOLChQs4f/68yL8DAMzNzeWuEUILn7MDwLBhw2hHYHiADVDIUN1SqgkTJnB2KRXrEMEwDA0pKSlo1aqV2PGWLVsiNTWVQqKvExgYKKzdMG3aNNSrVw/R0dFwcnKCh4cH5XTSTZw4EQcOHOBVQWeG+VbsOocuvrdJLSwshJqamtjx3NzcalcfcwWfswP8bufN1Bw2QCED35dSMQzD1BRtbW2kp6eLtRhNTU0VW8bJRS9evBCZlRo5ciRGjhwJALhx4wa6detGK5pMfCzozDAMP9nb24ttexs8eDBv2qT26tULe/fuxapVqwCU15QrKyuDr6+v1NpzXMDn7JUVFRVJLOhsaGhIKRHDJWyAQga+L6ViGIapKUOHDsWsWbNw7NgxNG/eHED54MTcuXPh5OREOZ1s/fr1Q2RkpFjhrqioKAwaNAh5eXl0gskhMTFR2Fr6/v37dMMwDCOTtbW1xK3CAoEAKioqMDMzg6urK+duOjMyMmhH+Md8fX1hb2+PuLg4FBUVYcGCBXjw4AFyc3MRFRVFO55UfM4OAMnJyZgwYQKio6NFjvNhYIupOWyAQga+L6ViGIapKb6+vnB0dETLli2Fg7rPnj1Dr169sH79esrpZOvWrRv69euHK1euQFNTEwBw7do1DB48GCtWrKCcTjo+FnRmmO+Zo6Mjtm3bBisrK3Tp0gUAEBsbi8TERLi6uuLhw4dwcHDA0aNHMXToUMpp/w/f26QC5a1pk5OT4e/vD01NTRQUFMDZ2RnTpk1D48aNaceTis/ZAcDNzQ116tTB6dOnJXacYhiAtRmVaeDAgejYsSNWrVolbGNlZGSEkSNHoqysDGFhYbQjMgzDcAYhBBcvXkRCQgJUVVXRtm1b2NjY0I4ll7KyMvz000/Izc3F+fPnhfUnVq9eDU9PT9rxpLpy5Uq1M61bt27FtGnTajgRwzDSTJo0CYaGhmJ1Y1avXo0nT55gx44d8Pb2xpkzZxAXF0cpJcP8u9TV1REfH4+WLVvSjsJwGBugkOH+/fuwt7dHhw4dcPnyZTg5OYkspapYxswwDMPwX1FREQYNGoSPHz8iMTERa9euxfTp02nHkklXVxeXLl1Cx44dRY5v3rwZy5Ytw4cPHyglYxhGEm1tbcTHx8PMzEzkeGpqKjp27Ij3798jKSkJnTt3Fik+yXybxMREuV/LtQKffM5eVefOneHn54eePXvSjsJwGNviIQPfl1IxDMPUpIiICKxfvx6PHj0CALRq1Qrz589Hr169KCeTTNKF3/LlyzFq1CiMHTsWNjY2wtdw+cLv999/x4ABA3Dt2jXhzNSGDRuwcuVKnDlzhnI6hmGqUlFRQXR0tNgARXR0NFRUVACUr+qq+Jn5Z9q3by8s4ikNF+sg8Dl7Vb/99hsWLFgAHx8fWFlZiRV05kurWua/xVZQMAzDMP+Kffv2wc3NDc7OzujRoweA8gKTx44dQ1BQEEaPHk05oTgFBQWxC7/Kz/lSlR4orwGyZcsWREZG4tChQ/Dx8cHZs2eF/y8YhuGO1atXw8fHB5MmTULnzp0BlNeg2LlzJxYvXowlS5bAz88PZ8+excWLFymn5b+vKWzPtTobfM5elYKCAgCI1Z7gy/csUzPYAIUc8vLycOvWLYntcMaPH08pFcMwDLdYWlpi8uTJmD17tsjxjRs3YseOHcJVFVxSmy78AGDhwoXYtWsXSktL8ffff3O6NSrDfO/2798Pf39/PH78GABgYWGBGTNmCAdzP336JOzqwTC1QUREhNTztra2NZSE4TI2QCHDqVOnMGbMGIh6+OMAABnISURBVBQUFEBLS0tkxE8gECA3N5diOoZhGO5QVlbGgwcPJO6pbtOmDT5//kwpWe20ZcsWicfXr18PGxsbYWcAAJg5c2ZNxWIY5jvAtzapJ0+elPu1XGuLzefsDPMt2ACFDC1atMDAgQPh4+Mjsd0owzAMU87MzAzz58+Hh4eHyPGAgABs2LABKSkplJJVj88XfiYmJnK9TiAQID09/T9OwzDMtygqKpK4QtfQ0JBSIvn8+uuvMtukhoeHc6ZNasXWAlm4uM2Az9mrunbtmtTzfOn6xfy32ACFDOrq6rh37x5MTU1pR2EYhuG0bdu2YdasWXB3d0f37t0BlNegCAoKwubNm8UGLrigNl34MQzDHykpKXB3d0d0dLTIcb7sxWdtUplvIek7t/JKHK6/75mawQYoZHB2dsbIkSPxv//9j3YUhmEYzjt27Bg2bNggrDdhaWmJ+fPnw97eHhoaGpTTMQzDcEOPHj1Qp04dLFq0CI0bNxbbLtGuXTtKyeTD2qQy3+L9+/ciz4uLi3Hnzh0sW7YMa9asgb29PaVkDJewNqMSVF7yO2jQIMyfPx8PHz6U2A6Ha0t+GYZhapqfn5+wMObw4cMxfPhwkfP5+fno378/oqKiaMT7Lvz444/o0qULFi5cKHLc19cXsbGxOHLkCKVkDMNIcvfuXcTHxwvbAvMN39ukFhYWIiIiAllZWSgqKhI5x/WaPXzOrq2tLXasb9++UFJSwpw5cxAfH08hFcM1bIBCgmHDhokdW7lypdgxPizBYxiG+a8tXrwY9erVk9jVqLCwEI6OjsjJyaGQ7OtFRERg/fr1whUgrVq1wvz589GrVy/KyaS7du0ali9fLnZ8wIAB2LBhQ80HYhhGqlatWuHt27e0Y3yzGTNmYMqUKYiPj5fYJhUAzp8/j/bt21NMKdmdO3cwcOBAfPz4EYWFhdDT08Pbt2+hpqaGBg0acPomn8/ZpWnYsKGwmw3DsC0eDMMwzD8SFhaGcePG4dChQyKrygoKCuDo6IjXr18jIiICjRs3pphStn379sHNzQ3Ozs7o0aMHgPIaGseOHUNQUJCw9R8Xqaqq4u7du7CwsBA5npSUBGtra3z69IlSMoZhJLl8+TKWLl0KHx8fiSt0tbS0KCWTH1/bpNrZ2aFFixYICAiAtrY2EhISULduXYwdOxaenp5wdnamHbFafM4OAImJiSLPCSF4+fIl1q1bh5KSEkRGRlJKxnAJG6BgGIZh/rGdO3fC09MTZ86cgZ2dnXDlxKtXrxAREYEmTZrQjiiTpaUlJk+eLNyuUmHjxo3YsWOHcFUFF3Xp0gWDBw+Gl5eXyPHly5fj1KlTbNksw3BMRbHAqrUn+FIkk890dHRw8+ZNWFhYQEdHBzExMbC0tMTNmzfh4uKCpKQk2hGrxefsQPn7XiAQoOrtZ7du3bB7927ebnli/l1si0c1Ll++jOnTp+PGjRtio9jv379H9+7dsW3bNtYOh2EYBsDEiRORm5uLoUOH4sSJE/Dy8sKLFy94MzgBAOnp6RgyZIjYcScnJ+GSZa5atmwZnJ2dkZaWhj59+gAAwsPDcfDgQVZ/gmE46MqVK7Qj/Cv42Ca1bt26wgGiBg0aICsrC5aWltDW1sbTp08pp5OOz9kBICMjQ+S5goIC9PX1ObfKhqGLDVBUY9OmTZg0aZLEJXba2trw8PCAn58fG6BgGIb5/xYsWIDc3FzY29vD2NgYV69eRbNmzWjHkpuBgQHCw8PFir5dunQJBgYGlFLJZ8iQITh+/Dh8fHwQFhYGVVVVtG3bFpcuXYKtrS3teAzDVMH3v0s+t0m1trZGbGwszM3NYWtrCy8vL7x9+xYhISFo06YN7XhS8Tk7ABgZGdGOwPAA2+JRDSMjI5w7dw6WlpYSzyclJaFfv37Iysqq4WQMwzDcUnXP69mzZ9GuXTs0bdpU5PjRo0drMtZX27ZtG2bNmgV3d3d0794dQHkNiqCgIGzevBkeHh6UEzIMw2eJiYlo06YNFBQUxPbiV9W2bdsaSvVt+NwmNS4uDvn5+ejduzdev36N8ePHIzo6Gubm5ti9ezfL/h+IiYlBTk4OBg8eLDy2d+9eeHt7o7CwEMOGDcMff/wBZWVliikZrmADFNVQUVHB/fv3xWbSKqSmpsLKyooVHmMY5rvn5uYm1+v27NnzHyf5544dO4YNGzYI601YWlpi/vz5sLe3h4aGBuV0DMPwmYKCAl69eoUGDRpUuxcf4EeXOHV1dV63SWVq1oABA2BnZydshX3v3j106NABrq6usLS0xO+//w4PDw+J3aiY7w/b4lGNpk2bSh2gSExM5HxFeoZhmJrAh4EHafz8/ISFMYcPH47hw4eLnM/Pz0f//v0RFRVFI55cKm52qsP1mx2G+R5kZGRAX19f+DOf8b1NKlOz7t69i1WrVgmfh4aGomvXrtixYweA8i2W3t7ebICCAcAGKKo1cOBALFu2DI6OjmKFWz59+gRvb2+RZUoMwzAMPy1evBj16tXD+PHjxc5VdCPJycmhkEx+x44dE3leXFyMO3fuIDg4GCtWrKCUimGYyirvv+f7XvzffvsNCxYs4GWb1OzsbMybNw/h4eF4/fq12CoWLg/o8jX7u3fv0LBhQ+HziIgIDBgwQPi8c+fOvCjyydQMtsWjGtnZ2ejQoQMUFRUxffp0YW/5pKQkbN26FaWlpbh9+7bIHxvDMAzDP2FhYRg3bhwOHToEJycn4fGCggI4Ojri9evXiIiI4OWquQMHDuDQoUM4ceIE7SgMw1QSHByM+vXrY9CgQQDKiwwHBgaiVatWOHjwIOcHMPjcJnXAgAHIysrC9OnTJdbPGDp0KKVksvE1u5GREUJCQmBjY4OioiLo6Ojg1KlTsLe3B1C+5cPW1ha5ubmUkzJcwAYopHjy5AmmTp2K8+fPC0coBQIB+vfvj61bt8LExIRyQoZhGObfsHPnTnh6euLMmTOws7MTrpx49eoVr1qlVpWeno62bduioKCAdhSGYSqxsLDAtm3b0KdPH8TExMDe3h6bNm3C6dOnUadOHc4XFY6IiJB6nstdSjQ1NXH9+nW0b9+edpSvxtfsU6dORUJCAn777TccP34cwcHBePHiBZSUlAAA+/fvx6ZNmxAbG0s5KcMFbIuHFEZGRjh79izevXuH1NRUEEJgbm4OXV1d2tEYhmGYf9HEiRORm5uLoUOH4sSJE/Dy8sKLFy94PTjx6dMnbNmyRaybCsMw9D19+lRY5+z48eP46aefMHnyZPTo0QN2dnZ0w8mBywMQshgYGEgsTsoHfM2+atUqODs7w9bWFhoaGggODhYOTgDA7t270a9fP4oJGS5hAxRy0NXVRefOnWnHYBiGYf5DCxYsQG5uLuzt7WFsbIyrV6+iWbNmtGPJRVdXV2SpLyEE+fn5UFNTQ0hICMVkDMNIoqGhgZycHBgaGuLChQuYM2cOgPIuclztEFdb2qRu2rQJixYtwvbt22FsbEw7zlfha/b69evj2rVreP/+PTQ0NKCoqChy/siRI6xTFiPEtngwDMMw3zVnZ2eR52fPnkW7du3EVh5wecl1cHCwyHMFBQXo6+uja9eubNUfw3DQmDFjkJSUBGtraxw8eBBZWVmoV68eTp48icWLF+P+/fu0I4rhc5vUqoO4hYWFKCkpgZqamliBT67VQeBzdob5FmwFBcMwDPNd09bWFnk+atQoSkm+nYuLi8Tjz549w8KFCxEYGFjDiRiGkWbr1q1YunQpnj59ir/++gv16tUDAMTHx3P2M4jPbVI3bdpEO8I343N2hvkWbAUFwzAMw9RSCQkJ6NChA+dmMxmGYRiGYSRRoB2AYRiGYRiGYWq7xMRElJWVCX+W9uC64OBgnDlzRvh8wYIF0NHRQffu3fHkyROKyar34sULzJs3Dx8+fBA79/79e8yfPx/Z2dkUksnG5+wM87XYAAXDMAzDMAzD/Mfat2+Pt2/fCn+2trZG+/bthY+K59bW1pSTyubj4wNVVVUAQExMDPz9/eHr64v69etj9uzZlNNJtnHjRnz48AFaWlpi57S1tZGfn4+NGzdSSCYbn7MzzNdiWzwYhmEYppZiWzwYhjuePHkCQ0NDCAQCmasMjIyMaijVt1FTU0NSUhIMDQ2xcOFCvHz5Env37sWDBw9gZ2eHN2/e0I4opk2bNggICEDPnj0lno+OjsakSZPw4MGDGk4mG5+zM8zXYkUyGYZhGIanqnYgqSovL69mgjAMI1PlQQdpAxBcbTNaGR/bpGZkZMDQ0LDa882aNUNmZmbNBfoKfM7OMF+LDVAwDMMwDE9V7UAi6fz48eNrKA3DMP/Ely9f4O/vj99//x2vXr2iHUeqvn37YuLEibC2tkZycjIGDhwIAHjw4AGMjY3phquGqqoqMjMzq73Rz8zMFG5b4Ro+Z2eYr8UGKBiGYRiGp/bs2UM7AsMwX+HLly9Yvnw5Ll68CCUlJSxYsADDhg3Dnj17sGTJEigqKnK2hkNlfGyT2rVrV4SEhMDGxkbi+b1796JLly41nEo+fM7OMF+L1aBgGIZhGIZhmBqwcOFCbN++HQ4ODoiOjsabN2/g5uaGGzduYPHixfj555+hqKhIO2atdOXKFfTt2xezZs3C/Pnz0bBhQwBAdnY2fH19sXnzZly4cAF9+vShnFQcn7MzzNdiAxQMwzAMwzAMUwNMTU2xadMmODk54f79+2jbti1cXV2xa9cuCAQC2vGkSkxMRJs2baCgoCCzFWrbtm1rKNXX2b59Ozw9PVFcXAwtLS0IBAK8f/8edevWhZ+fH6ZOnUo7YrX4nJ1hvgYboGAYhmEYhmGYGqCkpISMjAw0bdoUQHltgVu3bsHKyopyMtkUFBTw6tUrNGjQAAoKChAIBKh8G1HxXCAQcLpz0PPnz3H48GGkpqaCEIIWLVrgp59+QrNmzWhHk4nP2RlGXmyAgmEYhmEYhmFqgKKiIl69egV9fX0AgKamJhITE2FiYkI5mWy1qU0qwzDcxQYoGIZhGIZhGKYGKCgoYMCAAVBWVgYAnDp1Cn369IG6urrI644ePUoj3r/i06dPrKMEwzDfjHXxYBiGYRiGYZga4OLiIvJ87NixlJL8+/jUJpVhGO5iAxQMwzAMwzAMUwP43hq4trRJZRiGu9gWD4ZhGIZhGIZhZGJtUhmG+a+xFRQMwzAMwzAMw8h05MgR7N27V6RNaklJCRISEjjfJpVhGH5gKygYhmEYhmEYhpGJr21SdXV15R5Ayc3N/Y/TfB0+Z2eYb8FWUDAMwzAMwzAMI1NpaSmUlJSEz+vUqQMNDQ2KieSzadMm2hG+GZ+zM8y3YCsoGIZhGIZhGIaR6Xtok8owDF1sBQXDMAzDMAzDMDLVtjapnz9/RlFRkcgxLS0tSmm+Dp+zM4w0bAUFwzAMwzAMwzDfhcLCQixcuBCHDx9GTk6O2PnS0lIKqeTD5+wMIy8F2gEYhmEYhmEYhmFqwoIFC3D58mVs27YNysrK2LlzJ1asWIEmTZpg7969tONJxefsDCMvtoKCYRiGYRiGYZjvgqGhIfbu3Qs7OztoaWnh9u3bMDMzQ0hICA4ePIizZ8/SjlgtPmdnGHmxFRQMwzAMwzAMw3wXcnNzYWpqCqC8ZkNFa86ePXvi2rVrNKPJxOfsDCMvNkDBMAzDMAzDMMx3wdTUFBkZGQCAli1b4vDhwwDKO5Lo6OhQTCYbn7MzjLzYFg+GYRiGYRiGYb4Lfn5+UFRUxMyZM3Hp0iUMGTIEhBAUFxdj48aN8PT0pB2xWnzOzjDyYgMUDMMwDMMwDMN8l548eYL4+HiYmZmhbdu2tON8FT5nZ5jqsAEKhmEYhmEYhmG+C+np6cI6DnzD5+wMIy9Wg4JhGIZhGIZhmO+CmZkZevfujX379uHz58+043wVPmdnGHmxAQqGYRiGYRiGYb4Lt2/fRtu2bTFnzhw0atQIHh4euHnzJu1YcuFzdoaRF9viwTAMwzAMwzDMd6WkpAQnT55EUFAQzp07hxYtWsDd3R3jxo2Dvr4+7XhS8Tk7w8jCBigYhmEYhmEYhvkuffnyBX/++Sd+/fVXFBUVQUlJCf/73//w22+/oXHjxrTjScXn7AxTHbbFg2EYhmEYhmGY70pcXBx++eUXNG7cGBs3bsS8efOQlpaGixcv4sWLFxg6dCjtiNXic3aGkYWtoGAYhmEYhmEY5ruwceNG7NmzB48fP8bAgQMxceJEDBw4EAoK/zdv++zZMxgbG6OkpIRiUnF8zs4w8qpDOwDDMAzDMAzDMExN2LZtG9zd3eHq6lrtNogGDRpg165dNZxMNj5nZxh5sRUUDMMwDMMwDMMwDMNQx1ZQMAzDMAzDMAzz3cjLy8OuXbvw6NEjAEDr1q3h7u4ObW1tyslk43N2hpEHW0HBMAzDMAzDMMx3IS4uDv3794eqqiq6dOmC/9fe/bxE9TVwHP/MM/5gRu0HUjlZgimOFQqJEEg63mghFOVGIgpTcpHkJjKi/oEKpDYRSsFYbQxBIogoiDtY+bPoh9UmVBgXgi0MNMfJmXwWDw3PfMtUyO9h9P1aeY5n7vnMXX6494wkDQ4OKhQK6enTpyopKTGccGGJnB1YKgoKAAAAAGtCeXm58vPzdevWLSUl/e9h8kgkooaGBo2MjKi7u9twwoUlcnZgqSgoAAAAAKwJLpdLb968UWFhYdz8p0+fVFpaqpmZGUPJFpfI2YGl+s/iSwAAAAAg8a1bt07BYPCX+bGxMWVkZBhItHSJnB1YKgoKAAAAAGvC0aNHderUKd2/f19jY2MaGxtTR0eHGhoadOzYMdPx/iiRswNLxa94AAAAAFgTWlpa5HA4VFtbq0gkIklKTk5WY2Ojrly5YjjdnyVydmCpOIMCAAAAwJoyMzOj4eFhSVJeXp7cbrdCoZBcLpfhZItL5OzAYnjFAwAAAMCa4na7VVRUpKKiIjmdTl27dk25ubmmYy1JImcHFkNBAQAAAGBVC4fDunjxokpLS1VWVqYHDx5Ikvx+v3Jzc3X9+nWdPXvWbMgFJHJ2YLl4xQMAAADAqnbhwgW1tbXpwIED6unp0ZcvX1RfX6++vj5dunRJNTU1cjqdpmP+ViJnB5aLQzIBAAAArGqdnZ26e/euDh8+rA8fPqi4uFiRSETv3r2Tw+EwHe+PEjk7sFw8QQEAAABgVUtJSdHo6Kiys7MlSS6XSwMDAyoqKjKcbHGJnB1YLs6gAAAAALCqRaNRpaSkxMZJSUlKT083mGjpEjk7sFy84gEAAABgVZufn1ddXZ1SU1MlSbOzszp9+rTS0tLi1nV1dZmI90eJnB1YLgoKAAAAAKvayZMn48YnTpwwlGT5Ejk7sFycQQEAAAAAAIzjDAoAAAAAAGAcBQUAAAAAADCOggIAAAAAABhHQQEAAAAAAIyjoAAAAAAAAMZRUAAAkCACgYAcDoe+fv1qOgoAAMBfR0EBAIABra2tysjIUCQSic1NT08rOTlZlZWVcWt/FhMej0fj4+Nav379v5wWAABg5VFQAABggGVZmp6e1qtXr2Jzz58/V1ZWlvr7+zU7Oxubt21bOTk58nq9ysrKksPhMBE5JhqN6sePH0YzAACA1YeCAgAAA7xerzwejwKBQGwuEAjoyJEjys3NVV9fX9y8ZVm/vOLR3t6uDRs26MmTJ9q5c6fS09NVVVWl8fHx2Gfr6upUXV2tlpYWeTweZWZm6syZM5qbm4utCYfDam5uVnZ2ttLS0rR37964XD/3efjwoXbt2qXU1FQFg8EVuzcAAGBtoqAAAMAQy7Jk23ZsbNu2Kisr5fP5YvOhUEj9/f2yLOu315iZmVFLS4vu3bun7u5uBYNBNTc3x62xbVvDw8OybVt37txRe3u72tvbY/9vampSb2+vOjo69P79e9XU1KiqqkqfP3+O2+fq1au6ffu2Pn78qM2bN//FOwEAAEBBAQCAMZZl6eXLl4pEIpqamtKbN2/k8/lUUVERe4Kht7dX4XB4wYJibm5Ora2tKi0tVUlJiZqamvTs2bO4NRs3btSNGzdUWFioQ4cO6eDBg7E1wWBQfr9fnZ2dKi8vV15enpqbm7Vv3z75/f64fW7evKmysjJ5vV653e6VuSkAAGDNSjIdAACAtaqyslLfvn3T4OCgJicnVVBQoE2bNsnn86m+vl6zs7MKBALasWOHcnJyNDIy8ss13G638vLyYmOPx6OJiYm4Nbt375bT6YxbMzQ0JEkaGhpSNBpVQUFB3GfC4bAyMzNj45SUFBUXF/+V7w0AAPA7FBQAABiSn5+vbdu2ybZtTU5OyufzSZK2bt2q7du3q6enR7Zta//+/QteIzk5OW7scDg0Pz+/6Jqfh1xOT0/L6XTq9evXcSWGJKWnp8f+drlcxg/nBAAAqxsFBQAABv08/HJyclLnz5+PzVdUVOjx48caGBhQY2Pjiu2/Z88eRaNRTUxMqLy8fMX2AQAAWAxnUAAAYJBlWXrx4oXevn0be4JCknw+n9ra2vT9+/cFz5/4GwoKCnT8+HHV1taqq6tLo6OjGhgY0OXLl/Xo0aMV2xcAAOCfKCgAADDIsiyFQiHl5+dry5YtsXmfz6epqanYz5GuJL/fr9raWp07d05er1fV1dUaHBxUTk7Oiu4LAADw/xzz/3xRFQAAAAAA4F/GExQAAAAAAMA4CgoAAAAAAGAcBQUAAAAAADCOggIAAAAAABhHQQEAAAAAAIyjoAAAAAAAAMZRUAAAAAAAAOMoKAAAAAAAgHEUFAAAAAAAwDgKCgAAAAAAYBwFBQAAAAAAMI6CAgAAAAAAGPdfA1MLTdTm044AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["#Top Cities Hosting Most IPL Matches\n","plt.figure(figsize=(14, 6))\n","sns.barplot(x=matches_per_city.index, y=matches_per_city.values)\n","plt.title(\"📍 Top Cities Hosting Most IPL Matches\")\n","plt.ylabel(\"Number of Matches\")\n","plt.xlabel(\"City\")\n","plt.xticks(rotation=45)\n","plt.tight_layout()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":566},"id":"F0EMiko4hDO4","executionInfo":{"status":"ok","timestamp":1744090630573,"user_tz":-330,"elapsed":1063,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"e8a48a24-0e4b-4e7f-9508-2fe73e625865"},"execution_count":7,"outputs":[{"output_type":"stream","name":"stderr","text":[":8: UserWarning: Glyph 128205 (\\N{ROUND PUSHPIN}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128205 (\\N{ROUND PUSHPIN}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABW4AAAJOCAYAAAAnP56mAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmGpJREFUeJzs3Xd0VNX6xvFnAiTUEEIPICX03ntTOkhHEFCULlUBEUGpojSx0PVK9QoqCCLoRTqIFOkCIr1Kr4EAAZL39we/nMvcgBJNmCH5ftaatTL77DnzZubk5Jxn9uzjMjMTAAAAAAAAAMBr+Hi6AAAAAAAAAACAO4JbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAIAn2IwZM+RyuXT06NG/7Lt69Wq5XC6tXr061uvydkOGDJHL5fJ0GXiCHT16VC6XS++//76nSwEAAHEUwS0AAICkqlWryuVy/eVtyJAhj6We8PBwTZ8+XVWrVlVgYKD8/PyULVs2tW3bVlu2bPnTx06aNEkzZsx4LHX+lchg+WE1V61aVQULFoyV575x44aGDBnidUH1yy+/LJfLJX9/f928eTPK8gMHDjjbW2yFguvXr9eQIUN05cqVR+r/8ssvK3ny5G5t//s3ExgYqFKlSmnatGmKiIj408c+ishg1OVyafjw4Q/s07p1a7lcrr+1fkmaPXu2Pvroo7/1WAAAgNhGcAsAAOKMPXv2yNfXV8mTJ3/gzdfXV4cOHXrgY9966y19/vnnzq1nz56SpAEDBri1N2nSJNZ/j5s3b+rZZ59Vu3btZGYaMGCAJk+erDZt2mjDhg0qXbq0Tp48KUl68cUXdfPmTWXNmtV5/MOC28qVK+vmzZuqXLlyrP8O3uDGjRsaOnToA4Pbt99++4Gh6eOSMGFC3bhxQ4sWLYqy7IsvvlDixIlj9fnXr1+voUOHPnJw+zCZM2d2/jYGDhyou3fvqn379howYEDMFCopceLEmjNnTpT20NBQLVy48B+9VgS3AADAmyX0dAEAAAAxxcxUunRprVu37oHLy5YtKzN74LIaNWq43U+cOLHGjRunGjVqqGrVqjFd6p/q27evlixZog8//FCvvfaa27LBgwfrww8/dO4nSJBACRIkeKT1+vj4xHog+KRImDChEib03KGwn5+fKlSooDlz5qh58+Zuy2bPnq169erpm2++8VB1jy5lypR64YUXnPudO3dWnjx5NGHCBL3zzjtKlCjRP36OunXrav78+dq5c6eKFCnitC9cuFC3b99W7dq1tXLlyn/8PAAAAN6GEbcAAADRMGnSJBUoUEB+fn4KCgpSt27dooxajPz6/9atW1W+fHklSZJE2bNn15QpU/5y/SdPntQnn3yiGjVqRAltpXtB7euvv67MmTNLijrHbbZs2bRnzx6tWbPG+Zp5ZPD8sDluN23apNq1aytlypRKmjSpqlSpop9//tmtz7Vr1/Taa68pW7Zs8vPzU7p06VSjRg1t27btkV636Lh7967eeecdBQcHO1NEDBgwQGFhYW79tmzZolq1ailNmjTOa9yuXTtJ975mnzZtWknS0KFDo0x18aA5bl0ul7p3765vv/1WBQsWlJ+fnwoUKKAlS5ZEqXH16tUqWbKkEidOrODgYH3yySfRnje3VatW+s9//uO2/WzevFkHDhxQq1atHviYw4cP67nnnlNgYKCSJk2qsmXL6vvvv4/Sb/z48SpQoICSJk2qVKlSqWTJkpo9e7bzu/ft21eSlD17due1eZR5kv9KZE2hoaE6f/78P16fJJUrV07Zs2d36o/0xRdfqHbt2goMDIzymIULF6pevXoKCgqSn5+fgoOD9c477yg8PNzpU7VqVX3//fc6duyY8xpky5bNWX7r1i0NGTJEuXPnVuLEiZUxY0Y1adLkgaP2P/30U2d7LVWqlDZv3hylz++//65mzZopMDBQiRMnVsmSJfXdd9+59blz546GDh2qXLlyKXHixEqdOrUqVqyoZcuWRfdlAwAAcQAjbgEAAB7RkCFDNHToUFWvXl1dunTRvn37NHnyZG3evFk///yz2+jCy5cvq27dumrevLlatmypr7/+Wl26dJGvr68TLj7If/7zH929e1cvvvji36rxo48+Uo8ePZQ8eXK99dZbkqT06dM/tP/KlStVp04dlShRQoMHD5aPj4+mT5+uZ555Rj/99JNKly4tSXrllVc0b948de/eXfnz59fFixe1bt067d27V8WLF//Luq5evaoLFy5Eab9z506Utg4dOmjmzJlq1qyZ+vTpo02bNmnEiBHau3evFixYIEk6d+6catasqbRp0+rNN99UQECAjh49qvnz50uS0qZNq8mTJ6tLly5q3LixM8VF4cKF/7TOdevWaf78+eratatSpEihcePGqWnTpjp+/LhSp04tSdq+fbtq166tjBkzaujQoQoPD9ewYcOcoPhRNWnSRK+88ormz5/vbBOzZ89W3rx5H/ianj17VuXLl9eNGzfUs2dPpU6dWjNnzlSDBg00b948NW7cWJL0r3/9Sz179lSzZs306quv6tatW/r111+1adMmtWrVSk2aNNH+/fs1Z84cffjhh0qTJo3zmsWEw4cPK0GCBAoICIiR9UlSy5Yt9e9//1sjR46Uy+XShQsXtHTpUn3++ecPDNZnzJih5MmTq3fv3kqePLlWrlypQYMGKSQkRGPGjJF0b3qUq1ev6uTJk84o9si5csPDw/Xss89qxYoVev755/Xqq6/q2rVrWrZsmXbv3q3g4GDnuWbPnq1r166pc+fOcrlcGj16tJo0aaLDhw87+4Q9e/aoQoUKypQpk958800lS5ZMX3/9tRo1aqRvvvnGee+GDBmiESNGqEOHDipdurRCQkK0ZcsWbdu2Lcq3AgAAQDxgAAAAccSuXbusQoUKD11epkwZO3DgwCOta+7cuSbJVq1aZWZm586dM19fX6tZs6aFh4c7/SZMmGCSbNq0aU5blSpVTJKNHTvWaQsLC7OiRYtaunTp7Pbt2w993l69epkk2759+yPVOX36dJNkR44ccdoKFChgVapUidJ31apVbr9TRESE5cqVy2rVqmURERFOvxs3blj27NmtRo0aTlvKlCmtW7duj1TTg+r7s1uBAgWc/jt27DBJ1qFDB7f1vP766ybJVq5caWZmCxYsMEm2efPmhz73+fPnTZINHjw4yrLBgwfb/x4KSzJfX187ePCg07Zz506TZOPHj3fa6tevb0mTJrU//vjDaTtw4IAlTJgwyjof5KWXXrJkyZKZmVmzZs2sWrVqZmYWHh5uGTJksKFDh9qRI0dMko0ZM8Z53GuvvWaS7KeffnLarl27ZtmzZ7ds2bI522XDhg3dXtMHGTNmTJTt5lFrjlSlShXLmzevnT9/3s6fP2979+61nj17miSrX7/+nz72Udz/Guzevdvtd584caIlT57cQkNDH7j+GzduRFlf586dLWnSpHbr1i2nrV69epY1a9YofadNm2aS7IMPPoiyLPJvJbK+1KlT26VLl5zlCxcuNEm2aNEip61atWpWqFAht+eOiIiw8uXLW65cuZy2IkWKWL169f7qpQEAAPEEUyUAAAA8guXLl+v27dt67bXX5OPz30Oojh07yt/fP8rX1RMmTKjOnTs79319fdW5c2edO3dOW7dufejzhISESJJSpEgRw79BVDt27HC+ln/x4kVduHBBFy5cUGhoqKpVq6a1a9cqIiJCkhQQEKBNmzbp1KlTf+u5Jk6cqGXLlkW5/e8I2B9++EGS1Lt3b7f2Pn36SJLzOkeO5ly8ePEDR+3+XdWrV3cbTVm4cGH5+/vr8OHDku6NxFy+fLkaNWqkoKAgp1/OnDlVp06daD9fq1attHr1ap05c0YrV67UmTNnHjpNwg8//KDSpUurYsWKTlvy5MnVqVMnHT16VL/99puke6/NyZMnH/h1/Zj2+++/K23atEqbNq3y5cun8ePHq169epo2bVqMPk+BAgVUuHBh5yJls2fPVsOGDZU0adIH9k+SJInz87Vr13ThwgVVqlRJN27c0O+///6Xz/fNN98oTZo06tGjR5Rl/zsdRosWLZQqVSrnfqVKlSTJ2WYuXbqklStXqnnz5k4tFy5c0MWLF1WrVi0dOHBAf/zxh6R7792ePXt04MCBv6wRAADEfQS3AAAAj+DYsWOSpDx58ri1+/r6KkeOHM7ySEFBQUqWLJlbW+7cuSXpT+cS9ff3l3QvbIptkeHQSy+95IRvkbfPPvtMYWFhunr1qiRp9OjR2r17t7JkyaLSpUtryJAhTjD1KEqXLq3q1atHud0feEn3XmcfHx/lzJnTrT1DhgwKCAhwXucqVaqoadOmGjp0qNKkSaOGDRtq+vTpUebBja6nnnoqSluqVKl0+fJlSfemaLh582aU+iQ9sO2v1K1bVylSpNBXX32lL774QqVKlXroeo4dOxZl+5OkfPnyOcslqV+/fkqePLlKly6tXLlyqVu3blHmLI4p2bJl07Jly7R8+XKtW7dOZ86c0eLFi53pF2JSq1atNHfuXB08eFDr169/aMAt3ZuaoHHjxkqZMqX8/f2VNm1a5yJqkdv0nzl06JDy5MnzSBew+99tJnKbjtxmDh48KDPTwIEDo/ydDR48WNK97UqShg0bpitXrih37twqVKiQ+vbtq19//fUvawAAAHETc9wCAAB4kbx580qSdu3apaJFi8bqc0WOph0zZsxDnytyzs/mzZurUqVKWrBggZYuXaoxY8Zo1KhRmj9//t8aafpX/uoiXy6XS/PmzdPGjRu1aNEi/fjjj2rXrp3Gjh2rjRs3OnVHV4IECR7YbmZ/a31/xc/PT02aNNHMmTN1+PBh5+Jp/0S+fPm0b98+LV68WEuWLNE333yjSZMmadCgQRo6dOg/L/o+yZIlU/Xq1WN0nQ/TsmVL9e/fXx07dlTq1KlVs2bNB/a7cuWKqlSpIn9/fw0bNkzBwcFKnDixtm3bpn79+jnbfUz5q20m8vlef/111apV64F9I8P6ypUr69ChQ1q4cKGWLl2qzz77TB9++KGmTJmiDh06xGjdAADA+xHcAgAAPIKsWbNKkvbt26ccOXI47bdv39aRI0eihFenTp1SaGio26jb/fv3S5Lblev/V506dZQgQQL9+9///tsXKPur0DNS5JQA/v7+jxS+ZcyYUV27dlXXrl117tw5FS9eXO+++26MBrdZs2ZVRESEDhw44Iwkle5dmOvKlSvO+xCpbNmyKlu2rN59913Nnj1brVu31pdffqkOHTo88usQHenSpVPixIl18ODBKMse1PYoWrVqpWnTpsnHx0fPP//8Q/tlzZpV+/bti9Ie+dX/+1+bZMmSqUWLFmrRooVu376tJk2a6N1331X//v2VOHHiWHltYttTTz2lChUqaPXq1erSpctDR8OuXr1aFy9e1Pz581W5cmWn/ciRI1H6Pux1CA4O1qZNm3Tnzh23iw7+HZH7i0SJEj3S31lgYKDatm2rtm3b6vr166pcubKGDBlCcAsAQDzEVAkAAACPoHr16vL19dW4cePcRl9OnTpVV69eVb169dz63717V5988olz//bt2/rkk0+UNm1alShR4qHPkyVLFnXs2FFLly7V+PHjoyyPiIjQ2LFjdfLkyYeuI1myZLpy5cpf/k4lSpRQcHCw3n//fV2/fj3K8vPnz0u6N6/r/369PF26dAoKCvrHUxP8r7p160qSPvroI7f2Dz74QJKc1/ny5ctRRsFGjhqOrCly/tNHeS0eVYIECVS9enV9++23bvP9Hjx4UP/5z3/+1jqffvppvfPOO5owYYIyZMjw0H5169bVL7/8og0bNjhtoaGh+vTTT5UtWzblz59fknTx4kW3x/n6+ip//vwyM2c+4MgPFGLytXkchg8frsGDBz9w7tlIkSNg798+bt++rUmTJkXpmyxZsgdOndC0aVNduHBBEyZMiLIsuqOv06VLp6pVq+qTTz7R6dOnoyyP/DuTor53yZMnV86cOWP87wwAADwZGHELAADwCNKmTav+/ftr6NChql27tho0aKB9+/Zp0qRJKlWqlDN/ZqSgoCCNGjVKR48eVe7cufXVV19px44d+vTTT/9yBN/YsWN16NAh9ezZU/Pnz9ezzz6rVKlS6fjx45o7d65+//33Px2ZWaJECU2ePFnDhw9Xzpw5lS5dOj3zzDNR+vn4+Oizzz5TnTp1VKBAAbVt21aZMmXSH3/8oVWrVsnf31+LFi3StWvXlDlzZjVr1kxFihRR8uTJtXz5cm3evFljx479ey/oQxQpUkQvvfSSPv30U+cr77/88otmzpypRo0a6emnn5YkzZw5U5MmTVLjxo0VHBysa9eu6V//+pf8/f2d8DdJkiTKnz+/vvrqK+XOnVuBgYEqWLCgChYs+I9qHDJkiJYuXaoKFSqoS5cuCg8P14QJE1SwYEHt2LEj2uvz8fHR22+//Zf93nzzTc2ZM0d16tRRz549FRgYqJkzZ+rIkSP65ptvnIvm1axZUxkyZFCFChWUPn167d27VxMmTFC9evWci95Ffnjw1ltv6fnnn1eiRIlUv379KPMyx5Q7d+5o+PDhUdoDAwPVtWvXR15PlSpVVKVKlT/tU758eaVKlUovvfSSevbsKZfLpc8///yBgWuJEiX01VdfqXfv3ipVqpSSJ0+u+vXrq02bNpo1a5Z69+6tX375RZUqVVJoaKiWL1+url27qmHDho9cs3Tv4nwVK1ZUoUKF1LFjR+XIkUNnz57Vhg0bdPLkSe3cuVOSlD9/flWtWlUlSpRQYGCgtmzZonnz5ql79+7Rej4AABBHGAAAQByxa9cuq1ChwkOXlylTxg4cOPBI65o7d65JslWrVrm1T5gwwfLmzWuJEiWy9OnTW5cuXezy5ctufapUqWIFChSwLVu2WLly5Sxx4sSWNWtWmzBhwiP/Lnfv3rXPPvvMKlWqZClTprREiRJZ1qxZrW3btrZ9+3an3/Tp002SHTlyxGk7c+aM1atXz1KkSGGSrEqVKmZmtmrVqgf+Ttu3b7cmTZpY6tSpzc/Pz7JmzWrNmze3FStWmJlZWFiY9e3b14oUKWIpUqSwZMmSWZEiRWzSpEl/+XtE1rd58+YHLo98re53584dGzp0qGXPnt0SJUpkWbJksf79+9utW7ecPtu2bbOWLVvaU089ZX5+fpYuXTp79tlnbcuWLW7rWr9+vZUoUcJ8fX1Nkg0ePNjMzAYPHmz/eygsybp16xalxqxZs9pLL73k1rZixQorVqyY+fr6WnBwsH322WfWp08fS5w48V++Ji+99JIlS5bsT/scOXLEJNmYMWPc2g8dOmTNmjWzgIAAS5w4sZUuXdoWL17s1ueTTz6xypUrO+9ncHCw9e3b165everW75133rFMmTKZj49PlG3oUWp+0Hv3sMdKeuAtODg42q/Bo9T2888/W9myZS1JkiQWFBRkb7zxhv34449Rtv/r169bq1atLCAgwCRZ1qxZnWU3btywt956y9kOM2TIYM2aNbNDhw79ZX33b2uRDh06ZG3atLEMGTJYokSJLFOmTPbss8/avHnznD7Dhw+30qVLW0BAgCVJksTy5s1r7777rt2+fftPXwMAABA3ucxi6UoLAAAAj9nu3bv1yiuvaN26dQ9cXrZsWf373/92LgQUW6pWraoLFy5o9+7dsfo88C6NGjXSnj17dODAAU+XAgAAgDiAOW4BAACAaLp586bb/QMHDuiHH35Q1apVPVMQAAAA4hzmuAUAAHHKxo0bFRAQ8MBlD7oAF/B35MiRQy+//LJy5MihY8eOafLkyfL19dUbb7zh6dIAAAAQRxDcAgCAOKNgwYK6e/eup8tAPFC7dm3NmTNHZ86ckZ+fn8qVK6f33ntPuXLl8nRpAAAAiCOY4xYAAAAAAAAAvAxz3AIAAAAAAACAlyG4BQAAAAAAAAAvwxy3kiIiInTq1CmlSJFCLpfL0+UAAAAAAAAAiIPMTNeuXVNQUJB8fP58TC3BraRTp04pS5Ysni4DAAAAAAAAQDxw4sQJZc6c+U/7ENxKSpEihaR7L5i/v7+HqwEAAAAAAAAQF4WEhChLlixOHvlnCG4lZ3oEf39/glsAAAAAAAAAsepRpmvl4mQAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZTwa3K5du1b169dXUFCQXC6Xvv32W7flLpfrgbcxY8Y4fbJlyxZl+ciRIx/zbwIAAAAAAAAAMcejwW1oaKiKFCmiiRMnPnD56dOn3W7Tpk2Ty+VS06ZN3foNGzbMrV+PHj0eR/kAAAAAAAAAECsSevLJ69Spozp16jx0eYYMGdzuL1y4UE8//bRy5Mjh1p4iRYoofQEAAAAAAADgSfXEzHF79uxZff/992rfvn2UZSNHjlTq1KlVrFgxjRkzRnfv3vVAhQAAAAAAAAAQMzw64jY6Zs6cqRQpUqhJkyZu7T179lTx4sUVGBio9evXq3///jp9+rQ++OCDh64rLCxMYWFhzv2QkJBYqxsAAAAAAAAAouuJCW6nTZum1q1bK3HixG7tvXv3dn4uXLiwfH191blzZ40YMUJ+fn4PXNeIESM0dOjQWK0XAAAAAAAAAP6uJ2KqhJ9++kn79u1Thw4d/rJvmTJldPfuXR09evShffr376+rV686txMnTsRgtQAAAAAAAADwzzwRI26nTp2qEiVKqEiRIn/Zd8eOHfLx8VG6dOke2sfPz++ho3EBAAAAAAAAwNM8Gtxev35dBw8edO4fOXJEO3bsUGBgoJ566ilJ9+afnTt3rsaOHRvl8Rs2bNCmTZv09NNPK0WKFNqwYYN69eqlF154QalSpXpsvwcAAAAAAAAAxCSPBrdbtmzR008/7dyPnK/2pZde0owZMyRJX375pcxMLVu2jPJ4Pz8/ffnllxoyZIjCwsKUPXt29erVy23eWwAAAAAAAAB40rjMzDxdhKeFhIQoZcqUunr1qvz9/R/5cSX6zorFqhATto5p4+kSAAAAAAAAAEnRyyGfiIuTAQAAAAAAAEB8QnALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GY8Gt2vXrlX9+vUVFBQkl8ulb7/91m35yy+/LJfL5XarXbu2W59Lly6pdevW8vf3V0BAgNq3b6/r168/xt8CAAAAAAAAAGKWR4Pb0NBQFSlSRBMnTnxon9q1a+v06dPObc6cOW7LW7durT179mjZsmVavHix1q5dq06dOsV26QAAAAAAAAAQaxJ68snr1KmjOnXq/GkfPz8/ZciQ4YHL9u7dqyVLlmjz5s0qWbKkJGn8+PGqW7eu3n//fQUFBcV4zQAAAAAAAAAQ27x+jtvVq1crXbp0ypMnj7p06aKLFy86yzZs2KCAgAAntJWk6tWry8fHR5s2bXroOsPCwhQSEuJ2AwAAAAAAAABv4dXBbe3atTVr1iytWLFCo0aN0po1a1SnTh2Fh4dLks6cOaN06dK5PSZhwoQKDAzUmTNnHrreESNGKGXKlM4tS5Yssfp7AAAAAAAAAEB0eHSqhL/y/PPPOz8XKlRIhQsXVnBwsFavXq1q1ar97fX2799fvXv3du6HhIQQ3gIAAAAAAADwGl494vZ/5ciRQ2nSpNHBgwclSRkyZNC5c+fc+ty9e1eXLl166Ly40r15c/39/d1uAAAAAAAAAOAtnqjg9uTJk7p48aIyZswoSSpXrpyuXLmirVu3On1WrlypiIgIlSlTxlNlAgAAAAAAAMA/4tGpEq5fv+6MnpWkI0eOaMeOHQoMDFRgYKCGDh2qpk2bKkOGDDp06JDeeOMN5cyZU7Vq1ZIk5cuXT7Vr11bHjh01ZcoU3blzR927d9fzzz+voKAgT/1aAAAAAAAAAPCPeHTE7ZYtW1SsWDEVK1ZMktS7d28VK1ZMgwYNUoIECfTrr7+qQYMGyp07t9q3b68SJUrop59+kp+fn7OOL774Qnnz5lW1atVUt25dVaxYUZ9++qmnfiUAAAAAAAAA+Mc8OuK2atWqMrOHLv/xxx//ch2BgYGaPXt2TJYFAAAAAAAAAB71RM1xCwAAAAAAAADxAcEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIeDW7Xrl2r+vXrKygoSC6XS99++62z7M6dO+rXr58KFSqkZMmSKSgoSG3atNGpU6fc1pEtWza5XC6328iRIx/zbwIAAAAAAAAAMcejwW1oaKiKFCmiiRMnRll248YNbdu2TQMHDtS2bds0f/587du3Tw0aNIjSd9iwYTp9+rRz69Gjx+MoHwAAAAAAAABiRUJPPnmdOnVUp06dBy5LmTKlli1b5tY2YcIElS5dWsePH9dTTz3ltKdIkUIZMmSI1VoBAAAAAAAA4HF5oua4vXr1qlwulwICAtzaR44cqdSpU6tYsWIaM2aM7t69+6frCQsLU0hIiNsNAAAAAAAAALyFR0fcRsetW7fUr18/tWzZUv7+/k57z549Vbx4cQUGBmr9+vXq37+/Tp8+rQ8++OCh6xoxYoSGDh36OMoGAAAAAAAAgGh7IoLbO3fuqHnz5jIzTZ482W1Z7969nZ8LFy4sX19fde7cWSNGjJCfn98D19e/f3+3x4WEhChLliyxUzwAAAAAAAAARJPXB7eRoe2xY8e0cuVKt9G2D1KmTBndvXtXR48eVZ48eR7Yx8/P76GhLgAAAAAAAAB4mlcHt5Gh7YEDB7Rq1SqlTp36Lx+zY8cO+fj4KF26dI+hQgAAAAAAAACIeR4Nbq9fv66DBw86948cOaIdO3YoMDBQGTNmVLNmzbRt2zYtXrxY4eHhOnPmjCQpMDBQvr6+2rBhgzZt2qSnn35aKVKk0IYNG9SrVy+98MILSpUqlad+LQAAAAAAAAD4Rzwa3G7ZskVPP/20cz9y3tmXXnpJQ4YM0XfffSdJKlq0qNvjVq1apapVq8rPz09ffvmlhgwZorCwMGXPnl29evVym78WAAAAAAAAAJ40Hg1uq1atKjN76PI/WyZJxYsX18aNG2O6LAAAAAAAAADwKB9PFwAAAAAAAAAAcEdwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvEy0g9ubN2/qxo0bzv1jx47po48+0tKlS2O0MAAAAAAAAACIr6Id3DZs2FCzZs2SJF25ckVlypTR2LFj1bBhQ02ePDnGCwQAAAAAAACA+Cbawe22bdtUqVIlSdK8efOUPn16HTt2TLNmzdK4ceNivEAAAAAAAAAAiG+iHdzeuHFDKVKkkCQtXbpUTZo0kY+Pj8qWLatjx47FeIEAAAAAAAAAEN9EO7jNmTOnvv32W504cUI//vijatasKUk6d+6c/P39Y7xAAAAAAAAAAIhvoh3cDho0SK+//rqyZcum0qVLq1y5cpLujb4tVqxYjBcIAAAAAAAAAPFNwug+oFmzZqpYsaJOnz6tIkWKOO3VqlVT48aNY7Q4AAAAAAAAAIiPoj3iVpIyZMigFClSaNmyZbp586YkqVSpUsqbN2+MFgcAAAAAAAAA8VG0g9uLFy+qWrVqyp07t+rWravTp09Lktq3b68+ffrEeIEAAAAAAAAAEN9EO7jt1auXEiVKpOPHjytp0qROe4sWLbRkyZIYLQ4AAAAAAAAA4qNoz3G7dOlS/fjjj8qcObNbe65cuXTs2LEYKwwAAAAAAAAA4qtoj7gNDQ11G2kb6dKlS/Lz84uRogAAAAAAAAAgPot2cFupUiXNmjXLue9yuRQREaHRo0fr6aefjtHiAAAAAAAAACA+ivZUCaNHj1a1atW0ZcsW3b59W2+88Yb27NmjS5cu6eeff46NGgEAAAAAAAAgXon2iNuCBQtq//79qlixoho2bKjQ0FA1adJE27dvV3BwcGzUCAAAAAAAAADxSrRH3EpSypQp9dZbb8V0LQAAAAAAAAAA/c3g9sqVK/rll1907tw5RUREuC1r06ZNjBQGAAAAAAAAAPFVtIPbRYsWqXXr1rp+/br8/f3lcrmcZS6Xi+AWAAAAAAAAAP6haM9x26dPH7Vr107Xr1/XlStXdPnyZed26dKl2KgRAAAAAAAAAOKVaAe3f/zxh3r27KmkSZPGRj0AAAAAAAAAEO9FO7itVauWtmzZEhu1AAAAAAAAAAD0iHPcfvfdd87P9erVU9++ffXbb7+pUKFCSpQokVvfBg0axGyFAAAAAAAAABDPPFJw26hRoyhtw4YNi9LmcrkUHh7+j4sCAAAAAAAAgPjskYLbiIiI2K4DAAAAAAAAAPD/oj3HLQAAAAAAAAAgdkU7uO3Zs6fGjRsXpX3ChAl67bXXYqImAAAAAAAAAIjXoh3cfvPNN6pQoUKU9vLly2vevHkxUhQAAAAAAAAAxGfRDm4vXryolClTRmn39/fXhQsXYqQoAAAAAAAAAIjPoh3c5syZU0uWLInS/p///Ec5cuSIkaIAAAAAAAAAID5LGN0H9O7dW927d9f58+f1zDPPSJJWrFihsWPH6qOPPorp+gAAAAAAAAAg3ol2cNuuXTuFhYXp3Xff1TvvvCNJypYtmyZPnqw2bdrEeIEAAAAAAAAAEN9EO7iVpC5duqhLly46f/68kiRJouTJk8d0XQAAAAAAAAAQb0V7jttnnnlGV65ckSSlTZvWCW1DQkKcqRMAAAAAAAAAAH9ftIPb1atX6/bt21Hab926pZ9++ilGigIAAAAAAACA+OyRp0r49ddfnZ9/++03nTlzxrkfHh6uJUuWKFOmTDFbHQAAAAAAAADEQ48c3BYtWlQul0sul+uBUyIkSZJE48ePj9HiAAAAAAAAACA+euTg9siRIzIz5ciRQ7/88ovSpk3rLPP19VW6dOmUIEGCWCkSAAAAAAAAAOKTRw5us2bNKkmKiIiItWIAAAAAAAAAANEIbv/Xb7/9puPHj0e5UFmDBg3+cVEAAAAAAAAAEJ9FO7g9fPiwGjdurF27dsnlcsnMJEkul0vSvQuVAQAAAAAAAAD+Pp/oPuDVV19V9uzZde7cOSVNmlR79uzR2rVrVbJkSa1evTpa61q7dq3q16+voKAguVwuffvtt27LzUyDBg1SxowZlSRJElWvXl0HDhxw63Pp0iW1bt1a/v7+CggIUPv27XX9+vXo/loAAAAAAAAA4DWiHdxu2LBBw4YNU5o0aeTj4yMfHx9VrFhRI0aMUM+ePaO1rtDQUBUpUkQTJ0584PLRo0dr3LhxmjJlijZt2qRkyZKpVq1aunXrltOndevW2rNnj5YtW6bFixdr7dq16tSpU3R/LQAAAAAAAADwGtGeKiE8PFwpUqSQJKVJk0anTp1Snjx5lDVrVu3bty9a66pTp47q1KnzwGVmpo8++khvv/22GjZsKEmaNWuW0qdPr2+//VbPP/+89u7dqyVLlmjz5s0qWbKkJGn8+PGqW7eu3n//fQUFBUX31wMAAAAAAAAAj4v2iNuCBQtq586dkqQyZcpo9OjR+vnnnzVs2DDlyJEjxgo7cuSIzpw5o+rVqzttKVOmVJkyZbRhwwZJ90b/BgQEOKGtJFWvXl0+Pj7atGnTQ9cdFhamkJAQtxsAAAAAAAAAeItoB7dvv/22IiIiJEnDhg3TkSNHVKlSJf3www8aN25cjBV25swZSVL69Ond2tOnT+8sO3PmjNKlS+e2PGHChAoMDHT6PMiIESOUMmVK55YlS5YYqxsAAAAAAAAA/qloT5VQq1Yt5+ecOXPq999/16VLl5QqVSq5XK4YLS629O/fX71793buh4SEEN4CAAAAAAAA8BrRDm4fJDAwMCZW4yZDhgySpLNnzypjxoxO+9mzZ1W0aFGnz7lz59wed/fuXV26dMl5/IP4+fnJz88vxmsGAAAAAAAAgJjwyMFtu3btHqnftGnT/nYx98uePbsyZMigFStWOEFtSEiINm3apC5dukiSypUrpytXrmjr1q0qUaKEJGnlypWKiIhQmTJlYqQOAAAAAAAAAHjcHjm4nTFjhrJmzapixYrJzGLkya9fv66DBw86948cOaIdO3YoMDBQTz31lF577TUNHz5cuXLlUvbs2TVw4EAFBQWpUaNGkqR8+fKpdu3a6tixo6ZMmaI7d+6oe/fuev755xUUFBQjNQIAAAAAAADA4/bIwW2XLl00Z84cHTlyRG3bttULL7zwj6dI2LJli55++mnnfuS8sy+99JJmzJihN954Q6GhoerUqZOuXLmiihUrasmSJUqcOLHzmC+++ELdu3dXtWrV5OPjo6ZNm8boRdIAAAAAAAAA4HFzWTSGz4aFhWn+/PmaNm2a1q9fr3r16ql9+/aqWbPmE3NhsgcJCQlRypQpdfXqVfn7+z/y40r0nRWLVSEmbB3TxtMlAAAAAAAAAJKil0P6RGfFfn5+atmypZYtW6bffvtNBQoUUNeuXZUtWzZdv379HxUNAAAAAAAAALgnWsGt2wN9fORyuWRmCg8Pj8maAAAAAAAAACBei1ZwGxYWpjlz5qhGjRrKnTu3du3apQkTJuj48eNKnjx5bNUIAAAAAAAAAPHKI1+crGvXrvryyy+VJUsWtWvXTnPmzFGaNGliszYAAAAAAAAAiJceObidMmWKnnrqKeXIkUNr1qzRmjVrHthv/vz5MVYcAAAAAAAAAMRHjxzctmnTRi6XKzZrAQAAAAAAAAAoGsHtjBkzYrEMAAAAAAAAAECkaF2cDAAAAAAAAAAQ+whuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL/NIFycrXry4VqxYoVSpUmnYsGF6/fXXlTRp0tiuDXhilOg7y9Ml4C9sHdPG0yUAAAAAAAA8skcacbt3716FhoZKkoYOHarr16/HalEAAAAAAAAAEJ890ojbokWLqm3btqpYsaLMTO+//76SJ0/+wL6DBg2K0QIBAAAAAAAAIL55pOB2xowZGjx4sBYvXiyXy6X//Oc/Spgw6kNdLhfBLQAAAAAAAAD8Q48U3ObJk0dffvmlJMnHx0crVqxQunTpYrUwAAAAAAAAAIivHim4vV9ERERs1AEAAAAAAAAA+H/RDm4l6dChQ/roo4+0d+9eSVL+/Pn16quvKjg4OEaLAwAAAAAAAID4KNrB7Y8//qgGDRqoaNGiqlChgiTp559/VoECBbRo0SLVqFEjxosEgCdJib6zPF0C/sLWMW08XQIAAAAAAH8q2sHtm2++qV69emnkyJFR2vv160dwCwAAAAAAAAD/kE90H7B37161b98+Snu7du3022+/xUhRAAAAAAAAABCfRTu4TZs2rXbs2BGlfceOHUqXLl1M1AQAAAAAAAAA8Vq0p0ro2LGjOnXqpMOHD6t8+fKS7s1xO2rUKPXu3TvGCwQAAAAAAACA+Cbawe3AgQOVIkUKjR07Vv3795ckBQUFaciQIerZs2eMFwgAAAAAAAAA8U20g1uXy6VevXqpV69eunbtmiQpRYoUMV4YAAAAAAAAAMRX0Q5u70dgCwAAAAAAAAAxL9oXJwMAAAAAAAAAxC6CWwAAAAAAAADwMgS3AAAAAAAAAOBlohXc3rlzR9WqVdOBAwdiqx4AAAAAAAAAiPeiFdwmSpRIv/76a2zVAgAAAAAAAACQlDC6D3jhhRc0depUjRw5MjbqAQAgzijRd5anS8Bf2DqmjadLAAAAAIAHinZwe/fuXU2bNk3Lly9XiRIllCxZMrflH3zwQYwVBwAAAAAAAADxUbSD2927d6t48eKSpP3797stc7lcMVMVAAAAAAAAAMRj0Q5uV61aFRt1AAAAAAAAAAD+X7QuTna/gwcP6scff9TNmzclSWYWY0UBAAAAAAAAQHwW7eD24sWLqlatmnLnzq26devq9OnTkqT27durT58+MV4gAAAAAAAAAMQ30Q5ue/XqpUSJEun48eNKmjSp096iRQstWbIkRosDAAAAAAAAgPgo2nPcLl26VD/++KMyZ87s1p4rVy4dO3YsxgoDAAAAAAAAgPgq2iNuQ0ND3UbaRrp06ZL8/PxipCgAAAAAAAAAiM+iHdxWqlRJs2bNcu67XC5FRERo9OjRevrpp2O0OAAAAAAAAACIj6I9VcLo0aNVrVo1bdmyRbdv39Ybb7yhPXv26NKlS/r5559jo0YAAAAAAAAAiFeiPeK2YMGC2r9/vypWrKiGDRsqNDRUTZo00fbt2xUcHBwbNQIAAAAAAABAvBLtEbeSlDJlSr311lsxXQsAAAAAAAAAQH8zuL18+bKmTp2qvXv3SpLy58+vtm3bKjAwMEaLAwAAAAAAAID4KNpTJaxdu1bZsmXTuHHjdPnyZV2+fFnjxo1T9uzZtXbt2tioEQAAAAAAAADilWiPuO3WrZtatGihyZMnK0GCBJKk8PBwde3aVd26ddOuXbtivEgAAAAAAAAAiE+iPeL24MGD6tOnjxPaSlKCBAnUu3dvHTx4MEaLAwAAAAAAAID4KNrBbfHixZ25be+3d+9eFSlSJEaKAgAAAAAAAID47JGmSvj111+dn3v27KlXX31VBw8eVNmyZSVJGzdu1MSJEzVy5MjYqRIAAAAAAAAA4pFHCm6LFi0ql8slM3Pa3njjjSj9WrVqpRYtWsRcdQAAAAAAAAAQDz1ScHvkyJHYruOhsmXLpmPHjkVp79q1qyZOnKiqVatqzZo1bss6d+6sKVOmPK4SAQAA/lKJvrM8XQL+wtYxbTxdAgAAAOB4pOA2a9assV3HQ23evFnh4eHO/d27d6tGjRp67rnnnLaOHTtq2LBhzv2kSZM+1hoBAAAAAAAAICY9UnD7v06dOqV169bp3LlzioiIcFvWs2fPGCksUtq0ad3ujxw5UsHBwapSpYrTljRpUmXIkCFGnxcAAAAAAAAAPCXawe2MGTPUuXNn+fr6KnXq1HK5XM4yl8sV48Ht/W7fvq1///vf6t27t9vzfvHFF/r3v/+tDBkyqH79+ho4cCCjbgEAAAAAAAA8saId3A4cOFCDBg1S//795ePjExs1PdS3336rK1eu6OWXX3baWrVqpaxZsyooKEi//vqr+vXrp3379mn+/PkPXU9YWJjCwsKc+yEhIbFZNgAAAAAAAABES7SD2xs3buj5559/7KGtJE2dOlV16tRRUFCQ09apUyfn50KFCiljxoyqVq2aDh06pODg4AeuZ8SIERo6dGis1wsAAAAAAAAAf0e009f27dtr7ty5sVHLnzp27JiWL1+uDh06/Gm/MmXKSJIOHjz40D79+/fX1atXnduJEyditFYAAAAAAAAA+CeiPeJ2xIgRevbZZ7VkyRIVKlRIiRIlclv+wQcfxFhx95s+fbrSpUunevXq/Wm/HTt2SJIyZsz40D5+fn7y8/OLyfIAAAAAAAAAIMb8reD2xx9/VJ48eSQpysXJYkNERISmT5+ul156SQkT/rfkQ4cOafbs2apbt65Sp06tX3/9Vb169VLlypVVuHDhWKkFAAAAAAAAAGJbtIPbsWPHatq0aW4XCItty5cv1/Hjx9WuXTu3dl9fXy1fvlwfffSRQkNDlSVLFjVt2lRvv/32Y6sNAAAAAAAAAGJatINbPz8/VahQITZqeaiaNWvKzKK0Z8mSRWvWrHmstQAAAAAAAABAbIv2xcleffVVjR8/PjZqAQAAAAAAAADob4y4/eWXX7Ry5UotXrxYBQoUiHJxsvnz58dYcQAAAAAAAAAQH0U7uA0ICFCTJk1ioxYAAAAAAAAAgP5GcDt9+vTYqAMAAAAAAAAA8P+iPcctAAAAAAAAACB2RXvEbfbs2eVyuR66/PDhw/+oIAAAAAAAAACI76Id3L722mtu9+/cuaPt27dryZIl6tu3b0zVBQAAAAAAAADxVrSD21dfffWB7RMnTtSWLVv+cUEAAAAAAAAAEN/F2By3derU0TfffBNTqwMAAAAAAACAeCvGgtt58+YpMDAwplYHAAAAAAAAAPFWtKdKKFasmNvFycxMZ86c0fnz5zVp0qQYLQ4AAAAAAAAA4qNoB7eNGjVyu+/j46O0adOqatWqyps3b0zVBQAAAAAAAADxVrSD28GDB8dGHQAAAAAAAACA/xdjc9wCAAAAAAAAAGLGI4+49fHxcZvb9kFcLpfu3r37j4sCAAAAAAAAgPjskYPbBQsWPHTZhg0bNG7cOEVERMRIUQAAAAAAAAAQnz1ycNuwYcMobfv27dObb76pRYsWqXXr1ho2bFiMFgcAAAAAAAAA8dHfmuP21KlT6tixowoVKqS7d+9qx44dmjlzprJmzRrT9QEAAAAAAABAvPPII24l6erVq3rvvfc0fvx4FS1aVCtWrFClSpViqzYAAAAgzinRd5anS8Bf2DqmjadLAAAAePTgdvTo0Ro1apQyZMigOXPmPHDqBAAAAAAAAADAP/fIwe2bb76pJEmSKGfOnJo5c6Zmzpz5wH7z58+PseIAAAAAAAAAID565OC2TZs2crlcsVkLAAAAAAAAAEDRCG5nzJgRi2UAAAAAAAAAACL5eLoAAAAAAAAAAIA7glsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJdJ6OkCAAAAACA+KtF3lqdLwCPYOqaNp0sAAMRTjLgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL5PQ0wUAAAAAABDfleg7y9Ml4C9sHdPG0yUAiGcYcQsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMl4d3A4ZMkQul8vtljdvXmf5rVu31K1bN6VOnVrJkydX06ZNdfbsWQ9WDAAAAAAAAAD/nFcHt5JUoEABnT592rmtW7fOWdarVy8tWrRIc+fO1Zo1a3Tq1Ck1adLEg9UCAAAAAAAAwD+X0NMF/JWECRMqQ4YMUdqvXr2qqVOnavbs2XrmmWckSdOnT1e+fPm0ceNGlS1b9nGXCgAAAAAA8I+U6DvL0yXgL2wd08bTJSCe8PoRtwcOHFBQUJBy5Mih1q1b6/jx45KkrVu36s6dO6pevbrTN2/evHrqqae0YcMGT5ULAAAAAAAAAP+YV4+4LVOmjGbMmKE8efLo9OnTGjp0qCpVqqTdu3frzJkz8vX1VUBAgNtj0qdPrzNnzvzpesPCwhQWFubcDwkJiY3yAQAAAAAAAOBv8ergtk6dOs7PhQsXVpkyZZQ1a1Z9/fXXSpIkyd9e74gRIzR06NCYKBEAAAAAAAAAYpzXT5Vwv4CAAOXOnVsHDx5UhgwZdPv2bV25csWtz9mzZx84J+79+vfvr6tXrzq3EydOxGLVAAAAAAAAABA9T1Rwe/36dR06dEgZM2ZUiRIllChRIq1YscJZvm/fPh0/flzlypX70/X4+fnJ39/f7QYAAAAAAAAA3sKrp0p4/fXXVb9+fWXNmlWnTp3S4MGDlSBBArVs2VIpU6ZU+/bt1bt3bwUGBsrf3189evRQuXLlVLZsWU+XDgAAAAAAAAB/m1cHtydPnlTLli118eJFpU2bVhUrVtTGjRuVNm1aSdKHH34oHx8fNW3aVGFhYapVq5YmTZrk4aoBAAAAAAAA4J/x6uD2yy+//NPliRMn1sSJEzVx4sTHVBEAAAAAAAAAxL4nao5bAAAAAAAAAIgPCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsk9HQBAAAAAAAAAKIq0XeWp0vAX9g6pk2srZsRtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DJeHdyOGDFCpUqVUooUKZQuXTo1atRI+/btc+tTtWpVuVwut9srr7zioYoBAAAAAAAA4J/z6uB2zZo16tatmzZu3Khly5bpzp07qlmzpkJDQ936dezYUadPn3Zuo0eP9lDFAAAAAAAAAPDPJfR0AX9myZIlbvdnzJihdOnSaevWrapcubLTnjRpUmXIkOFxlwcAAAAAAAAAscKrR9z+r6tXr0qSAgMD3dq/+OILpUmTRgULFlT//v1148YNT5QHAAAAAAAAADHCq0fc3i8iIkKvvfaaKlSooIIFCzrtrVq1UtasWRUUFKRff/1V/fr10759+zR//vyHrissLExhYWHO/ZCQkFitHQAAAAAAAACi44kJbrt166bdu3dr3bp1bu2dOnVyfi5UqJAyZsyoatWq6dChQwoODn7gukaMGKGhQ4fGar0AAAAAAAAA8Hc9EVMldO/eXYsXL9aqVauUOXPmP+1bpkwZSdLBgwcf2qd///66evWqcztx4kSM1gsAAAAAAAAA/4RXj7g1M/Xo0UMLFizQ6tWrlT179r98zI4dOyRJGTNmfGgfPz8/+fn5xVSZAAAAAAAAABCjvDq47datm2bPnq2FCxcqRYoUOnPmjCQpZcqUSpIkiQ4dOqTZs2erbt26Sp06tX799Vf16tVLlStXVuHChT1cPQAAAAAAAAD8PV4d3E6ePFmSVLVqVbf26dOn6+WXX5avr6+WL1+ujz76SKGhocqSJYuaNm2qt99+2wPVAgAAAAAAAEDM8Org1sz+dHmWLFm0Zs2ax1QNAAAAAAAAADweT8TFyQAAAAAAAAAgPiG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF4mzgS3EydOVLZs2ZQ4cWKVKVNGv/zyi6dLAgAAAAAAAIC/JU4Et1999ZV69+6twYMHa9u2bSpSpIhq1aqlc+fOebo0AAAAAAAAAIi2OBHcfvDBB+rYsaPatm2r/Pnza8qUKUqaNKmmTZvm6dIAAAAAAAAAINqe+OD29u3b2rp1q6pXr+60+fj4qHr16tqwYYMHKwMAAAAAAACAvyehpwv4py5cuKDw8HClT5/erT19+vT6/fffH/iYsLAwhYWFOfevXr0qSQoJCYnWc4eH3YxmtXjcovue/l1sC97vcW0LEtvDk4B9AyKxb8D92DcgEtsC7sf2gEhsC4jEMSTuF93tIbK/mf1lX5c9Si8vdurUKWXKlEnr169XuXLlnPY33nhDa9as0aZNm6I8ZsiQIRo6dOjjLBMAAAAAAAAAJEknTpxQ5syZ/7TPEz/iNk2aNEqQIIHOnj3r1n727FllyJDhgY/p37+/evfu7dyPiIjQpUuXlDp1arlcrlit11uFhIQoS5YsOnHihPz9/T1dDjyM7QGR2BZwP7YHRGJbwP3YHhCJbQGR2BZwP7YHRGJbuMfMdO3aNQUFBf1l3yc+uPX19VWJEiW0YsUKNWrUSNK9IHbFihXq3r37Ax/j5+cnPz8/t7aAgIBYrvTJ4O/vH6//eOCO7QGR2BZwP7YHRGJbwP3YHhCJbQGR2BZwP7YHRGJbkFKmTPlI/Z744FaSevfurZdeekklS5ZU6dKl9dFHHyk0NFRt27b1dGkAAAAAAAAAEG1xIrht0aKFzp8/r0GDBunMmTMqWrSolixZEuWCZQAAAAAAAADwJIgTwa0kde/e/aFTI+Cv+fn5afDgwVGmkED8xPaASGwLuB/bAyKxLeB+bA+IxLaASGwLuB/bAyKxLUSfy8zM00UAAAAAAAAAAP7Lx9MFAAAAAAAAAADcEdwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAYhXT6QMAAACILXH5fIPgFgAAxKqTJ096ugQAAOBlIiIi/vQ+APyVIUOG6Pjx43K5XJ4uJdYQ3OIfWblypa5du+bpMgB4wM8//6yrV696ugx4ucmTJ6tXr166efNmnP4kHP/c0qVLdeXKFU+XAQB4THx87sUR77//vo4dO+bcB4BHcfnyZW3ZssUtk4qL5xvsGfG3REREaPXq1WrYsKFu3rzp6XIAPGZz585Vly5ddPfuXU+XAi+XJUsWjRo1SkmSJFFISIiny4GXmjJlipo2baqvvvqK7QSAm/Dw8Ae2x8WT8/ji/vfuX//6l4YMGaI//vjDgxUBeBKlSpVKCxYsUIECBbRq1SodPXpULpcrzv1/cFlc+43wWJ0/f15p06bVkSNHlDp1avn7+3u6JACPyYkTJ5QlSxYdP35c/v7+CggI8HRJ8GKbN2/WoEGDNGjQIJUrV87T5cALvfLKK1q5cqV69+6t559/nn1KPBQREfHAEXdmFqe/AokHO3XqlIKCgpz748aN0759+3Tr1i0NHz5cGTNm9GB1iAmrVq3SwoULVaFCBT333HOeLgfAE+rWrVuqXbu2duzYoZ07dypr1qxx6tiBEbf4WyLnHwoMDNTRo0cVHBysjz/+mFEy8VDkZz8XL17U1atXdfnyZQ9XhNgWOfIlS5Ys2rNnj6pUqaIZM2YwbQL+1MmTJxUSEqKRI0dq8+bNni4HXiQsLEzSvVG3lStX1sSJE/Xll19yTBHP3B/arl27VkuWLNHChQslKc6ceOHR9e/fXwUKFND+/fsl3ZvDcPDgwbp8+bJ++uknlS5dWmvXro1zo6rikxUrVqhnz56aM2eOUqVKJenho6sRN0X+/R48eFB79uzRxo0bPVwRnlSJEyfW1KlTVapUKVWsWFHHjh2LUyNvCW7xt0QeWCdIkEDZsmXTu+++q+HDh2vKlCmcaMUjkZ9iLV68WM8995xKly6tl19+WXPmzPF0aYhFCRIkcH4uUKCAKleurClTpmj27NmEt3ioxo0b6/XXX9fNmzc1dOhQwltIuvd/xM/PT5L0+eefK1euXDpw4ICGDRumOXPmMI9+PBJ5bPnmm2+qU6dO6tu3r/r166fy5cvr1KlTHq4Oj1ufPn2UL18+NWrUSHv27NHx48e1dOlSzZ49W7///ruKFy+u5s2ba82aNZ4uFY/ofwOUQoUKqXbt2rp7965mzZolM1OCBAm4QFk8EXkeuWDBAtWuXVsvvPCCatWqpeeff17r16/3dHnwcpH7iTt37jhTdwYHB2vGjBnKkSNHnAtvCW4RI/r37693331Xb775JuFtPOJyubRo0SK1aNFCderU0ciRI5UpUyZ16NBB06dP93R5iGHh4eEP/Mc3c+ZMVa5cWWPHjiW8haT/npxduHBBZ8+edS441bhxY3Xq1Em3b9/WkCFDCG/hjKQcPHiwXn31VWXOnFlTpkxRiRIlNGTIEM2ePZvwNh4ZP368pk6dqn//+9/atWuXXnvtNW3cuFH79u3zdGl4jO7evas0adLohx9+UPr06VW9enXt3LlTyZMnl3Qv5F+4cKHKli2rli1bas2aNXHixDyui9zfT548WWvWrFG6dOk0YMAAderUSbt27dKgQYNkZvLx8SG8jQdcLpfWrl2rl19+Wf3799f27ds1d+5cff311zp69Kiny4MX2rx5s7Ov9/Hx0aJFi9S0aVNVrFhRAwYM0OrVq5UpUyZ9+eWXcS+8NSAaIiIizMxs165dtnz5clu8eLHduXPHWT5mzBhzuVw2atQou3r1qqfKxGNy+PBhK1eunE2cONHMzM6dO2eZM2e2okWLWrJkyeyzzz7zcIWICQcPHnS7v2bNGuvbt699/PHH9tNPPzntHTt2tODgYJs0aZJduXLlcZcJLxH5f2LhwoVWuXJlCwoKsqZNm9q4ceOcPnPnzrUaNWpYgwYN7Oeff/ZUqfACERERdu7cOStQoIBNmTLFbdmLL75ogYGB9sknn7BPiaMi9xeROnfubB999JGZmc2bN89Spkxpn3zyiZmZhYaGPvb68Pjdv01Mnz7djh07Zo0aNTKXy2Vr1qwxM7Pw8HCnT+PGjc3lctm2bdsee62IvlOnTlnNmjUta9astn79ejMzu3Dhgr3++utWpkwZGzhwoLMN/O/+AXHP8OHD7cUXXzQzs/3791uuXLmsQ4cOzvL7cwbEb7/88ou5XC57//33zcxs2bJlliRJEuvcubP16dPH8uXLZ1WqVLHp06ebmdmJEyesRo0aljRpUjt+/LgHK48ZBLd4ZJH/POfPn28ZMmSwokWLmp+fnzVp0sRWr17t9BszZoz5+vrakCFDLCQkxFPlIgbdf4B89+5d5+cLFy5Y79697fTp03by5EnLkyePde7c2Y4ePWq1atWyRIkS2aRJkzxRMmLI3LlzrVixYvbdd9+Zmdn3339vvr6+Vr16dcucObNVqVLFLaDv2LGj5cmTx8aOHcuHN/HY4sWLLWnSpDZq1Chbvny5de7c2TJmzGjDhg1z+nzzzTdWunRpa968ud28edOD1cLTrly5Yvnz53f2JfdvDyVLlrR8+fLZ+++/b9euXfNUiYgF94cy69atMzOzSpUq2ahRo2zFihWWPHly5xgiPDzc3nnnHZs6dapHasXjcf828dFHH1nixIltx44dduHCBatQoYLlzp3bfv/99yh9+/Xr53Z8Cu9x/zlEpE2bNlmLFi0sODjY+fD2woUL1rdvXytXrpy9+uqrj7lKPG6Rf7+tWrWyAQMGWEREhGXKlMk6derkLJs2bZp99dVXniwTXuaDDz4wX19fmzBhgo0bN85GjBjhLNu/f7+1adPGqlSp4nwodODAAWvQoIHt37/fUyXHGIJbRMvy5cstderU9q9//cvMzNavX28ul8vq1q1ry5cvd/oNHTrUUqVKZRcuXPBUqYhhJ0+etJ07d5rZvVEwkdtAZDjXr18/a9y4sTMq6rXXXrPMmTNb1qxZ7dKlS3xq/oT68ccf7dlnn7VnnnnG5s6da/3793dGxW3bts3at29vxYsXt08//dR5TMuWLa1YsWJ2+fJlD1UNTzp69KiVKVPGGYl/5coVCwoKslKlSlmOHDncwtuFCxfasWPHPFUqPOBh/wuqVatmlStXdu7fvn3bzMyee+45y5Ahg7Vu3Zr/I3HI/e/lgAEDrESJEvbHH3/YRx99ZBUrVrQkSZI4I23NzC5evGj16tWzUaNGeaJcPGbr1q2zHj162KJFi5y2ixcvWtmyZS1PnjwPDG/NjPDWi126dMnt/qZNm6xZs2YWHBxsGzZsMLN74W2nTp2sY8eO7O/jic8//9yCg4MtMDDQunfv7hb0t2vXzjp37my3bt3yYIXwNh9++KG5XC5LkyaNvffee27LDhw4YMHBwfbOO+84bXFl1DbBLR5ZaGio9enTx/r3729m974+nTNnTnvuuecsODjYypYt6xbeXrx40VOlIoaFhIRYo0aNrE6dOvb++++by+Wyzz//3FkeHh5uNWvWtLZt2zptPXr0sEmTJhHePaEWL17s/Lx69Wpr3Lix1apVy8qUKWO//PKLs2z37t3WoUMHK168uNvI21OnTj3WeuE9bt26ZQMHDrRDhw7ZH3/8Yblz57auXbvaH3/8YbVq1bKUKVNav379PF0mPOD+E7KwsDC7ceOGc3/nzp2WPn16e+6559z6tmzZ0tatW+fc52Q+btm+fbvVrFnTGXG7fft2K1asmJUqVcqZiufIkSNWt25dK126dJw5AcPDff/991awYEHLnDmzbdmyxcz+G8hevHjRypUrZwUKFLDdu3d7skxEw5w5cyx//vy2b98+t/aNGzdajRo1LHfu3M5UF1euXGGqhDgo8r08evSobd++3Qljjx49ao0aNbLs2bM7/wdCQkJswIABljFjRudDGuB+//rXv8zlclmbNm3s+vXrbseX7du3t+rVqzsDAOIKgls8srt379rKlStt3759duXKFStZsqS1b9/ezMzWrl1rfn5+VrVqVVu5cqWZ8c82rvnuu++sUKFC5nK5bPjw4WZ278Q68n1+55137KmnnrIRI0ZY165dLV26dHbo0CFPloy/afPmzZYlSxZ76aWXnLYVK1ZYgwYNLHHixG6hvdm98PaVV16x7Nmz24wZMx5ztfBGYWFhZmb21ltvWdOmTZ2RNv3797fcuXNb5cqV7ezZs54sEY/Z/QfVo0ePtiZNmlju3LltwoQJzonZd999ZxkyZLD8+fNb48aNrUSJEpYrVy4ntHnQV27x5JowYYLVrVvXatSo4Ta1zpo1a6x48eKWJ08ey5Ili5UqVcrKlCnjnIQxqjJu279/v7Vr186SJUtmAwYMcNoj3/dLly5ZcHCwtWzZ0lMlIpq++eYb51sV/xvejh8/3lwul6VIkcL5Zp8Z55Fx0bx58+ypp56ydOnSWdGiRe3rr7+28PBwW7VqldWuXdtSpUpl5cuXt0qVKllQUBDzVuNPRe47Ro0a5TaVVsOGDe3FF1+Mc8eMCT19cTR4J/v/q+5FXv1TkhIkSKCyZcsqSZIkWrBggcxMb731liTp+vXrKl26tO7cuaPg4OAoj8WTy8zkcrlUrFgxmZly5cql7du3a8eOHSpatKizrTRu3Fjnz5/X9OnTlTp1ai1ZskQ5cuTwcPX4O3Lnzq0+ffpo1qxZateunaZNm6ZnnnlGiRMnVnh4uCZMmKCUKVOqfv36kqQCBQqoS5cu8vPzU+XKlT1cPR6nyP3DoUOHdPnyZeXIkUOBgYHy9fWVJO3Zs0eSlCpVKklSaGioOnTooI4dOyogIMBTZcMDfHx8JEkDBgzQZ599pn79+qlkyZIaO3asfvnlF/Xp00f169fXtm3bNHr0aN2+fVtZs2bVmDFjlCBBAoWHhytBggQe/i0Qk1KnTq2NGzfKzLRr1y5VqFBBklS5cmV9/fXXOnHihPbs2aPcuXPrmWeeUYIECXT37l0lTMjpS1wRERHh7Bsi5cqVS4MGDVKCBAn0ww8/KEOGDOrRo4ezH0iVKpW2b9+upEmTeqhq/JkHvadNmjRRkiRJ9MEHH6ht27aaNm2a8uTJI0nKkSOHmjdvrpIlS6pAgQLOYziPjBsijxN///13DRo0SL169VL58uX13nvv6Z133tGlS5fUqVMn5cqVS2vXrtW2bduUP39+Va1aVdmzZ/d0+fCwyO1n9+7dunDhgkJCQtSgQQNJUvfu3RUeHq5evXpp8+bNyp07t27cuKHVq1frp59+irIfetK5LDJ1ASTduHFDSZMm1Z07d5QoUSJt2LBB27dvl4+Pj6pWraq8efNKkqZOnarRo0drwYIFyp8/v3OA1a9fPyVOnNjDvwViw/Xr13Xx4kVt375d48ePV/LkyTV06FAVLVrU6XPz5k2Fh4crPDxcKVOm9Fyx+Nsi/0Fev35d06dP19SpU1W8eHFNmzZNkrRmzRp9/PHHunz5svr06aNnn33Weezt27edwA7xx/z589WpUyclS5ZMISEhmjBhgurWratUqVJp1KhR+vrrr/X000/r1q1bmj17trZs2cKHOvHU/Pnz1a9fP82ePVulSpXSpk2bVK5cOWXPnl0lS5ZU//793f6nRCKse/I9KMyRpO+//14dO3ZUjRo11K9fP+XPn/+h6yC8j1vu3ybWr1+vc+fOKVOmTMqdO7dSpkypgwcPatSoUdq9e7dat26t7t27R3kc24R3uf+9WbBgga5evSofHx81a9ZMSZMm1YoVKzRq1ChdvnxZ48ePV5YsWdSzZ0/lyZNH7733niTe07ho27ZtWr16tY4dO6aPP/7YaW/btq22bt2qrl276oUXXlDy5Mk9WCW8TeQ56YIFC9SzZ08FBAToxIkTKl++vMaMGaP8+fPL5XJp0qRJevXVV5UuXToNHz5cZcuWVb58+TxdfszzyDhfeKXPP//cSpcubadPnzYzs6+++sqSJEliBQsWtDx58pivr6998sknFhERYfv27bO0adNa0aJFrWzZspYyZUrbsWOHh38DxKTIryhdvHjRzp496zYX4RdffGHPPPOMNWrUyLZv325mZiNGjOBqz3FE5FdLQkJCbNy4cVa4cGG3+YtXrVpljRo1surVq9s333zjqTLhQZH7h4MHD1qBAgVs/Pjxtnv3buvRo4cFBATYuHHj7NatW3bkyBHr1auXFStWzCpWrOjsLxA/rVy50saMGWNm96ZFCAgIsJkzZ9q8efPM19fXWrdubWvXrvVwlYhp939d8ZdffrHly5fbtm3bnKkPvvrqK8ucObN17tzZfvvtN6cvX5WOu+5/b/v162e5cuWyoKAgq1ChgrVq1crOnDljZvemTejYsaNVqFDB7erh8D73v6d9+vSxFClSWNGiRc3Pz8/Kly9vCxYsMLN7U6E0aNDAXC6X5cmTxwoWLOjMXc3ffNwSHh5u4eHhVrVqVXO5XFa5cuUoX19/+eWXrWTJkjZmzBi7fv26hyqFt1q2bJmlSpXKuY7K5s2bzeVyWfXq1W379u3OPuPDDz+0wMBA5yLpcRHBLRyzZs2y8uXLW+3atW3fvn3Wpk0bmzZtmt28edOuXbtm77zzjiVMmNC5yu+2bdusX79+1r9/f7cDbTz5IneC3333nT399NOWOXNme/75523KlClOn9mzZ1utWrWsQIEC1rx5c3O5XIQyT7j7D5gjD6KvXbtmEyZMsIIFC7qFt2vWrLFnnnnG6tev7zavEOKP1atX2+TJk6179+5u7f369bOAgAD7+OOPne3o9u3bbnNYIu570Al45AeBFy9etIoVK9qoUaPM7N7JXZ48eSxdunRuVwJG3PLGG29YcHCwpUqVyvLly2cVK1a0kJAQMzP78ssvLUuWLNalSxf79ddfPVwpHpdRo0ZZxowZnQ9sevfubYkTJ7ZatWrZH3/8YWb3rhLerFkz69SpE8Gel7r/fTl+/LgVLVrUNm/ebDdu3LBz585ZnTp1rGLFirZ06VIzu3fB62XLltkPP/zgzF3M3NVxR+T2EHncd+PGDWvatKllzpzZZs+e7VwHIVLTpk2tcuXKzvUQADOz69evW+/evW3w4MFmZnb48GHLkSOHtWnTxrJly2bly5e3rVu3Oh8GXLx40YPVxj6CWzgiIiJs7ty5VrVqVatYsaKVLl06ysHz0KFDLUmSJFzhMR5YtGiRJU2a1EaOHGnff/+9tW/f3jJlymSjR492+vznP/+xt99+255//nmu7vuEizzIWrZsmb322mtWvXp1mzJlih0+fNju3r1rEyZMsCJFiriFt+vWrbMTJ054qmR4WKtWrczlclnJkiWjfML95ptvWtq0aW3UqFFx/kAKUUVeLdrM7Pz583bhwgW35YcPH7acOXPa/Pnzzczsjz/+sHbt2tkXX3wR5y4mgXsmTJhggYGBtnbtWtu3b5999913VqpUKcudO7czymrevHmWMGFCt+MMxF1HjhyxqlWrOvuBJUuWWPLkya19+/ZWuHBhq1u3rjPy9sSJE86+gfDWe/zvMeB7771n9evXt+eee85u3LjhvFdnz5618uXLW926dR+4HkLbuGfTpk3WvHlz27Bhg5ndC2+rV69uJUuWtG+++cb5xkWkyA9qgEh37961RYsW2e+//26XLl2yUqVKWYcOHczs3vmqy+WyUqVKxZsPewluYWb/PQiKiIiwOXPmWLVq1czX19f27t1rZv89CTtz5oxlz57dZs+e7bFaEfsOHz5sJUuWtEmTJpmZ2ZUrVyxjxoxWokQJy5EjR5STqshRdXiyzZ8/31KkSGGvvPKKDRw40DJlymS1a9e2s2fPOtMmlChRwpo1a+bpUuElevToYT4+PvbFF1+4hXWRy7Jnz84Iinhk4sSJbvcHDRpk+fPnt5w5c1q1atVs/fr1duPGDTt8+LAVLFjQevXqZV9//bXVrVvXqlev7hyLcBL/ZNu6dauZ/ffYMjw83Dp06GC9e/d2+kRERNiuXbusWLFi9tJLLzmh3OrVq3n/46gHfSjz3Xff2YkTJ2zjxo0WFBTkfLOrS5cu5nK5rFixYnb27Nk/XQc8o127dta4cWPnfnh4uH300UeWNGlSy5UrlzOaPjKg++mnn8zX19d2795N+B4P/Pvf/7aiRYvaCy+8YJs3bzazeyOtq1WrZiVKlLAFCxZECW8R/9yfQT1ovxC5jXz77bdWqlQpO3jwoJmZff/991a/fn0rUqSIHT58+PEV7EFx61Jr+Nsir9zpcrnUokULde7cWcHBwWrTpo1Onz4tPz8/SVLixImVMGFCRUREeLJcxAK77zqF6dOnV/Xq1VW3bl2dOnVKpUuXVuPGjTV//nxly5ZNI0eO1LBhw5z+XDTmyXfixAkNGTJEo0eP1uTJkzV06FCFhISocOHCSps2rVKkSKH27durRYsWOnPmjE6fPu3pkvEYRe4fzpw5o7Nnz+rWrVuSpHHjxqlly5bq0qWLFi9erNu3bzuPGTdunDZu3KhUqVJ5pGY8XqtXr1b37t3VsWNHSdLMmTM1btw4vfrqqxo0aJBu376tF154QYsXL1b27NnVpUsXLV++XG+99ZZCQ0P1ww8/yOVyycy4MM0T7LPPPlPJkiWd91OSfHx8dOHCBe3YscPp53K5VLBgQTVo0ED79u3TzZs3JUlVqlRRggQJFB4e7onyEYsiL1q1evVq539I/fr1lTlzZi1atEjPPPOM2rZtK0nKlSuXatWqpdq1ayt16tRR1gHPGzt2rL766itJ0uXLl+Xj46NOnTppwoQJOnr0qEaMGCFJSpQokaR7Fx3LkiWLkiRJ4uwbEDfYA65137p1a/Xr109Hjx7V2LFjtXnzZiVNmlTfffed0qRJo9dff10//vijB6qFN7lw4YKke/sHl8uldevW6b333tP06dP1+++/O/uPw4cP69y5c0qSJIkk6eeff1aJEiW0detWZc+e3WP1P1aezY3haZGfbPz222+2Y8cOZ6h5RESEff3111auXDkrXry4bd261davX28DBw60VKlSxZtPNuKbH374wWbNmmVmZjdv3jSze/NVNmvWzC5fvmxmZq+//rrlzJnTKlasaOfPn/dUqfibHjbK4fjx41asWDG7fv267d+/3zJlymQdO3Z0lm/YsMHCw8Pt2rVrjKCMp7755hsrUqSIpU+f3jp06GDff/+9s6xVq1bm7+9v8+fPdxt5y6ia+CMkJMRmzpxpQUFB1q5dOxs3bpx9/vnnbn2ee+45e+qpp+z48eNmdu+r0sePH3dG0fHtjSffpUuXrEePHubn52eLFy922j/99FNnlNX9oyY///xzK1asGFOqxGH3v9+///67uVwue++999zmuezUqZMVK1bMuRBukyZN7MMPP3SWMwrbe3322WeWIUMG279/v5mZhYWF2eTJky1BggT22muv2bp162z37t1Wp04dK1u2LKOm47C9e/c6IyIjffHFF1apUiVr0aKFcy2U69evW6NGjcgT4rmvvvrKcuXKZTt37jSze+cZSZMmtRIlSliuXLmsRIkStmbNGjMzO3bsmAUGBlrevHmtYsWKljJlStuxY4cny3/sCG5h33zzjQUEBFj27NktQ4YMzlcdI8PbfPnyWZIkSaxy5crWuXNn5ytweLJt3LjR+Tk8PNxCQ0OtQoUK9uWXX7r1e/bZZ61FixbO/R49etj7779PePcEijxYDg0NtfPnz9vKlSvt5MmTduXKFTt58qRlypTJVq5cacHBwdaxY0en/86dO61Fixa2ZcsWT5YPD9q1a5dlzJjRxowZYx9//LFVqFDBatasaXPmzHH6vPjii+Zyuey7777zYKXwpGvXrtnMmTMtW7Zs5nK5nK89R34QaGaWJ08e69atm5m5B/uczMcdV65cse7du1uiRIls0aJFZnZv/sKnn37aatWqZZ9//rndvHnTzp07ZzVq1LAmTZrwIU8cdf/7+t5779ngwYMtefLk5uPjYwMHDnS+BvvVV19ZqVKlLH/+/FayZEnLmzev80EO24Z3O3v2rBUtWtQKFSpkBw4cMLN7X2+ePHmyJUmSxFwul/Xq1csaNmzofLDL/j5uOHnypH355Zf2xRdf2Lx586xatWrWuXNnO3TokFu/mTNnWqpUqaxly5Zu55+I3xYtWmS1atWycuXK2aZNm+yNN96wadOmmdm9i2C3atXKsmfPbsuXLzezexeq7Nq1qw0YMMD27NnjydI9guA2HouIiLCLFy9aqVKlbPr06fbTTz/Z8OHDzeVy2YgRI5w+8+bNsxIlStizzz7L1ePjiM2bN5vL5XKu6B2pePHiNnfuXDP770HVsGHDrGTJkjZgwADr0aOHpU6dmk9In0CR7+e+ffusTZs2ljdvXkucOLGlTJnSWrVqZbt27bI33njDXC5XlDls+/fvb6VKlbJTp055onR42O+//27Dhg2zt956y2nbtm2bNWjQwKpXr+4W3nbs2JGLV8ZzV69etRkzZlimTJmsQYMGTntkQPPcc89Zp06dPFUeHpPLly9b9+7dLWHChLZw4UIzuzfCul69epY/f34LCAiwokWLWpEiRZxtg4Au7ho2bJilSZPGfvjhB5s/f74NGzbMEiRIYP379zeze/uHuXPn2ptvvmlvvvmmE9oy0ta7PCxwPX/+vJUoUcLy58/vhLe3bt2yadOmWdKkSW3QoEFO3/tHWuPJtXPnTsuRI4flz5/fEiVKZKVLl7YiRYpYrVq17NVXX41yrlixYkVLly6ddejQwW7evMn+HmZmtnTpUnv22WetZMmSVqFCBbdRtFu3bnXC2xUrVphZ/P6fQHAbD0XuKMPCwuzixYvWo0cPu3r1qpndGxXz8ccfm4+PT5Tw9tixYx6rGTHvww8/NF9fX3v//fedA7GiRYvakiVLzOy/28mvv/5q3bp1s8KFC1vZsmWdr7ngyXH/yNmMGTPaK6+8YjNmzLC9e/dav379LDg42PLmzWtjxoyxNm3aWM6cOW3ZsmU2b94869Wrl6VIkSLefR0F91y4cMHKli1rAQEB9vLLL7st27p1q9WvX99q165tM2bM8FCF8KSHncRfunTJZsyYYSlTprQXX3zRzP57sF2iRAnr2bPnY6sRse9h28GFCxesW7duljBhQvv222+dtp07d9qUKVPs22+/dbYLpsmIO/bt2+d2/8aNG1a1alV799133dqnTp1qPj4+bqHe/eLzCbo3uv/v/Ndff7Vt27bZyZMnnbYLFy5ECW9v3rxpkyZNsgQJEkR5//Hk2rlzpyVNmtTeeOMN++OPP2zhwoVWp04dq1y5snXt2tWKFi1qr776qh09etTM7m0HHTt2tHfffddOnDjh4erhbRYvXmz169c3Pz8/++WXX9yWbdu2zV588UXz9/e3n376yUMVegeC23gmMoz77rvvrF69ela7dm3LkyePs2M1+2946+fnZwMHDvRUqYgFU6dOtU2bNjnbwfjx483lctnw4cPt6tWrVrhwYefKn/cLCQmxsLAwJ+DHk+P+0DZp0qTWv3//KCfIc+bMsdKlS1uZMmXsX//6l7Vt29ZSpkxphQoVsurVqztzDyH+uH8kxI8//mhlypSxggULOp94R9q+fbtVrlzZGjVqxP4hnrn/JH7BggU2fvx4mzBhgjP3+ZUrV2zGjBnm7+9vJUuWtKZNm1rLli0td+7chHRxyP3bwapVq+zHH3+0H374wWm7cuWKE94+bBoVArq44/nnn7fmzZu7tV25csWyZctmQ4YMMbN7/1/Cw8MtPDzcWrZs6RyHRuJr9N7n/vdk4MCBliNHDsuRI4clT57cpk+f7kyfduHCBStZsqQVKlTI9u7da2b3Bgp98skn5nK5bMyYMR6pHzHn+PHjliZNGnvuuefc2idPnmypUqWykydP2sSJE61kyZLWokULmzlzpvXr18/y589vFy5c8FDV8LTIfcjNmzft6tWrtn37dmcfYXbv+KFixYpWqFChKOedv/zyi3Xs2NH5QCi+IriNJ+4/CV+7dq2lTJnSXnjhBXvxxRctQYIE1q9fP7cTqZs3b9rIkSMtMDDQLly4wNcZ4oA7d+5YmjRprFChQrZt2za38NbHx8feeecdK1y4sBUoUMC6d+9u7du3t5YtW1q7du2cg208mR50kBUREeH2Nz9lyhRLnTq1ffrpp2Z2bx6h69evW0hIyGOvF54TuV+4fv268/Vls3sHVGXKlLFmzZrZ6tWr3R6zc+dO52JTiB/uPybo16+fZcuWzUqXLm2VK1e27NmzO1+RvHr1qs2cOdPy5s1radKksW3btjHCMg65fzvo37+/ZcuWzfLly2epUqWyzp07O9NrRc55mzhxYps3b56nysVjcPPmTWce09OnTzsn62+++ablypXLtm3bZmb/3XYGDBhgtWvXNpfL5cxtCO81dOhQy5gxoy1dutTMzF544QXz9/e30aNHOxcxvnDhgj311FPWunVr53FhYWE2bdo0++233zxRNmLQkSNHrFSpUtagQQO3EZBLly61VKlSOWHcjBkz7Nlnn7VMmTJZkSJFuEZOPBb5f2D//v3Wpk0bK1SokPn4+FjSpEmtTZs2duTIETMzW7lypdWpU8dKly5tv/76q9s67r/wcXxFcBvPHDlyxMaPH+984hkeHm6zZs2yBAkS2MCBA91OpG7dusUFqOKI+8OYfPnyWbFixaKEty6XyzJnzmzdunWzfv36WdeuXa1du3bWs2dPRlw+4R52kGXmfuJdsWJFa9y4sZkxAio+itwWfvjhB6tdu7ZVrFjRKlasaJs2bTIzsxUrVli5cuWsadOmtnbtWk+WCi/x8ccfW1BQkPNNjalTp5rL5bKMGTPa7t27zezeXKeTJ0+2Ro0aOQfv7F/ilhEjRlj69Oltw4YNZmY2cuRIc7lc1rp1a2ck/pUrV6x169ZWuXJlT5aKWDJ37lzn5NvMbOLEiZY1a1Zn37Bp0yarU6eO1a1b15l6KTQ01Bo0aGDz58+3Pn36WMGCBe38+fMMFvEi69evd6a+2LVrl1WvXt254OC3335rqVKlsoYNG5rL5bLRo0c7IyqvXLnCfj4O279/v9WuXdtq1qxpv/32m127ds3Spk1rb7zxhlu/yIsfM9I2/rr/m5+ZMmWyTp062fTp023NmjU2bNgwS5UqlZUrV84JapcsWWJ169a18uXLMz3j/yC4jSfu3r1rZ86cMZfLZYkSJbLBgwe7Lf/8888tQYIENnjwYLdRVog7IkP569evW+7cuaOEt5999pm5XC4bN26cJ8tELIk8yKpVq5ZbeHv/CVLVqlXdRkgg/lm0aJElTZrUhgwZYitWrLBq1apZYGCg7dq1y8zMli1bZpUqVbIaNWrYzz//7OFq8bjd/3XZ0NBQ69Chg82ePdvM7m07KVKksBEjRtgzzzxjmTNndk74r1275uxr+Bp03HL48GFr0aKFLViwwMzuhTkBAQHWt29fCwgIsBdeeMEZBHD9+nXe/zho7ty5ljBhQnv33Xft9OnTZnZv/5AjRw4rXry48+H/4sWLrV69eubv729Vq1a1vHnzWsGCBc3M7IMPPrBixYpxDuJFjhw5YmXKlLEGDRrYoUOH7NatW/bZZ59ZWFiYrV271oKCgmz8+PFmZta8eXMLCAiwQYMGuX1Ti/A27tq/f7/VqVPHqlSpYqlSpbLXXnvNWcY3amAWdbq+AQMGuG0bERER9vPPP1u6dOmsRo0aTv8lS5ZYxYoVrVq1ahYWFsaHef+P4DaO+98Tpe+++858fX3t2WefdZtQ3szsiy++MJfLxeTxcVjkdnD9+nXLlStXlPD2/rmNIw+22FnGHfeHt+vWrXPaw8PD7cSJE1anTh3nIlO87/FPaGio1axZ09555x0zMzt16pQFBwdb586d3fotWrTIatasyQUm4pn79wnTpk2zy5cv27p16+zo0aO2c+dOy549u02cONHM/jvy1uVyuV1Zmv3Kk+9/g9fr16/brFmz7PLly7ZhwwZ76qmnbMKECWZm9vbbb5vL5bK6detaaGjoQ9eBJ9/w4cPtqaeesuHDhzsjb2/cuGG5c+e2QoUKOaOpjh8/bp9//rn16tXLRo4caWFhYWZm9sorr1jDhg3t+vXrnvoV8ACffvqpPfPMM9a8eXO3//kdO3a0tm3bOkF79+7drVixYlahQgX28/HI/v377ZlnnrGsWbPamjVrnHa2AUQ6duyYuVwut4vS/u/28f3335uPj499+OGHTtvKlSuZhu1/ENzGAxs2bLBPP/3UOWj+7rvvzOVyWY8ePezMmTNufb/66ivmH4pjIneOt2/fdi4GYXZvBFTOnDmjhLejR4+2wMBAu3jxosdqRux52Mjbfv36WZEiRQjj4rGrV69a/vz5be/evXbx4kULCgqyTp06OctnzJhhN2/eNDNzC2EQ991/kP3BBx9YunTpnLkqze4FudWrV3e+Fr9w4ULr2LGjDR48mJE3cdSKFSucgC4yfBsyZIg1adLEGXH3/vvvW4sWLaxevXqEtXFU5HtvZjZ48GALDg62d9991znhDg0Ntdy5c1vhwoVt+/btUbaDP/74w3r16mUBAQHONzvgeffv86dPn26VKlWy5s2bO9+iqFy5snXr1s3p07hxY9uxY4fzOIK7+OPAgQMPHBQCmN37Vk769OmtTp06UXIns3v7iitXrliJEiXslVde8UCFTw4fIU4zM73//vv68MMP9eWXX+rGjRuqX7++5s+frwkTJujdd9/VuXPnnP7NmzdXvnz5PFgxYlJ4eLhcLpeWLFmiTp06qUqVKnrnnXe0fPlyJU+eXNu3b9e1a9fUvn177dy5U2amvn376uDBgwoMDPR0+YgFuXLl0rhx4+RyuTR8+HBt375do0eP1sSJEzVz5kxlzpzZ0yXCQ/z9/ZU1a1ZNnjxZxYsXV8OGDTV+/HhJ0qVLl/TFF19ozpw5kqQkSZJ4slQ8Zi6XS5K0ZcsW7dq1S1OnTlWxYsWc5efOndP69eslSdeuXdO0adOUIkUKDRkyRAkTJtTdu3c9UjdiTkREhPPzqlWr/q+9O4+P8d77P/6akYnE1qDW0iix1b7FTnEUp7XcQkiPEiG1h9RSp6i9VBBijSD2rRL7qeXoiV0dUi21RaklklgSW4iQue4/nMxDtOf+3ffvYJLJ+/lf5rqueXzmkWtmrus93+/nS79+/Zg7dy7x8fE4OzuTlpbG6dOnSUpKIm/evDx+/Jj9+/fTpk0btm/fjtlszvAckvUZhoGzszMAc+bMwWKxEB8fz5QpU1i2bBnXrl0jV65c/Pjjj6SmptK7d2+OHTtmOz4pKYlly5bx448/EhUVReXKle31UuQlJpMJwzAA8PX1xc/Pj4SEBMaMGcOdO3fw9vZmwYIFfPLJJ9SsWZPz589TqVIl23Hp3xni+Dw8PAgJCcFisTBs2DCOHj1q75IkE3nvvfc4ePAgZ86coWvXriQkJNi2pX9WvPXWWzg5OZGcnGzHSjM/BbcOJv1LNp3JZGLVqlVUr16dhQsXsmbNGh49ekSHDh2IjIwkNDSUkSNHcuvWLTtVLK9S+k3RgwcPAMiRIwdbt26lffv2uLm54e7uzqFDh/D392fDhg228DYlJYWOHTty6tQpAPLnz2+31yCvX3p4a7FYaN26NaNHjyYqKopq1arZuzR5Q9I/K1JSUkhJSbE93qxZMzZs2IC7uzvz58+33ZRPnz6d2NhYmjdvDqCbsmwoIiICPz8/oqKiKFasGPD8x0GAv/zlL1SqVInChQvj6elJTEwM33zzje1YJycnu9Qsr4ZhGJjNz28ZQkJC2LlzJ0lJSYSFhREcHExsbCw5cuSgX79+HDx4kNq1a1OrVi0uX77MX/7yF9vzpD+HOIb074FJkyYxZswYKleuzOrVq/H19WXGjBksX76c69evkytXLqKjo/n1118JDQ21HZ8/f378/f3ZuHGjrj8yoZfDW19fX27cuMGAAQPw8vJiwYIFpKWl4enpycmTJ3FycrINGJHspWzZsgQFBVGiRAmKFy9u73Ikk/Hw8GDPnj1cvnwZHx8fW3hrMpmwWq1cvnwZV1dXPvroIztXmsnZbayvvDJ/NP3s1q1bGR5//Pix0blzZ6NOnTrG4sWLjUePHhmGYRjr1q0zChQo8IdD1yVrOnv2rPGnP/3JiI2NNRITE40mTZoYX3/9tW376dOnjYCAAKN06dJGVFSUYRjP2ybUrl07Qy9CcXznzp0z2rVrZ1v9XRzb4cOHbYsEGcbz6ezt27c3GjRoYCxdutRITU017t69a3z66adG9erVjR49ehjTp083unfvbri5uWl112zuxo0bRufOnQ1XV1dj1KhRGabCWq1WIzY21li0aJGxePFiW3sELUzjWCZOnGjky5fP2LRpk/GPf/zD6Nu3r1GuXDlj+PDhRmxsrGEYhrF//34jICDAmDhxos4DB2e1Wo2HDx8adevWNaZMmZJh25gxYwwXFxdj4sSJxpUrVwzDMIyUlBSdC1nQy/3NGzVqZHTp0sV275h+v6m2OPJi6xSRl124cMFwd3c3mjVrZlvI0jAM469//atRs2ZNtev7f1Bwm8Wlf1levnzZ2LJli2EYhhEdHW3UqVPH2Lx5c4bw9tGjR8ZHH31kvPvuu0Z4eLhtAYAHDx68+cLltQkPDzcaNGhgGIZh3Lx50yhRooSxYMGCDPucOnXKaNKkSYYm4OpHlT1pBWfHZ7VajX/+85+GyWQyJk2aZKSmphoHDhww8uTJY/Tp08fo1q2bYTabjYCAAOP+/fvGnTt3jOnTpxtNmjQxGjVqZHTv3l3hfjbz8g/C6TfkN2/eNLp27WrUrl3bCAsL+x+fQwGN47Barca9e/cMT09PY+rUqRm2jRkzxihSpIgxYsQIW3j74vmjMMdxWa1W49GjR0adOnWMb775xjAMw9YH3TAMo23btkaJEiWMkSNHZrhJ12dD1vNyeNu4cWPj008/tQUtuocQkf+NCxcuGKVKlTKaNWtmPHz40Bg7dqyRO3du4+TJk/YuLdPT3LUszmw2c+PGDerUqUOhQoV48uSJbZj59OnTbVOhzWYzrq6uLFu2jPLlyzNt2jRMJhM9evQgd+7cdn4V8irFxcWRmpqK1Wolb968VKtWjYsXL/Lw4UPy5MkDQOXKlcmXLx9RUVEMGTIE0NTn7Mpisdi7BHmNjH/1j6pduzazZ89myJAhuLq6YjKZmDhxou3937ZtW/z9/bFarYwbN46hQ4cydOhQrFYrhmGQI0cO+74QeWOsVqttSvuSJUs4deoU8fHxeHt707FjR+bOnUu/fv1Yvnw5JpOJXr16/e44QOeMAzGZTLi4uGCxWGw96J49e4aTkxMTJkwgOjqa5cuXYzabGTx4MEWLFrUdqzYZjuPl97jJZMLV1ZWKFSsSGhrK559/jouLC0+fPsVisVC8eHHOnTvHr7/+SpEiRWzH6bMh63mxd23Pnj0xDINFixaxe/du/Pz87F2eiGQCxkv9rV/+G5631di9ezdt2rQhf/78ODs7s2/fPrXL+V9QsykHcOHCBRITE8mTJw/Lly9n3759REVFYbFYmDhxIjt37rTte+vWLZo2bUq1atX44IMPAAV2WdmLfSrTPXv2DDc3N8xmMy4uLtStW5c1a9awffv2DE2/8+TJQ+nSpbVYiIiDslqtmEwm4uPjOX78OF27dmXFihUMGzaMmTNnZvjs9/b2ZtGiRSxfvpzJkyfz66+/As9/HNRNdvaSHsyMGDGCcePGkZKSQqlSpejUqROTJ0+mYMGCzJ07l2LFirFy5UpCQkIyHCdZ3x9dFzg7O+Pu7k5ERAT37t3DycnJtl/58uUpVaoUu3btYvfu3cDv11yQrO3F0PbIkSMcP36cS5cuAfDNN9+QM2dOGjZsaFtjwTAM7ty5w8KFC1m/fn2GfqmSNb34P/Tz8+Ptt99m69attm0ikr2ZTCb27dvH3/72N9vff6Rs2bLs2LGDRo0acfDgQWrVqvUmy8yy9DO4A/jggw/w9fUlOjoaFxcXpk6ditlsZvv27Xz88cdMnjyZ+Ph4WrVqxfr168mbNy8LFiwgV65c9i5d/kNms5nY2FgCAwPx9/enZcuWpKWlUbBgQds+Y8aM4dKlSwwZMoR9+/ZRsmRJrl27xo4dOzhy5IhutkUcUPpN9pkzZ/jss8/IlSsXefLkITIykkePHtGnTx9OnTpFUlKSbTHCLl26kCNHDry9vXFxcWHChAkaLZdN7dmzh/Xr1xMZGUmdOnU4fPgw06ZNw93dHYDChQszZ84cfHx8OHfunFYRdyAvBnQHDx7E1dUVV1dX3n//fRYsWECtWrVo164d69evJ1++fLi6unL16lXGjx/PsmXLmDZtGp9++qnOBwdivLA43bBhw1i/fj13796lfv36dO3aFT8/P5YvX07v3r3x8PCgUqVK3L59m5SUFJo0aWJbgEbXm1nfiyNv3d3dSUxMJDU11baQqYhkXw8fPiQ8PJwtW7awdu1aWrdu/W/3LV++PLt27dLMz/8D3ZFlMS9f+Dx58oScOXPi5eWF1WrFx8eH0NBQxo8fz9ixY9mxYwc9e/ZkwoQJjB07FqvVyrZt2xTaOpAnT55w/fp1goODKViw4B9eQIWHhzN//nzOnj3LypUrqVatGgcOHKBSpUp2qlpEXpf0m+xffvmFRo0a0b9/f/r06UOxYsUA8Pf35+nTpwwcOBAPDw/69evHW2+9BUCnTp2IiIjg/fffV2ibTcyePRs/Pz/y5s1re+zOnTtUrVqVOnXqsGHDBnr16sX8+fPp1q0bd+/eJS4ujooVK7Jx40bc3Nwy3MxL1pZ+jTl8+HBWrVpFWloaZcqUwc/PD39/f7Zs2ULHjh2pV68exYsXJzk5meTkZFq1akVsbCxnzpzhyZMnuLi42PmVyKvw4vv68OHD7Ny5kw0bNnD37l0iIiKYO3cuqamp9O3blxMnTjBjxgySk5MxmUyMGTMGJycn0tLSNHPDgZhMJm7fvs1PP/3EwoULFdqKZHPp3xN58uQhMDAQi8VCnz59WLhwIW3atPm3xym0/b8xGZq3kmWkh7bXrl3j+PHj/Nd//Zdt261bt2jSpAkDBw7E29ubvn37kpCQwKhRo2jVqhXR0dHcuHGD6tWr8+6779rxVcjrcPHiRQYOHEju3Lm5cuUKhmFQuXJlzGYzVqsVi8WC2Wzm5s2bFCpUiFmzZqm3sYgDS0xMpH379tSsWZPZs2fbHk/vSwkQEhLCkCFDmDx5MgMGDCBfvnz2Klfs5OzZs1SqVIlu3boxf/58Wx/0NWvWEBwczJAhQ+jfvz9Tp06lX79+AKxbt47169cTGhpK4cKFgd//qCxZz4sB3cmTJ/Hx8WHFihXcuXOHPXv2sGHDBv7617/Sv39/AIKCgnj48CEWi4WRI0fi5OREz549SUhIIDIyUsGtg9m4cSM7duzgnXfeYdKkScDza8/Zs2dz8OBB/Pz8GDRo0O+Oe/E7RxxLSkqK3uciwv379zPcQ5w6dYrg4GD27t1LaGiobeStfuD/z+ibNAtJD21r1KhBYmIibdq0oUePHlSvXp1y5coxbdo0goKC8Pb2ZtKkSYwePZqgoCBu3bpF9+7d7V2+vEYeHh7Mnj2bwMBAzp8/T86cOfH09OTSpUuYTCZy5cqFYRikpqYyZMgQhbYiDi4+Pp64uDjbbIz0UC29L6XJZCIgIACTyURgYCDJycmMGDFC4W02U7FiRfbv30/btm1JS0tjwYIF5MuXD09PT/LkyWObsZMe2j5+/Ji1a9dSoEABChUqZHsehbZZX/rN1NKlSzl06BDt2rWjTp06wPPzJGfOnEyePJmnT58yePBghg8fbjv2ypUrzJgxg61bt7Jv3z6FOQ4mLi6OpUuXcvToUdq3b2973MPDgyFDhmAymVixYgUPHjzgyy+/zHCsQlvHpfe5iJw8eRJfX1/mz59PgwYNAKhSpQqBgYE8evQIf39/Vq1aRdOmTRXa/od0pZ3FWK1W3nvvPerVq0d8fDx79uzhww8/ZNGiRTx+/Ji33nqL48ePU7FiRSZOnEiOHDnYuHEj9+7ds3fp8pqVL1+ekJAQmjZtSs2aNenfvz+7du1i586dREZGsmnTJv72t7+pPYJINnDy5EmuXLlC48aNbSPv05nNZkwmE48ePcLb25vQ0FDmzZvH06dP7VixvGnp50SjRo3YunUrkZGRjBkzhuTkZDw8POjYsSNly5blzJkz7N+/n23bttGxY0d+++03wsLCtNiQA0pISODvf/87mzZtIiEhwfa4u7s7ffr0oUePHsycOZOpU6fatt26dYvdu3dz5MgRvv/+eypXrmyP0uUVevl9XaxYMSZNmsSf/vQn9u7dy9q1a23bypQpw+DBg6lQoQIxMTH6TBARyUaSkpIoUqQIgYGB/PDDD7bHq1SpQrdu3YiPj6dNmzbs2rXLjlU6BrVKyIJiYmIYOXIkVquV7t27YzKZmD17Nm5ubmzZsgVPT0/279+Ps7Mz58+fJ3fu3JQoUcLeZcsbcuHCBQICAgAYNWoUjRs3tm3TFAWR7OHw4cO0aNGCVatW4eXl9Yf7zJ49mx07drB7924SExMpUKDAG65S7OXF74Lx48eTlJTEunXruHnzJt26dWPp0qU4OTkxa9YsvvvuO/7xj39Qu3ZtihQpwoYNG7BYLOpb6QD+6JogOjqauXPnsnHjRhYvXoy3t7dt29WrV5k2bRrXr19n06ZNtmPv3buH1Wq1LXQoWdeLMzSePn2aoQfh8ePHmTZtGgkJCQwYMCDDuREbG0uxYsUwm8261hQRcUDpseHLn+/79u0jODiYq1evMn/+fOrVqwfAmTNnGDlyJBUrVsTf3x8PD483XrMjUXCbRZ0/f57AwEDS0tKYM2cO77zzDqdOnWLy5Ml06dKFbt266cIpG4uJieHzzz/n9u3bzJo1i7p169q7JBF5g2JjY6lZsyb16tUjJCQEd3d3IGNQM2zYMMxmM1OnTsVkMun7IhuaOnUqQUFBbNiwAZPJxKVLlwgMDOTjjz9m5cqVODk5YRgG58+fp3jx4uTNmxeTyaS+lQ7gfwroTp48yZw5czhy5AgTJkygU6dOtm0JCQkULlwYk8mk3sYO5sX/54IFCzh8+DDPnj2jSZMm+Pv74+TkxNGjRwkODiY+Pp5BgwZlODdefg4REXEc6dd+J06cIDY2luTkZLy8vHB2duaHH35gypQpXL58mZCQEOrUqcPUqVO5ePEiCxcuVCu2V0DBbRYWExPDwIEDAfjqq69o2LChnSuSzOTcuXOMGTOGGTNmaEE6kWwoMjKSTz75BG9vb0aOHMn7778PwKNHj5g0aRJr1qxh9+7dlCtXzs6Vij1YrVY6depEmTJlCAoKsj2+Z88eOnTogI+PD9OnT8fNze13xymYydpeDuiioqIwm81Uq1aNkSNHAs9HVy5cuNAW3r48cl+DAxzXyJEjWbp0KZ999hlxcXFER0fj6enJ3LlzsVgs/PDDD8yaNYuffvqJuXPn0rx5c3uXLCIir8G0adM4d+4cS5cuBeDbb7+lZ8+evPvuu1y6dImKFSsyfPhwfHx8OHHiBDNnzmTdunVUqVKF3377jf3791OtWjU7vwrHoOA2i4uJiSEgIADDMBg9ejSNGjWyd0mSiaSmpuLs7GzvMkTEDqxWK2FhYQwcOBAPDw/q16+Pi4sLsbGxHD16lJ07d1KjRg17lylvyMtBW0pKCo0bN6Zq1aosWbIEwNb+YNCgQcybNw8vLy+WL19Orly57FW2vEYjR45k+fLl+Pn5kZqaSkREBM2aNbOdDydOnCA0NJSIiAg2btxIs2bN7FyxvG4rV65k0qRJrF69mtq1axMZGYmPjw/vvPMO9erVY/ny5VgsFg4cOMCePXsYO3asWqaIiDggwzBYuXIlvXr1YsCAAcyYMYNGjRrRu3dv2rdvj8Viwc/Pj+vXr/P555/TpUsXHjx4wKFDh0hKSqJ+/fqUKlXK3i/DYSi4dQAvTosPDg629RURERE5duwYQUFBXLx4kbx589KgQQN69epF2bJl7V2a2MGUKVOoXbs2LVu2ZOHChXz99dcsXLiQP//5z7Z9goKCOHz4MCkpKezYsUMjbB3Q2rVrGTduHCtWrKBu3bps3LiRHj16kCNHDlq2bElERAQAR44cYd++fQwfPlwBXTawePFiLly4wLRp09iyZQs9e/bkq6++IjU1la+//prOnTszb968DIMC1O9aRMQxpaWlERkZSffu3fHy8iIlJYWQkBCKFy8OPJ/F98knnxAbG8uxY8c0E+c1UnDrIDQtXkRE/h3dWAvAkydP8Pb2xtXVlZUrV3LhwgUmTZpEXFwcw4YN4+OPPyYpKYlPP/2Ujh074ufnB6g9giNITU3l2bNnttHTCxcuJC4ujvHjx7Nt2zZ69OjB2LFjyZ07N3379qVHjx62kbfp9DniWP5du4vr16+TM2dOWrVqRdeuXRkxYgRXr16lYcOG3L9/n4EDBzJ58mS1yxARyQbS0tKIiIhg8ODB3Lt3j9OnT1O6dGnbzN74+HhKlizJ5s2b+eijj+xdrsPSVbiDqFChAqtXr1ZoKyIiv/Ni6Kbfa7OvnDlz0rp1a3788Udu375NpUqV6NOnD+7u7vj4+FC5cmU8PT25evUq3bt3B56fLwpts7aIiAh8fHxo1KgREydOBKBv3774+vpy584dxo0bxxdffMHgwYP54IMPKFq0KOHh4YwYMSLD8yi0dRxWq9UWuiYlJXHv3j3bthIlSnDhwgXu3LlD27ZtAXj48CENGjRgyZIltnNIoa2IiOOwWq0Z/k5LSwOef/d36NDB1ud88uTJALaZF6mpqZQqVYrcuXO/2YKzGV2JOxD1MhURkT/y4g22brazt379+uHq6sqYMWMA+OCDDwgKCmLnzp1069aNYcOGER0djZOTE2lpaTpfsrjQ0FD8/Pxwd3enadOmjB8/nvnz5wPw3nvv8euvv3L79m06duxoO6Zp06bs3r2bKVOm2KtseU0iIyNJTEy0/Rjz1Vdf0bZtW6pXr868efO4efMmAPnz58fFxYXw8HDOnDnD0KFDMZvNeHl5YTabbTf0IiLiGMxmM+fOnWPUqFFcuXIlw4/2zs7OtG3blrCwMNauXUvPnj05deoUly5dIiwsjLt371K6dGk7Vu/4nOxdgIiIiIi8Ort27cLT05P8+fOzYMECihQpQsOGDSlSpAjwPLxdsWIFV69e5d133+Xtt9+mcOHCNGzY0PYcmhaf9S1evJhBgwaxYcMGOnToAEBCQgJpaWkkJCRQpEgR3n77bSwWC3PmzKFfv34EBgaSK1cuWrRogclk0nngQHbs2EGnTp2YPHkyn3/+OeHh4YSFhfHFF19w5coVAgMDuXjxIkOHDsXDwwMfHx9WrFjBmjVrKFmyJFu3bsVkMmEYhs4JEREH8/TpU7p3787x48f59ttvad++PZ6ennTu3Bl4Ht62a9eOZcuW4e/vz+rVq/nkk0+4fPkyu3bt0szv10w9bkVEREQcxIMHD6hXrx7JyckcO3aM7t27c+vWLZKSkpg0aRL16tWjWLFilCpViq+++ooBAwbYu2R5DaKiomjevDnjxo3jq6++sj1evXp1DMPg8uXLVK1alS5duvD06VOCg4PJkSMHRYsW5cCBA1gsFvUwdUChoaH069eP4OBgEhMTqVmzJu3btwdg/fr1fPbZZ/To0YPx48eTO3du4uLiiI2NpV69epjNZp49e4aTk8b9iIg4oqCgIJycnKhcuTKHDh0iJCSEjz76iPr169O3b1/bKNyIiAg6d+5M//79mTFjBjlz5rRz5Y5Pwa2IiIiIAzlz5gzdu3fHycmJ7777jocPHzJv3jy2bt2KxWLB29ub2NhYfvjhB7Zs2UKJEiXsXbK8YjExMfTq1Yv8+fMzZswYateujZeXFz///DOTJ08mX758DBs2DFdXV5YsWcLbb7/N1atX8fT0VEDngKKjo7l69So1a9bk+++/x8/Pj1y5chEWFoaPj49tv/Xr19OnTx98fX0ZMmQIpUqVsm3T6GsREccWFRVF+/bt2bt3L7Vr1yYuLo5FixYxbdo0qlSpQq9evWjWrBkeHh5s3ryZChUqUKFCBXuXnS0ouBURERFxAFar1Ra6xcbG4uXlRc6cOdm+fTv58+fn559/5sKFC4waNYrHjx9z/fp1du7cyYcffmg7VhxHTEwMAQEB5MiRg7t37/L48WMiIiJsYVx0dDS1a9dm8+bNtGvXznaczgXHsnr1aqZPn84777xD1apV+frrr1m6dCm9e/dm0KBBjBs3jvz589v2//bbb+nSpQvBwcEMHjzYjpWLiMibNnz4cOLi4li8eDEuLi507dqVn376ibp163L58mWOHDlCUFAQAQEBmpXzBumndBEREZEs7M6dOxQsWBCz2UxqairOzs64u7tTqFAhdu3aRaNGjTh48CBVq1alatWqtG7dmiNHjjBz5kxGjRpFixYtNJLOAZUtW5aQkBD69+/P6dOnCQsLo1SpUlitVtvNVsWKFSlYsGCG4xTaOo4VK1bQt29fli5dSuvWrXFzcwPAz8+Px48fM2jQIIoVK0a/fv146623AOjcuTMFCxakSZMmdqxcRETsoW7dusycORNnZ2d69+5NVFQUe/fupVKlSpw/f55du3bZ+uDLm6MrMxEREZEs6sCBA3Tq1In9+/cDzxePgOfhS2xsLHv27CFXrlw0atSIpKQkAPLkyUPLli0ZPXo0KSkpnD592m71y+tVtmxZFi5cSL169QgPD+fAgQOYzWZMJhNjx46lcOHC1K9f395lymvwyy+/MG3aNEJCQujatasttH327BkAAwYMYNasWXz55ZcsWLCA+/fv245t3rw5Tk5Otn1FRCR76NSpExaLBYvFwnfffceuXbuoVKkSAOXLlycgIMD2t7w5Cm5FREREsqjChQtjGAbffPMNJ06cAJ5fdJ89e5YdO3bQokULVqxYgaurK02bNuXOnTu2Y2vUqEFiYiLXrl2zV/nyBpQpU4Y5c+ZgGAZTp07l4MGDeHl5ceHCBXbv3o3ZbMZqtdq7THnFYmNjefToEU2aNOHFznhOTk5YrVYMwyAgIID58+fz5ZdfMnXqVJKTkzM8h/oci4hkH+nfFV988QUeHh7MmzePatWqoe6q9qfgVkRERCSLKl++PGFhYVitVsaOHUvjxo25dOkS27dvp2TJksDz6fCrVq3i7t27GXpWbtu2jaSkJCpWrGiv8uUNSW+bYDKZaN68Ob/88gunT5/GYrHw7NkztUdwQCdOnODBgweUK1cOk8mU4cY7fdT1mTNnaNOmDXPnzmXfvn3kypXLjhWLiIg9pbc/qFWrFlar1TYgQG0R7E+Lk4mIiIhkcTExMfTv359//vOfhIWF0blzZyDjQlNXrlyhRIkStn6227dvp1y5cpQrV85udcubde7cOebPn8/MmTNtU+E1qtIxffvtt/To0YPNmzfz4Ycf/uE+I0aM4O7duyxatAjDMGwBr27SRUSyt1WrVtG3b1++//57PD097V1Otqef10VERESyuJd7mR48eBAgwzR4d3d3cuTIYetb+fHHHyu0zWYqVKhASEiIQttsoFatWjg7O7No0SKuXr1qezx9zM79+/e5dOlShl6FCm1FRASgWbNm1KlTh+LFi9u7FEEjbkVEREQcRkxMDAEBAQCMHj2ahg0b2rkiEbGXdevW4evri5eXF8OGDaNGjRoA3Lhxg969e3P//n2ioqIU4IuIyO+kpKTg4uJi7zIEBbciIiIiDiUmJobAwEASEhJYsmQJVatWtXdJImIHaWlphIeH079/f4oUKULlypWxWq3cu3cPq9XKoUOHsFgspKWl2VqoiIiISOai4FZERETEwZw9e5bFixcTFBSkhadEsrmTJ0+ydOlSzp8/T8mSJalRowZ9+/a1tU7RiFsREZHMS8GtiIiIiAN7cYEyEZF0GmkrIiKS+Sm4FRERERERcWBaeExERCRr0vALERERERERB6bQVkREJGtScCsiIiIiIiIiIiKSySi4FREREREREREREclkFNyKiIiIiIiIiIiIZDIKbkVEREREREREREQyGQW3IiIiIiIiIiIiIpmMglsRERERERERERGRTEbBrYiIiIiIiIiIiEgmo+BWREREROT/wGQysXnzZnuXISIiIiIOTsGtiIiIiMgL4uPjGTRoEKVLlyZnzpyULFmStm3bsnfvXgDi4uJo06YNAL/99hsmk4mTJ0/asWIRERERcURO9i5ARERERCSz+O2332jYsCFubm4EBQVRpUoVnj59yq5duxgwYADnzp2jaNGi9i5TRERERLIBk2EYhr2LEBERERHJDP785z/z888/c/78eXLnzp1h2927d3Fzc8NkMrFp0yY6dOiAyWTKsE/Tpk2ZMGECLVq04Nq1axlC3iFDhnDixAkOHDjwRl6LiIiIiGRtapUgIiIiIgIkJiayc+dOBgwY8LvQFsDNze13jx07dgyAv//978TFxREZGUmTJk0oXbo0K1eutO339OlTVq9ejZ+f32urX0REREQci4JbERERERHg4sWLGIZBhQoV/tfHFCpUCICCBQtStGhRChQoAECvXr0IDw+37bdt2zZSUlLw9vZ+tUWLiIiIiMNScCsiIiIiArzKDmK+vr5cvHiRo0ePArBs2TK8vb3/cCSviIiIiMgf0eJkIiIiIiJA2bJlMZlMnDt37j9+rsKFC9O2bVvCw8N57733+O6774iKivrPixQRERGRbEMjbkVEREREgAIFCtCqVSvmzZtHcnLy77bfvXv3d485OzsDkJaW9rttvXv3Zv369SxatIgyZcrQsGHDV16ziIiIiDguBbciIiIiIv8yb9480tLS8PT0JCIigpiYGM6ePUtISAj169f/3f6FCxfG1dWVnTt3kpCQwL1792zbWrVqRb58+Zg0aRI9e/Z8ky9DRERERByAglsRERERkX8pXbo00dHRNGvWjKFDh1K5cmVatmzJ3r17WbBgwe/2d3JyIiQkhNDQUIoXL0779u1t28xmM76+vqSlpdG9e/c3+TJERERExAGYjFe5CoOIiIiIiNj06tWLW7dusXXrVnuXIiIiIiJZjBYnExERERF5xe7du8epU6dYs2aNQlsRERER+f+i4FZERERE5BVr3749x44do2/fvrRs2dLe5YiIiIhIFqRWCSIiIiIiIiIiIiKZjBYnExEREREREREREclkFNyKiIiIiIiIiIiIZDIKbkVEREREREREREQyGQW3IiIiIiIiIiIiIpmMglsRERERERERERGRTEbBrYiIiIiIiIiIiEgmo+BWREREREREREREJJNRcCsiIiIiIiIiIiKSySi4FREREREREREREclk/hspTq80kaYXpgAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["#Top 10 Run Scorers In IPL\n","# Top 10 Run Scorers\n","top_batsmen = delivery_df.groupby('batter')['batsman_runs'].sum().sort_values(ascending=False).head(10)\n","\n","# Top 10 Wicket Takers (excluding non-dismissals)\n","wicket_kinds = [\n"," 'caught', 'bowled', 'lbw', 'stumped', 'caught and bowled', 'hit wicket'\n","]\n","top_bowlers = (\n"," delivery_df[delivery_df['dismissal_kind'].isin(wicket_kinds)]\n"," .groupby('bowler')['dismissal_kind']\n"," .count()\n"," .sort_values(ascending=False)\n"," .head(10)\n",")\n","\n","# Plot Top 10 Run Scorers\n","plt.figure(figsize=(14, 6))\n","sns.barplot(x=top_batsmen.index, y=top_batsmen.values)\n","plt.title(\"🏏 Top 10 Run Scorers in IPL\")\n","plt.ylabel(\"Total Runs\")\n","plt.xlabel(\"Batsman\")\n","plt.xticks(rotation=45)\n","plt.tight_layout()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":566},"id":"67j7d6-phDEw","executionInfo":{"status":"ok","timestamp":1744090631386,"user_tz":-330,"elapsed":809,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"ce954c0d-20c1-49d0-a0f5-dcd0970a2f46"},"execution_count":8,"outputs":[{"output_type":"stream","name":"stderr","text":[":24: UserWarning: Glyph 127951 (\\N{CRICKET BAT AND BALL}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 127951 (\\N{CRICKET BAT AND BALL}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABW4AAAJOCAYAAAAnP56mAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAp6dJREFUeJzs3Xd8jef/x/H3CRlWYidipraiKpRYpVRKOowaraL2bGvUrKrRohS1R0vxRZW2tPasVYlqWmrVKqVIYiZmEsn1+8Mvd53SVpScm7yej8d5PJz7+pz7fG7nTk7yznWu22GMMQIAAAAAAAAA2IabqxsAAAAAAAAAADgjuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAA8MA4HA4NGjTI1W0AAAA8dAhuAQAAHhHVq1eXw+H411tKhGhr1qxRmzZtVLJkSaVJk0YFChT429rExESNHDlSAQEB8vLyUunSpfX555/f1fMMGjTI6djc3d1VoEABvfnmm7p48eL9OZh7sHv3br388svKnz+/vLy8lDt3bj377LOaMGGCy3p6VLz++uvKmDGj07a/nvtZs2ZV+fLlNXPmTCUmJv7jYwEAAOwqrasbAAAAwJ/27t2rJ598Uh4eHnccj4uL0/79+1WwYMHbxt555x21bdvWur9jxw6NHz9e/fv3V/Hixa3tpUuXvv+N/8X8+fP1xRdfqGzZsvL39//H2nfeeUcjRoxQu3btVL58eX3zzTd69dVX5XA41LRp07t6vilTpihjxoy6cuWK1q9frwkTJuinn37S1q1b78fhJMu2bdtUo0YN5cuXT+3atZOfn59OnDihsLAwjRs3Tm+88UaK9+RK165dU9q0D/7Xjjx58mj48OGSpDNnzmjOnDlq06aNDh48qBEjRjzw5wcAALjfHMYY4+omAAAAcNOePXvUsWPHvw0cK1asqLlz56pQoUL/uq8vv/xSjRo10nfffafq1avf507/2alTp5QjRw65u7vr+eef1549e3Ts2LHb6k6ePKmAgAC1b99eEydOlCQZY/T000/r6NGjOnbsmNKkSfO3zzNo0CANHjxYZ86cUfbs2a3tTZs21RdffKHt27frqaeeuu/H909CQkK0Y8cOHTx4UJkzZ3Yai4qKUs6cOVOsl6tXryp9+vT3/PjExETFxcXJy8vrPnb137z++uv68ssvdfnyZWtb9erVdfbsWe3Zs8fadvXqVRUtWlQXLlzQhQsX5O7ufsfHAgAA2BVLJQAAAKQykydP1uOPPy5PT0/5+/urS5cuty0rUL16dZUsWVLh4eGqVKmS0qVLp4CAAE2dOvWunsPf31/u7u7/WvfNN98oPj5enTt3trY5HA516tRJf/zxh0JDQ5N1bEmqVq0qSTpy5Ii1rUCBAnr99ddvq61evbpTsL1x40Y5HA4tXLhQH3zwgfLkySMvLy/VrFlThw8f/tfnPnLkiB5//PHbQltJdwxt586dq6eeekrp06dXlixZVK1aNa1Zs8apJrmvWbVq1ZQ+fXr1799fkhQbG6v33ntPhQoVkqenp/LmzavevXsrNjbWaR8Oh0Ndu3bVvHnzrOdbtWqVJGnBggUKDAxUpkyZ5O3trVKlSmncuHH/+v/x1+U5kpa3OHz4sF5//XVlzpxZPj4+atWqla5evfqv+7tb6dOnV8WKFXXlyhWdOXPmvu0XAAAgpRDcAgAApCKDBg1Sly5d5O/vr9GjR6thw4aaNm2aateurfj4eKfaCxcuqG7dugoMDNTIkSOVJ08ederUSTNnzrxv/fz888/KkCGD01IOkqxZsj///PM97Tdpdm+WLFnuubcRI0Zo8eLFevvtt9WvXz+FhYWpWbNm//q4/PnzKzw83Gn2598ZPHiwmjdvLnd3dw0ZMkSDBw9W3rx5tWHDBqsmOa/ZuXPnVKdOHZUpU0Yff/yxatSoocTERL344ov66KOP9MILL2jChAmqV6+exo4dqyZNmtzW04YNG9S9e3c1adJE48aNU4ECBbR27Vq98sorypIliz788EONGDFC1atX1/fff38X/5N31rhxY126dEnDhw9X48aNNWvWLA0ePPie93cnv/32m9KkSXPHEB0AAMDuWOMWAAAglThz5oyGDx+u2rVra+XKlXJzu/k3/GLFiqlr166aO3euWrVqZdWfOnVKo0ePVo8ePSRJHTp0UIUKFdSvXz8rbPyvTp8+LV9fXzkcDqftuXLlsnq4G+fPn5ckXblyRRs2bNCkSZOUI0cOVatW7Z57u379unbu3GmtN5wlSxa99dZb2rNnj0qWLPm3j3v77bet8PSpp55S1apVVbNmTdWoUcPp/+zw4cMaMmSI6tevry+//NJ6PaSby0VIyX/NIiIiNHXqVHXo0MHaNnfuXK1bt06bNm1SlSpVrO0lS5ZUx44dtW3bNlWqVMnafuDAAe3evVslSpSwtnXr1k3e3t5avXr1Py5dkRxPPvmkZsyYYd0/d+6cZsyYoQ8//PCe9peQkKCzZ89Kks6ePaspU6bop59+0gsvvPCflosAAABwFWbcAgAApBLr1q1TXFycunXr5hQStmvXTt7e3lq+fLlTfdq0aZ0CQA8PD3Xo0EFRUVEKDw+/Lz1du3ZNnp6et21PWlP12rVrd7WfokWLKkeOHCpQoIBat26tQoUKaeXKlf8psGvVqpXTReKSll/47bff/vFxzz77rEJDQ/Xiiy9q165dGjlypIKDg5U7d259++23Vt2SJUuUmJiogQMHOr0ekqwgO7mvmaenp1OQK0mLFi1S8eLFVaxYMZ09e9a6PfPMM5Kk7777zqn+6aefdgptJSlz5sy6cuWK1q5d+4/HnhwdO3Z0ul+1alWdO3dOMTEx97S/X3/9VTly5FCOHDlUvHhxTZgwQSEhIfd1hjgAAEBKYsYtAABAKvH7779Luhly3srDw0OPPfaYNZ7E399fGTJkcNpWpEgRSTeXIqhYseJ/7ildunS3rbMq3ZztmjR+N7766it5e3vrzJkzGj9+vI4ePXrXj/07+fLlc7qftOzChQsX/vWx5cuX19dff624uDjt2rVLixcv1tixY/Xyyy9r586dKlGihI4cOSI3N7fbQtJbJfc1y507t1PYLEmHDh3S/v37lSNHjjs+R1RUlNP9gICA22o6d+6shQsXqk6dOsqdO7dq166txo0b67nnnvv7/4R/8U//v97e3sneX4ECBfTJJ5/I4XDIy8tLhQsXTtELwQEAANxvBLcAAABwmVy5cum7776TMcZpuYTTp09Luhke341q1aope/bskqQXXnhBpUqVUrNmzRQeHm7NVP3rcgxJEhIS7vjx/79bEiBpGYO74eHhofLly6t8+fIqUqSIWrVqpUWLFum99967630kx53C6sTERJUqVUpjxoy542Py5s37r/vImTOndu7cqdWrV2vlypVauXKlPvvsM7Vo0UKzZ8++p17vx//vrTJkyKBatWrd02MBAADsiKUSAAAAUon8+fNLurmG6a3i4uJ09OhRazzJqVOndOXKFadtBw8elHRzduP9UKZMGV29elX79+932r59+3ZrPLkyZsyo9957Tzt37tTChQut7VmyZNHFixdvq//rrNUHpVy5cpL+DKULFiyoxMRE7du3728fk9zX7E4KFiyo8+fPq2bNmqpVq9Ztt7/O5v07Hh4eeuGFFzR58mQdOXJEHTp00Jw5c3T48OG7ejwAAACSh+AWAAAglahVq5Y8PDw0fvx4p1mNM2bMUHR0tEJCQpzqb9y4oWnTpln34+LiNG3aNOXIkUOBgYH3paeXXnpJ7u7umjx5srXNGKOpU6cqd+7cThfNSo5mzZopT548The6KliwoMLCwhQXF2dtW7ZsmU6cOHHvB3AHSTOI/2rFihWS/lz2oF69enJzc9OQIUOUmJjoVJv0+OS+ZnfSuHFjnTx5Up988sltY9euXbstnL+Tc+fOOd13c3NT6dKlJemOS10AAADgv2OpBAAAgFQiR44c6tevnwYPHqznnntOL774og4cOKDJkyerfPnyeu2115zq/f399eGHH+rYsWMqUqSIvvjiC+3cuVPTp0+Xu7v7Pz7XL7/8Yl2I6/Dhw4qOjtb7778vSXriiSf0wgsvSJLy5Mmjbt26adSoUYqPj1f58uW1ZMkSbdmyRfPmzfvbj9P/G3d3d7311lvq1auXVq1apeeee05t27bVl19+qeeee06NGzfWkSNHNHfuXBUsWPCenuPvvPHGG7p69arq16+vYsWKKS4uTtu2bdMXX3yhAgUKWBcPK1SokN555x0NHTpUVatWVYMGDeTp6akdO3bI399fw4cPT/ZrdifNmzfXwoUL1bFjR3333XeqXLmyEhIS9Ouvv2rhwoVavXq1NRv477Rt21bnz5/XM888ozx58uj333/XhAkTVKZMGRUvXvy+/L+llPj4eOtcvFXWrFnVuXNnF3QEAABwZwS3AAAAqcigQYOUI0cOTZw4Ud27d1fWrFnVvn17DRs27LYwNkuWLJo9e7beeOMNffLJJ/L19dXEiRPVrl27f32en376Se+++67TtqT7LVu2tIJbSRoxYoSyZMmiadOmadasWSpcuLDmzp2rV1999T8da/v27fX+++9rxIgReu655xQcHKzRo0drzJgx6tatm8qVK6dly5apZ8+e/+l5/uqjjz7SokWLtGLFCk2fPl1xcXHKly+fOnfurAEDBihz5sxW7ZAhQxQQEKAJEybonXfeUfr06VW6dGk1b97cqknOa3Ynbm5uWrJkicaOHas5c+Zo8eLFSp8+vR577DG99dZb1gXn/slrr72m6dOna/Lkybp48aL8/PzUpEkTDRo0yFpD+GERFxd327kp3ZyRTXALAADsxGHudfV/AAAA3Hd79uxRx44dtXXr1juOV6xYUXPnzlWhQoUeaB/Vq1fX2bNntWfPngf6PAAAAADu7OH68zgAAAAAAAAApAIslQAAAGAzYWFhTh+nv9Xly5dTthkAAAAALkFwCwAAYCMlS5bUjRs3XN0GAAAAABdjjVsAAAAAAAAAsBnWuAUAAAAAAAAAmyG4BQAAAAAAAACbYY3bu5CYmKhTp04pU6ZMcjgcrm4HAAAAAAAAwEPIGKNLly7J399fbm7/PKeW4PYunDp1Snnz5nV1GwAAAAAAAAAeASdOnFCePHn+sYbg9i5kypRJ0s3/UG9vbxd3AwAAAAAAAOBhFBMTo7x581p54z8huL0LScsjeHt7E9wCAAAAAAAA+E/uZjlWLk4GAAAAAAAAADZDcAsAAAAAAAAANkNwCwAAAAAAAAA2Q3ALAAAAAAAAADZDcAsAAAAAAAAANkNwCwAAAAAAAAA2Q3ALAAAAAAAAADZDcAsAAAAAAAAANkNwCwAAAAAAAAA2Q3ALAAAAAAAAADZDcAsAAAAAAAAANkNwCwAAAAAAAAA2Q3ALAAAAAAAAADZDcAsAAAAAAAAANkNwCwAAAAAAAAA249LgNiEhQe+++64CAgKULl06FSxYUEOHDpUxxqoxxmjgwIHKlSuX0qVLp1q1aunQoUNO+zl//ryaNWsmb29vZc6cWW3atNHly5edan755RdVrVpVXl5eyps3r0aOHJkixwgAAAAAAAAAyeXS4PbDDz/UlClTNHHiRO3fv18ffvihRo4cqQkTJlg1I0eO1Pjx4zV16lRt375dGTJkUHBwsK5fv27VNGvWTHv37tXatWu1bNkybd68We3bt7fGY2JiVLt2beXPn1/h4eEaNWqUBg0apOnTp6fo8QIAAAAAAADA3XCYW6e3prDnn39evr6+mjFjhrWtYcOGSpcunebOnStjjPz9/dWzZ0+9/fbbkqTo6Gj5+vpq1qxZatq0qfbv368SJUpox44dKleunCRp1apVqlu3rv744w/5+/trypQpeueddxQRESEPDw9JUt++fbVkyRL9+uuv/9pnTEyMfHx8FB0dLW9v7wfwPwEAAAAAAADgUZecnDFtCvV0R5UqVdL06dN18OBBFSlSRLt27dLWrVs1ZswYSdLRo0cVERGhWrVqWY/x8fFRhQoVFBoaqqZNmyo0NFSZM2e2QltJqlWrltzc3LR9+3bVr19foaGhqlatmhXaSlJwcLA+/PBDXbhwQVmyZHHqKzY2VrGxsdb9mJiYezq+wF5z7ulxSDnho1q4ugUAAAAAAADgNi4Nbvv27auYmBgVK1ZMadKkUUJCgj744AM1a9ZMkhQRESFJ8vX1dXqcr6+vNRYREaGcOXM6jadNm1ZZs2Z1qgkICLhtH0ljfw1uhw8frsGDB9+nowQAAAAAAACA5HHpGrcLFy7UvHnzNH/+fP3000+aPXu2PvroI82ePduVbalfv36Kjo62bidOnHBpPwAAAAAAAABSF5fOuO3Vq5f69u2rpk2bSpJKlSql33//XcOHD1fLli3l5+cnSYqMjFSuXLmsx0VGRqpMmTKSJD8/P0VFRTnt98aNGzp//rz1eD8/P0VGRjrVJN1PqrmVp6enPD09789BAgAAAAAAAEAyuXTG7dWrV+Xm5txCmjRplJiYKEkKCAiQn5+f1q9fb43HxMRo+/btCgoKkiQFBQXp4sWLCg8Pt2o2bNigxMREVahQwarZvHmz4uPjrZq1a9eqaNGity2TAAAAAAAAAACu5tLg9oUXXtAHH3yg5cuX69ixY1q8eLHGjBmj+vXrS5IcDoe6deum999/X99++612796tFi1ayN/fX/Xq1ZMkFS9eXM8995zatWunH374Qd9//726du2qpk2byt/fX5L06quvysPDQ23atNHevXv1xRdfaNy4cerRo4erDh0AAAAAAAAA/pZLl0qYMGGC3n33XXXu3FlRUVHy9/dXhw4dNHDgQKumd+/eunLlitq3b6+LFy+qSpUqWrVqlby8vKyaefPmqWvXrqpZs6bc3NzUsGFDjR8/3hr38fHRmjVr1KVLFwUGBip79uwaOHCg2rdvn6LHCwAAAAAAAAB3w2GMMa5uwu5iYmLk4+Oj6OhoeXt73/XjAnvNeYBd4X4IH9XC1S0AAAAAAAAglUhOzujSpRIAAAAAAAAAALcjuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAm3FpcFugQAE5HI7bbl26dJEkXb9+XV26dFG2bNmUMWNGNWzYUJGRkU77OH78uEJCQpQ+fXrlzJlTvXr10o0bN5xqNm7cqLJly8rT01OFChXSrFmzUuoQAQAAAAAAACDZXBrc7tixQ6dPn7Zua9eulSQ1atRIktS9e3ctXbpUixYt0qZNm3Tq1Ck1aNDAenxCQoJCQkIUFxenbdu2afbs2Zo1a5YGDhxo1Rw9elQhISGqUaOGdu7cqW7duqlt27ZavXp1yh4sAAAAAAAAANwlhzHGuLqJJN26ddOyZct06NAhxcTEKEeOHJo/f75efvllSdKvv/6q4sWLKzQ0VBUrVtTKlSv1/PPP69SpU/L19ZUkTZ06VX369NGZM2fk4eGhPn36aPny5dqzZ4/1PE2bNtXFixe1atWqu+orJiZGPj4+io6Olre3910fT2CvOck4erhC+KgWrm4BAAAAAAAAqURyckbbrHEbFxenuXPnqnXr1nI4HAoPD1d8fLxq1apl1RQrVkz58uVTaGioJCk0NFSlSpWyQltJCg4OVkxMjPbu3WvV3LqPpJqkfQAAAAAAAACA3aR1dQNJlixZoosXL+r111+XJEVERMjDw0OZM2d2qvP19VVERIRVc2tomzSeNPZPNTExMbp27ZrSpUt3Wy+xsbGKjY217sfExPynYwMAAAAAAACA5LDNjNsZM2aoTp068vf3d3UrGj58uHx8fKxb3rx5Xd0SAAAAAAAAgFTEFsHt77//rnXr1qlt27bWNj8/P8XFxenixYtOtZGRkfLz87NqIiMjbxtPGvunGm9v7zvOtpWkfv36KTo62rqdOHHiPx0fAAAAAAAAACSHLYLbzz77TDlz5lRISIi1LTAwUO7u7lq/fr217cCBAzp+/LiCgoIkSUFBQdq9e7eioqKsmrVr18rb21slSpSwam7dR1JN0j7uxNPTU97e3k43AAAAAAAAAEgpLg9uExMT9dlnn6lly5ZKm/bPJXd9fHzUpk0b9ejRQ999953Cw8PVqlUrBQUFqWLFipKk2rVrq0SJEmrevLl27dql1atXa8CAAerSpYs8PT0lSR07dtRvv/2m3r1769dff9XkyZO1cOFCde/e3SXHCwAAAAAAAAD/xuUXJ1u3bp2OHz+u1q1b3zY2duxYubm5qWHDhoqNjVVwcLAmT55sjadJk0bLli1Tp06dFBQUpAwZMqhly5YaMmSIVRMQEKDly5ere/fuGjdunPLkyaNPP/1UwcHBKXJ8AAAAAAAAAJBcDmOMcXUTdhcTEyMfHx9FR0cna9mEwF5zHmBXuB/CR7VwdQsAAAAAAABIJZKTM7p8qQQAAAAAAAAAgDOCWwAAAAAAAACwGYJbAAAAAAAAALAZglsAAAAAAAAAsBmCWwAAAAAAAACwGYJbAAAAAAAAALCZtK5uAEgNAnvNcXUL+Afho1q4ugUAAAAAAAAnzLgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbSevqBgAgNQnsNcfVLeAfhI9q4eoWAAAAAACQxIxbAAAAAAAAALAdglsAAAAAAAAAsBmCWwAAAAAAAACwGda4BQAghbHWsf2x3jEAAAAAV2PGLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2IzLg9uTJ0/qtddeU7Zs2ZQuXTqVKlVKP/74ozVujNHAgQOVK1cupUuXTrVq1dKhQ4ec9nH+/Hk1a9ZM3t7eypw5s9q0aaPLly871fzyyy+qWrWqvLy8lDdvXo0cOTJFjg8AAAAAAAAAksulwe2FCxdUuXJlubu7a+XKldq3b59Gjx6tLFmyWDUjR47U+PHjNXXqVG3fvl0ZMmRQcHCwrl+/btU0a9ZMe/fu1dq1a7Vs2TJt3rxZ7du3t8ZjYmJUu3Zt5c+fX+Hh4Ro1apQGDRqk6dOnp+jxAgAAAAAAAMDdSOvKJ//www+VN29effbZZ9a2gIAA69/GGH388ccaMGCAXnrpJUnSnDlz5OvrqyVLlqhp06bav3+/Vq1apR07dqhcuXKSpAkTJqhu3br66KOP5O/vr3nz5ikuLk4zZ86Uh4eHHn/8ce3cuVNjxoxxCngBAAAAAAAAwA5cOuP222+/Vbly5dSoUSPlzJlTTz75pD755BNr/OjRo4qIiFCtWrWsbT4+PqpQoYJCQ0MlSaGhocqcObMV2kpSrVq15Obmpu3bt1s11apVk4eHh1UTHBysAwcO6MKFCw/6MAEAAAAAAAAgWVwa3P7222+aMmWKChcurNWrV6tTp0568803NXv2bElSRESEJMnX19fpcb6+vtZYRESEcubM6TSeNm1aZc2a1anmTvu49TluFRsbq5iYGKcbAAAAAAAAAKQUly6VkJiYqHLlymnYsGGSpCeffFJ79uzR1KlT1bJlS5f1NXz4cA0ePNhlzw8AAAAAAAAgdXPpjNtcuXKpRIkSTtuKFy+u48ePS5L8/PwkSZGRkU41kZGR1pifn5+ioqKcxm/cuKHz58871dxpH7c+x6369eun6Oho63bixIl7PUQAAAAAAAAASDaXBreVK1fWgQMHnLYdPHhQ+fPnl3TzQmV+fn5av369NR4TE6Pt27crKChIkhQUFKSLFy8qPDzcqtmwYYMSExNVoUIFq2bz5s2Kj4+3atauXauiRYsqS5Yst/Xl6ekpb29vpxsAAAAAAAAApBSXBrfdu3dXWFiYhg0bpsOHD2v+/PmaPn26unTpIklyOBzq1q2b3n//fX377bfavXu3WrRoIX9/f9WrV0/SzRm6zz33nNq1a6cffvhB33//vbp27aqmTZvK399fkvTqq6/Kw8NDbdq00d69e/XFF19o3Lhx6tGjh6sOHQAAAAAAAAD+lkvXuC1fvrwWL16sfv36aciQIQoICNDHH3+sZs2aWTW9e/fWlStX1L59e128eFFVqlTRqlWr5OXlZdXMmzdPXbt2Vc2aNeXm5qaGDRtq/Pjx1riPj4/WrFmjLl26KDAwUNmzZ9fAgQPVvn37FD1eAAAAAAAAALgbLg1uJen555/X888//7fjDodDQ4YM0ZAhQ/62JmvWrJo/f/4/Pk/p0qW1ZcuWe+4TAAAAAAAAAFKKS5dKAAAAAAAAAADcjuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbCatqxsAAABIrQJ7zXF1C/gH4aNauLoFAAAApGLMuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJtJ6+oGAAAAgNQssNccV7eAfxE+qoWrWwAAAKkQM24BAAAAAAAAwGYIbgEAAAAAAADAZlgqAQAAAABsgGUz7I0lMwAAKY0ZtwAAAAAAAABgMwS3AAAAAAAAAGAzBLcAAAAAAAAAYDMEtwAAAAAAAABgMy4NbgcNGiSHw+F0K1asmDV+/fp1denSRdmyZVPGjBnVsGFDRUZGOu3j+PHjCgkJUfr06ZUzZ0716tVLN27ccKrZuHGjypYtK09PTxUqVEizZs1KicMDAAAAAAAAgHvi8hm3jz/+uE6fPm3dtm7dao11795dS5cu1aJFi7Rp0yadOnVKDRo0sMYTEhIUEhKiuLg4bdu2TbNnz9asWbM0cOBAq+bo0aMKCQlRjRo1tHPnTnXr1k1t27bV6tWrU/Q4AQAAAAAAAOBupXV5A2nTys/P77bt0dHRmjFjhubPn69nnnlGkvTZZ5+pePHiCgsLU8WKFbVmzRrt27dP69atk6+vr8qUKaOhQ4eqT58+GjRokDw8PDR16lQFBARo9OjRkqTixYtr69atGjt2rIKDg1P0WAEAAAAAAADgbrh8xu2hQ4fk7++vxx57TM2aNdPx48clSeHh4YqPj1etWrWs2mLFiilfvnwKDQ2VJIWGhqpUqVLy9fW1aoKDgxUTE6O9e/daNbfuI6kmaR93Ehsbq5iYGKcbAAAAAAAAAKQUlwa3FSpU0KxZs7Rq1SpNmTJFR48eVdWqVXXp0iVFRETIw8NDmTNndnqMr6+vIiIiJEkRERFOoW3SeNLYP9XExMTo2rVrd+xr+PDh8vHxsW558+a9H4cLAAAAAAAAAHfFpUsl1KlTx/p36dKlVaFCBeXPn18LFy5UunTpXNZXv3791KNHD+t+TEwM4S0AAAAA4IEL7DXH1S3gX4SPauHqFgCkEi5fKuFWmTNnVpEiRXT48GH5+fkpLi5OFy9edKqJjIy01sT18/NTZGTkbeNJY/9U4+3t/bfhsKenp7y9vZ1uAAAAAAAAAJBSXH5xsltdvnxZR44cUfPmzRUYGCh3d3etX79eDRs2lCQdOHBAx48fV1BQkCQpKChIH3zwgaKiopQzZ05J0tq1a+Xt7a0SJUpYNStWrHB6nrVr11r7AAAAAAAAsBtmX9sbM6+RElw64/btt9/Wpk2bdOzYMW3btk3169dXmjRp9Morr8jHx0dt2rRRjx499N133yk8PFytWrVSUFCQKlasKEmqXbu2SpQooebNm2vXrl1avXq1BgwYoC5dusjT01OS1LFjR/3222/q3bu3fv31V02ePFkLFy5U9+7dXXnoAAAAAAAAAPC3XDrj9o8//tArr7yic+fOKUeOHKpSpYrCwsKUI0cOSdLYsWPl5uamhg0bKjY2VsHBwZo8ebL1+DRp0mjZsmXq1KmTgoKClCFDBrVs2VJDhgyxagICArR8+XJ1795d48aNU548efTpp58qODg4xY8XAAAAAAAAAO6GS4PbBQsW/OO4l5eXJk2apEmTJv1tTf78+W9bCuGvqlevrp9//vmeegQAAAAAAACAlGari5MBAAAAAAAAAAhuAQAAAAAAAMB2kr1UwuzZs5U9e3aFhIRIknr37q3p06erRIkS+vzzz5U/f/773iQAAAAAAACQ2gT2muPqFvAvwke1eGD7TvaM22HDhildunSSpNDQUE2aNEkjR45U9uzZ1b179/veIAAAAAAAAACkNsmecXvixAkVKlRIkrRkyRI1bNhQ7du3V+XKlVW9evX73R8AAAAAAAAApDrJnnGbMWNGnTt3TpK0Zs0aPfvss5IkLy8vXbt27f52BwAAAAAAAACpULJn3D777LNq27atnnzySR08eFB169aVJO3du1cFChS43/0BAAAAAAAAQKqT7Bm3kyZNUlBQkM6cOaOvvvpK2bJlkySFh4frlVdeue8NAgAAAAAAAEBqk+wZt5kzZ9bEiRNv2z548OD70hAAAAAAAAAApHbJDm4l6eLFi/rhhx8UFRWlxMREa7vD4VDz5s3vW3MAAAAAAAAAkBolO7hdunSpmjVrpsuXL8vb21sOh8MaI7gFAAAAAAAAgP8u2Wvc9uzZU61bt9bly5d18eJFXbhwwbqdP3/+QfQIAAAAAAAAAKlKsoPbkydP6s0331T69OkfRD8AAAAAAAAAkOolO7gNDg7Wjz/++CB6AQAAAAAAAADoHta4DQkJUa9evbRv3z6VKlVK7u7uTuMvvvjifWsOAAAAAAAAAFKjZAe37dq1kyQNGTLktjGHw6GEhIT/3hUAAAAAAAAApGLJDm4TExMfRB8AAAAAAAAAgP+X7DVuAQAAAAAAAAAPVrJn3N5piYRbDRw48J6bAQAAAAAAAADcQ3C7ePFip/vx8fE6evSo0qZNq4IFCxLcAgAAAAAAAMB/lOzg9ueff75tW0xMjF5//XXVr1//vjQFAAAAAAAAAKnZfVnj1tvbW4MHD9a77757P3YHAAAAAAAAAKnafbs4WXR0tKKjo+/X7gAAAAAAAAAg1Ur2Ugnjx493um+M0enTp/W///1PderUuW+NAQAAAAAAAEBqlezgduzYsU733dzclCNHDrVs2VL9+vW7b40BAAAAAAAAQGqV7OD26NGjfzt27dq1/9QMAAAAAAAAAOA+rXEbGxurMWPGKCAg4H7sDgAAAAAAAABStbsObmNjY9WvXz+VK1dOlSpV0pIlSyRJM2fOVEBAgMaOHavu3bs/qD4BAAAAAAAAINW466USBg4cqGnTpqlWrVratm2bGjVqpFatWiksLExjxoxRo0aNlCZNmgfZKwAAAAAAAACkCncd3C5atEhz5szRiy++qD179qh06dK6ceOGdu3aJYfD8SB7BAAAAAAAAIBU5a6XSvjjjz8UGBgoSSpZsqQ8PT3VvXt3QlsAAAAAAAAAuM/uOrhNSEiQh4eHdT9t2rTKmDHjA2kKAAAAAAAAAFKzu14qwRij119/XZ6enpKk69evq2PHjsqQIYNT3ddff31/OwQAAAAAAACAVOaug9uWLVs63X/ttdfuezMAAAAAAAAAgGQEt5999tmD7AMAAAAAAAAA8P/ueo1bAAAAAAAAAEDKILgFAAAAAAAAAJshuAUAAAAAAAAAmyG4BQAAAAAAAACbIbgFAAAAAAAAAJtJezdF33777V3v8MUXX7znZgAAAAAAAAAAdxnc1qtX76525nA4lJCQ8F/6AQAAAAAAAIBU766WSkhMTLyr238JbUeMGCGHw6Fu3bpZ265fv64uXbooW7Zsypgxoxo2bKjIyEinxx0/flwhISFKnz69cubMqV69eunGjRtONRs3blTZsmXl6empQoUKadasWffcJwAAAAAAAAA8aLZY43bHjh2aNm2aSpcu7bS9e/fuWrp0qRYtWqRNmzbp1KlTatCggTWekJCgkJAQxcXFadu2bZo9e7ZmzZqlgQMHWjVHjx5VSEiIatSooZ07d6pbt25q27atVq9enWLHBwAAAAAAAADJcVdLJfzVlStXtGnTJh0/flxxcXFOY2+++Way9nX58mU1a9ZMn3zyid5//31re3R0tGbMmKH58+frmWeekSR99tlnKl68uMLCwlSxYkWtWbNG+/bt07p16+Tr66syZcpo6NCh6tOnjwYNGiQPDw9NnTpVAQEBGj16tCSpePHi2rp1q8aOHavg4OB7OXwAAAAAAAAAeKCSHdz+/PPPqlu3rq5evaorV64oa9asOnv2rLVUQXKD2y5duigkJES1atVyCm7Dw8MVHx+vWrVqWduKFSumfPnyKTQ0VBUrVlRoaKhKlSolX19fqyY4OFidOnXS3r179eSTTyo0NNRpH0k1ty7J8FexsbGKjY217sfExCTrmAAAAAAAAADgv0j2Ugndu3fXCy+8oAsXLihdunQKCwvT77//rsDAQH300UfJ2teCBQv0008/afjw4beNRUREyMPDQ5kzZ3ba7uvrq4iICKvm1tA2aTxp7J9qYmJidO3atTv2NXz4cPn4+Fi3vHnzJuu4AAAAAAAAAOC/SHZwu3PnTvXs2VNubm5KkyaNYmNjlTdvXo0cOVL9+/e/6/2cOHFCb731lubNmycvL6/ktvFA9evXT9HR0dbtxIkTrm4JAAAAAAAAQCqS7ODW3d1dbm43H5YzZ04dP35ckuTj45OsgDM8PFxRUVEqW7as0qZNq7Rp02rTpk0aP3680qZNK19fX8XFxenixYtOj4uMjJSfn58kyc/PT5GRkbeNJ439U423t7fSpUt3x948PT3l7e3tdAMAAAAAAACAlJLs4PbJJ5/Ujh07JElPP/20Bg4cqHnz5qlbt24qWbLkXe+nZs2a2r17t3bu3GndypUrp2bNmln/dnd31/r1663HHDhwQMePH1dQUJAkKSgoSLt371ZUVJRVs3btWnl7e6tEiRJWza37SKpJ2gcAAAAAAAAA2E2yL042bNgwXbp0SZL0wQcfqEWLFurUqZMKFy6sGTNm3PV+MmXKdFvQmyFDBmXLls3a3qZNG/Xo0UNZs2aVt7e33njjDQUFBalixYqSpNq1a6tEiRJq3ry5Ro4cqYiICA0YMEBdunSRp6enJKljx46aOHGievfurdatW2vDhg1auHChli9fntxDBwAAAAAAAIAUkezgtly5cta/c+bMqVWrVt3Xhm41duxYubm5qWHDhoqNjVVwcLAmT55sjadJk0bLli1Tp06dFBQUpAwZMqhly5YaMmSIVRMQEKDly5ere/fuGjdunPLkyaNPP/1UwcHBD6xvAAAAAAAAAPgvkh3cPvPMM/r666+VOXNmp+0xMTGqV6+eNmzYcM/NbNy40em+l5eXJk2apEmTJv3tY/Lnz68VK1b8436rV6+un3/++Z77AgAAAAAAAICUlOw1bjdu3Ki4uLjbtl+/fl1btmy5L00BAAAAAAAAQGp21zNuf/nlF+vf+/btU0REhHU/ISFBq1atUu7cue9vdwAAAAAAAACQCt11cFumTBk5HA45HA4988wzt42nS5dOEyZMuK/NAQAAAAAAAEBqdNfB7dGjR2WM0WOPPaYffvhBOXLksMY8PDyUM2dOpUmT5oE0CQAAAAAAAACpyV0Ht/nz55ckJSYmPrBmAAAAAAAAAADJCG5vdeTIEX388cfav3+/JKlEiRJ66623VLBgwfvaHAAAAAAAAACkRm7JfcDq1atVokQJ/fDDDypdurRKly6t7du36/HHH9fatWsfRI8AAAAAAAAAkKoke8Zt37591b17d40YMeK27X369NGzzz5735oDAAAAAAAAgNQo2TNu9+/frzZt2ty2vXXr1tq3b999aQoAAAAAAAAAUrNkB7c5cuTQzp07b9u+c+dO5cyZ8370BAAAAAAAAACp2l0vlTBkyBC9/fbbateundq3b6/ffvtNlSpVkiR9//33+vDDD9WjR48H1igAAAAAAAAApBZ3HdwOHjxYHTt21LvvvqtMmTJp9OjR6tevnyTJ399fgwYN0ptvvvnAGgUAAAAAAACA1OKug1tjjCTJ4XCoe/fu6t69uy5duiRJypQp04PpDgAAAAAAAABSobsObqWboe2tCGwBAAAAAAAA4P5LVnBbpEiR28Lbvzp//vx/aggAAAAAAAAAUrtkBbeDBw+Wj4/Pg+oFAAAAAAAAAKBkBrdNmzZVzpw5H1QvAAAAAAAAAABJbndb+G9LJAAAAAAAAAAA7o+7Dm6NMQ+yDwAAAAAAAADA/7vrpRISExMfZB8AAAAAAAAAgP931zNuAQAAAAAAAAApg+AWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbMalwe2UKVNUunRpeXt7y9vbW0FBQVq5cqU1fv36dXXp0kXZsmVTxowZ1bBhQ0VGRjrt4/jx4woJCVH69OmVM2dO9erVSzdu3HCq2bhxo8qWLStPT08VKlRIs2bNSonDAwAAAAAAAIB74tLgNk+ePBoxYoTCw8P1448/6plnntFLL72kvXv3SpK6d++upUuXatGiRdq0aZNOnTqlBg0aWI9PSEhQSEiI4uLitG3bNs2ePVuzZs3SwIEDrZqjR48qJCRENWrU0M6dO9WtWze1bdtWq1evTvHjBQAAAAAAAIC7kdaVT/7CCy843f/ggw80ZcoUhYWFKU+ePJoxY4bmz5+vZ555RpL02WefqXjx4goLC1PFihW1Zs0a7du3T+vWrZOvr6/KlCmjoUOHqk+fPho0aJA8PDw0depUBQQEaPTo0ZKk4sWLa+vWrRo7dqyCg4NT/JgBAAAAAAAA4N/YZo3bhIQELViwQFeuXFFQUJDCw8MVHx+vWrVqWTXFihVTvnz5FBoaKkkKDQ1VqVKl5Ovra9UEBwcrJibGmrUbGhrqtI+kmqR9AAAAAAAAAIDduHTGrSTt3r1bQUFBun79ujJmzKjFixerRIkS2rlzpzw8PJQ5c2anel9fX0VEREiSIiIinELbpPGksX+qiYmJ0bVr15QuXbrbeoqNjVVsbKx1PyYm5j8fJwAAAAAAAADcLZfPuC1atKh27typ7du3q1OnTmrZsqX27dvn0p6GDx8uHx8f65Y3b16X9gMAAAAAAAAgdXF5cOvh4aFChQopMDBQw4cP1xNPPKFx48bJz89PcXFxunjxolN9ZGSk/Pz8JEl+fn6KjIy8bTxp7J9qvL297zjbVpL69eun6Oho63bixIn7cagAAAAAAAAAcFdcHtz+VWJiomJjYxUYGCh3d3etX7/eGjtw4ICOHz+uoKAgSVJQUJB2796tqKgoq2bt2rXy9vZWiRIlrJpb95FUk7SPO/H09JS3t7fTDQAAAAAAAABSikvXuO3Xr5/q1KmjfPny6dKlS5o/f742btyo1atXy8fHR23atFGPHj2UNWtWeXt764033lBQUJAqVqwoSapdu7ZKlCih5s2ba+TIkYqIiNCAAQPUpUsXeXp6SpI6duyoiRMnqnfv3mrdurU2bNighQsXavny5a48dAAAAAAAAAD4Wy4NbqOiotSiRQudPn1aPj4+Kl26tFavXq1nn31WkjR27Fi5ubmpYcOGio2NVXBwsCZPnmw9Pk2aNFq2bJk6deqkoKAgZciQQS1bttSQIUOsmoCAAC1fvlzdu3fXuHHjlCdPHn366acKDg5O8eMFAAAAAAAAgLvh0uB2xowZ/zju5eWlSZMmadKkSX9bkz9/fq1YseIf91O9enX9/PPP99QjAAAAAAAAAKQ0261xCwAAAAAAAACpHcEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2AzBLQAAAAAAAADYDMEtAAAAAAAAANgMwS0AAAAAAAAA2IxLg9vhw4erfPnyypQpk3LmzKl69erpwIEDTjXXr19Xly5dlC1bNmXMmFENGzZUZGSkU83x48cVEhKi9OnTK2fOnOrVq5du3LjhVLNx40aVLVtWnp6eKlSokGbNmvWgDw8AAAAAAAAA7olLg9tNmzapS5cuCgsL09q1axUfH6/atWvrypUrVk337t21dOlSLVq0SJs2bdKpU6fUoEEDazwhIUEhISGKi4vTtm3bNHv2bM2aNUsDBw60ao4ePaqQkBDVqFFDO3fuVLdu3dS2bVutXr06RY8XAAAAAAAAAO5GWlc++apVq5zuz5o1Szlz5lR4eLiqVaum6OhozZgxQ/Pnz9czzzwjSfrss89UvHhxhYWFqWLFilqzZo327dundevWydfXV2XKlNHQoUPVp08fDRo0SB4eHpo6daoCAgI0evRoSVLx4sW1detWjR07VsHBwSl+3AAAAAAAAADwT2y1xm10dLQkKWvWrJKk8PBwxcfHq1atWlZNsWLFlC9fPoWGhkqSQkNDVapUKfn6+lo1wcHBiomJ0d69e62aW/eRVJO0DwAAAAAAAACwE5fOuL1VYmKiunXrpsqVK6tkyZKSpIiICHl4eChz5sxOtb6+voqIiLBqbg1tk8aTxv6pJiYmRteuXVO6dOmcxmJjYxUbG2vdj4mJ+e8HCAAAAAAAAAB3yTYzbrt06aI9e/ZowYIFrm5Fw4cPl4+Pj3XLmzevq1sCAAAAAAAAkIrYIrjt2rWrli1bpu+++0558uSxtvv5+SkuLk4XL150qo+MjJSfn59VExkZedt40tg/1Xh7e98221aS+vXrp+joaOt24sSJ/3yMAAAAAAAAAHC3XBrcGmPUtWtXLV68WBs2bFBAQIDTeGBgoNzd3bV+/Xpr24EDB3T8+HEFBQVJkoKCgrR7925FRUVZNWvXrpW3t7dKlChh1dy6j6SapH38laenp7y9vZ1uAAAAAAAAAJBSXLrGbZcuXTR//nx98803ypQpk7UmrY+Pj9KlSycfHx+1adNGPXr0UNasWeXt7a033nhDQUFBqlixoiSpdu3aKlGihJo3b66RI0cqIiJCAwYMUJcuXeTp6SlJ6tixoyZOnKjevXurdevW2rBhgxYuXKjly5e77NgBAAAAAAAA4O+4dMbtlClTFB0drerVqytXrlzW7YsvvrBqxo4dq+eff14NGzZUtWrV5Ofnp6+//toaT5MmjZYtW6Y0adIoKChIr732mlq0aKEhQ4ZYNQEBAVq+fLnWrl2rJ554QqNHj9ann36q4ODgFD1eAAAAAAAAALgbLp1xa4z51xovLy9NmjRJkyZN+tua/Pnza8WKFf+4n+rVq+vnn39Odo8AAAAAAAAAkNJscXEyAAAAAAAAAMCfCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZghuAQAAAAAAAMBmCG4BAAAAAAAAwGYIbgEAAAAAAADAZlwa3G7evFkvvPCC/P395XA4tGTJEqdxY4wGDhyoXLlyKV26dKpVq5YOHTrkVHP+/Hk1a9ZM3t7eypw5s9q0aaPLly871fzyyy+qWrWqvLy8lDdvXo0cOfJBHxoAAAAAAAAA3DOXBrdXrlzRE088oUmTJt1xfOTIkRo/frymTp2q7du3K0OGDAoODtb169etmmbNmmnv3r1au3atli1bps2bN6t9+/bWeExMjGrXrq38+fMrPDxco0aN0qBBgzR9+vQHfnwAAAAAAAAAcC/SuvLJ69Spozp16txxzBijjz/+WAMGDNBLL70kSZozZ458fX21ZMkSNW3aVPv379eqVau0Y8cOlStXTpI0YcIE1a1bVx999JH8/f01b948xcXFaebMmfLw8NDjjz+unTt3asyYMU4BLwAAAAAAAADYhW3XuD169KgiIiJUq1Yta5uPj48qVKig0NBQSVJoaKgyZ85shbaSVKtWLbm5uWn79u1WTbVq1eTh4WHVBAcH68CBA7pw4cIdnzs2NlYxMTFONwAAAAAAAABIKbYNbiMiIiRJvr6+Ttt9fX2tsYiICOXMmdNpPG3atMqaNatTzZ32cetz/NXw4cPl4+Nj3fLmzfvfDwgAAAAAAAAA7pJtg1tX6tevn6Kjo63biRMnXN0SAAAAAAAAgFTEtsGtn5+fJCkyMtJpe2RkpDXm5+enqKgop/EbN27o/PnzTjV32setz/FXnp6e8vb2droBAAAAAAAAQEqxbXAbEBAgPz8/rV+/3toWExOj7du3KygoSJIUFBSkixcvKjw83KrZsGGDEhMTVaFCBatm8+bNio+Pt2rWrl2rokWLKkuWLCl0NAAAAAAAAABw91wa3F6+fFk7d+7Uzp07Jd28INnOnTt1/PhxORwOdevWTe+//76+/fZb7d69Wy1atJC/v7/q1asnSSpevLiee+45tWvXTj/88IO+//57de3aVU2bNpW/v78k6dVXX5WHh4fatGmjvXv36osvvtC4cePUo0cPFx01AAAAAAAAAPyztK588h9//FE1atSw7ieFqS1bttSsWbPUu3dvXblyRe3bt9fFixdVpUoVrVq1Sl5eXtZj5s2bp65du6pmzZpyc3NTw4YNNX78eGvcx8dHa9asUZcuXRQYGKjs2bNr4MCBat++fcodKAAAAAAAAAAkg0uD2+rVq8sY87fjDodDQ4YM0ZAhQ/62JmvWrJo/f/4/Pk/p0qW1ZcuWe+4TAAAAAAAAAFKSbde4BQAAAAAAAIDUiuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbIbgFgAAAAAAAABshuAWAAAAAAAAAGyG4BYAAAAAAAAAbCZVBbeTJk1SgQIF5OXlpQoVKuiHH35wdUsAAAAAAAAAcJtUE9x+8cUX6tGjh9577z399NNPeuKJJxQcHKyoqChXtwYAAAAAAAAATlJNcDtmzBi1a9dOrVq1UokSJTR16lSlT59eM2fOdHVrAAAAAAAAAOAkrasbSAlxcXEKDw9Xv379rG1ubm6qVauWQkNDb6uPjY1VbGysdT86OlqSFBMTk6znTYi9do8dI6Uk9zW9V5wL9pZS54HEuWB3fE9AEs4FSJwH+BPnAiTOA/yJcwES5wH+lNxzIaneGPOvtQ5zN1UPuVOnTil37tzatm2bgoKCrO29e/fWpk2btH37dqf6QYMGafDgwSndJgAAAAAAAIBU4MSJE8qTJ88/1qSKGbfJ1a9fP/Xo0cO6n5iYqPPnzytbtmxyOBwu7My1YmJilDdvXp04cULe3t6ubgcuwnmAJJwLkDgP8CfOBUicB/gT5wKScC5A4jzAnzgXbs60vXTpkvz9/f+1NlUEt9mzZ1eaNGkUGRnptD0yMlJ+fn631Xt6esrT09NpW+bMmR9kiw8Vb2/vVPvFhT9xHiAJ5wIkzgP8iXMBEucB/sS5gCScC5A4D/Cn1H4u+Pj43FVdqrg4mYeHhwIDA7V+/XprW2JiotavX++0dAIAAAAAAAAA2EGqmHErST169FDLli1Vrlw5PfXUU/r444915coVtWrVytWtAQAAAAAAAICTVBPcNmnSRGfOnNHAgQMVERGhMmXKaNWqVfL19XV1aw8NT09Pvffee7ctI4HUhfMASTgXIHEe4E+cC5A4D/AnzgUk4VyAxHmAP3EuJI/DGGNc3QQAAAAAAAAA4E+pYo1bAAAAAAAAAHiYENwCAAAAAAAAgM0Q3AIAAAAAAACAzRDcAgAAALCV8+fPu7oFAAAAlyO4xX03bNgwjRs3ztVtAAAeYknXTr106ZKLOwGQ0t577z2NHTtW8fHxrm4FAADApQhucd8kJibq3LlziouLU+3atV3dDgDgIeZwOPT1119r6NChOnPmjKvbAZCCChQooCZNmsjd3V3Xr193dTt4CCT9se/y5ctKSEhwcTe43xITE13dAgCbS3ofeBQR3OK+uXHjhrJly6bevXurePHi2rx5s0aOHOnqtmBTSd9Yz549q/j4eH4xg6RH+w0XdyfpHPjtt9/UqVMnFS1aVNmzZ3dxV3jQ+NrHrVq1aqWSJUtqw4YNGjBggI4cOeLqlmBjxhg5HA6tWLFCnTt31k8//aQbN264ui3cJ4mJiXJzuxlb7N27V5s3b9bvv/+uq1evurgz2AXBfuqW9P3e4XBozZo1Gj16tIs7uv8IbnFffPbZZypatKguXbqk9OnT69KlS1q+fLnGjRunMWPGuLo92JDD4dA333yj2rVrq3LlynrjjTf022+/ubotuFDSL16bNm3SW2+9pXbt2umTTz5xdVtIYQ6HQxs3btSmTZvUpEkTtW7dWg6Hw9Vt4QFK+toPDQ3V+++/rw8++EArV650dVuwgUOHDmn69On69NNPdfToUVe3A5tK+oRG06ZNlT9/fmXJkkVp06Z1dVu4D4wxVmjbr18/NW3aVI0aNdLrr7+uFi1a6OzZsy7uEK52a7C/ZcsWLVq0SGFhYbpw4YKLO8OD9u2330qS0qZNq9jYWBljNHToUHl6erq4s/uP4Bb3RZ48eZQlSxbVqlVLly9fVqZMmdS2bVu1atVK06dP16hRo1zdImwiaVbVnj171KxZMzVu3FiVK1fW8ePH1aBBAx04cMDFHcJVHA6HFi9erPr16+vUqVNKly6dOnTooAEDBujy5cuubg8paOrUqWrTpo22bdvGa58KJIUuL774ojZv3qzw8HA1atRI06dPd3VrcLEOHTpo1KhRmjNnjqZMmUJ4izv69ddf1bVrV40ZM0ZDhw5VoUKFJElHjx4lvHnIJf3hdsyYMZoxY4YmTZqkyMhIFStWTKtWrdKePXtc3CFc6dZgv2/fvmrVqpV69uypnj17qkOHDjp16pSLO8SDsm/fPjVp0kSvvPKKJMnT01MOh0MJCQnKmDGji7t7AAxwHyQkJJhNmzaZcuXKmSeffNLExMQYY4w5fPiw6du3rylatKgZOXKki7uEXYSHh5tPPvnEDBkyxNq2adMmU7duXVOyZEnz66+/urA7uEp4eLjJly+fmTJlijHGmIiICJM5c2bjcDhMu3btzJUrV1zcIVJKfHy86dy5s/Hw8DDffvutq9vBAxYaGmpy5cplpk6daowxZt++fSZdunTG4XCYESNGuLg7pJTExERjjDEHDhwwO3bsMEeOHLHGJk2aZPz9/U2vXr3Mb7/95qoWYSNJ50tcXJwJCwszFSpUMCdOnDDR0dFm8uTJpkaNGiZ//vymfv365tChQy7uFslx+PBh698JCQnm6tWrpkGDBmby5MnGGGNWrFhhMmbMaKZPn26MMebq1avm2rVrLukV9jBy5Ejj7+9vtmzZYowxplevXsbT09M888wz5vfff3dxd3gQoqOjzdy5c03+/PlNs2bNrO0VK1Y0ixYtMsbcfH9Ieq942DHjFv+Z+f+/dFWpUkWjRo1SmjRp9PTTT+vSpUsqWLCg2rZtq/r162vGjBksmwBFRkaqV69e6tatm9PV4qtVq6Y+ffoob968atq0qfbt2+fCLpHSjDE6evSomjdvro4dO+qPP/5QhQoV9Oqrr+rLL7/UzJkzNXToUKdzBo8Gc8t616dPn9bZs2eVNm1aTZo0SS+99JJatmypTZs2ubhLPCgJCQn68ccf1aJFC3Xo0EF//PGH6tSpo2bNmumDDz5Qv379NHXqVFe3iRTgcDj05ZdfqmbNmgoODtZrr72mDz74QJLUuXNnvfPOO5o3b56mT5/OmreQw+HQwoUL9f777+vSpUsKDw/X4MGDFRgYqNWrVysoKEjvvvuufvnlF+3evdvV7eIuDRkyRM2aNdOOHTskSW5ubvL09NTVq1dVpEgRrVixQo0bN9aoUaPUrl07xcfHa/78+Vq/fj1rpadSJ06c0OrVqzVu3DhVqVJFq1at0pQpU9SyZUtduHBBbdu2ZebtI6Rfv37auXOnvL291aBBAw0bNkwbN27Uq6++Kunm9wwPDw9Jkru7uzVrPy4uzmU93xeuzY3xMLvTXy/i4+PNhg0b7jjz9p133jE5c+Y048ePT+lWYTNz5841QUFBplChQiYyMtJpbMuWLaZSpUomKCjIxMXFuahDuMLZs2fNjz/+aOLi4kydOnVMq1atzI0bN8y5c+dMwYIFjcPhMG+99Zar28R9lPQ+smTJElOtWjWTL18+ExISYnr27GnVNG3a1GTJksVs2rTJVW3iAfvjjz/Mtm3bzLVr18zTTz9t2rRpY4wx5uDBg9as+9GjR7u4SzwoSd8Hjh8/bgIDA80nn3xivv/+e/Pmm2+acuXKmR49eli1U6dONV5eXubdd9818fHxrmoZLpR0vpw4ccJkyZLFTJo0yRhjzJdffmlef/118+677zrN2KxQoYJZsGCBS3pF8n3++ecmODjYPP/88+aHH34wxhhz48YN8+KLL5rSpUubLFmyWJ/OMObm+0etWrWs2bdInVauXGmOHz9utm/fbnLnzm19eu+tt94yDofDlCpVypw+fdrFXeK/iomJMc2aNTO7du1y2jZv3jyTK1cu06BBA/PEE0+YChUqmEaNGpmQkBDToEED06BBA9O+fXuTkJDgwu7/G4cx/GkK98b8/8VE9u7dq/PnzytDhgwqW7asEhMTtWXLFvXs2VOJiYnatGmTMmXKpIMHD2rBggVq1qyZChYs6Or24WJfffWVRo8erYwZM2r27NnKlSuXNRYaGqo8efIob968LuwQD1LS949Lly4pU6ZMThcWOHPmjJ577jkNHjxYzz//vK5cuaKePXvq2WefVcmSJVW0aFEXd4/7adWqVapfv75GjBihqlWr6ttvv9WQIUO0ZMkSvfjii0pISFCLFi30+eefa8uWLapcubKrW8Z/kPS1f/36dXl5eTmNHTx4UE2bNtX06dNVrlw5nTp1Sn379lVQUJBq1KihYsWKuahrPGg//fSTPvvsM127dk0TJ06Ul5eXLly4oPHjx+vbb79V9erVratEz5w5U1WrVlXhwoVd3DVcZf369fr999+1d+9effjhh9aFyGJjY50uSvPOO+9o7ty52rx5s/Lnz++qdpFMS5Ys0aRJk+Th4aF3331XFStW1O+//65nn31WGTNmVFhYmG7cuKFr166pefPmunTpkjZu3Kg0adK4unU8YLf+vnAn7733ng4dOqRZs2bJw8NDEyZM0MqVKxUYGKhBgwZxjjwCEhISlCZNGq1du1ZZs2ZVYGCgLl26pKVLl2r48OHat2+fhg0bpuvXr+vChQtyd3fXjRs31LZtWz3++OOubv+eEdwiWYYPHy6Hw6E+ffpYFxJq2bKlfH199dtvv2nw4MHq06eP0qZNq82bN6tnz55yc3PTunXr5O3trfj4eLm7u7v6MJBCkn5BDw8P1w8//CBPT08VK1ZMlSpVkjFGCxcu1OTJk+Xh4aH//e9/8vPzc3XLSEFLly7Vxx9/LDc3NzVs2FANGjRQzpw5deLECRUpUkT9+/dXy5YtNXXqVC1evFihoaHKnDmzq9vGfRQXF6dOnTopf/78GjhwoM6cOaOyZcuqfv36Gj9+vFNtmzZt1Lt3b4L7h1jSe8KqVas0a9YsJSQk6NVXX9UzzzwjHx8f7dy5U2XLltX//vc/NW3aVAMHDtTGjRu1YsUK+fj4uLp9PCDXr1/Xm2++qW+//Vb58+fX9u3brbHz589bv3g/8cQTmjZtmgs7hR3Ex8erdevWmjdvnipUqKAtW7ZYwW3S95gZM2bou+++07p167Ry5Uo9+eSTLu4a/ybptUuyZs0ajRo1Sp6ennrnnXcUFBSkVatW6ZVXXlGePHmUJk0aZcyYUVevXtX27dvl7u5uBTp4NN0a2n755ZeKioqSt7e3qlWrpnz58km6uazO1q1btXXrVnl7e6thw4aqXLmyevToIUmcI4+IuLg4NW3aVEuWLFF4eLiefPJJRUdHa/ny5Xrvvff0zDPPPHo/L7hmoi8eVu+//75xOBxm3LhxJiIiwpQpU8bMmDHD7N+/38yYMcO4ubmZHj16mOvXr5vExESzefNmU7BgQfP000+bxMTER2ZxaPy7pNf6q6++Mr6+vqZy5cqmatWqpmjRoubzzz+36r744gtTs2ZNU65cORMREeGqdpHCduzYYby9vc0777xj6tataypWrGhatWpljh8/boy5+XFYh8NhChYsaHLkyGF++uknF3eMB+Xpp582M2fONKdOnTK5c+c27dq1s8YWLlxoVq5c6cLucL9t2rTJuLu7my5dupjAwEBTtmxZ06tXL3PmzBljjDFvv/22cTgcpkSJEiZz5szm559/dm3DeGBu/Znw6NGjpmvXriZHjhzmww8/dKo7f/686dWrl6levfptyyshdTp58qTp2rWr8fDwMKtXrzbGOJ9Pa9asMc2bNzf79+93VYu4R1OnTjXTpk0zxhizaNEi8+yzz5q6deuaH3/80RhjTGRkpBk5cqQZMWKEmTt3rrlx44YxxrB0yiPu1q/v3r17mwwZMpgKFSoYLy8vU61aNevCdcuXLzdPPfWUKVKkiClbtqwpVqyYdW6QQzxa/vjjD9O4cWPj4+NjwsPDjTE3L1g2b948ky9fPlO3bl2r9lF47QlukWwff/yxcXNzM0OHDjXt2rUzV69etcYWLVp0W3j7/fffcwXgVGrz5s0mZ86c1jpDmzdvNunTpzdeXl7mk08+sepmz55tQkJCuOrnI+7WN80VK1aYvn37WvcnTpxoqlSpYpo3b25OnjxpjDHml19+MRs2bDB//PFHiveKBy8xMdHExsaa9u3bm86dO5uAgACn0PbChQumdevWZvz48dYvZni4/f7772bAgAFm3Lhx1rb33nvPVKhQwfTs2dNcvHjRGHMzdJk7d645evSoizrFg5T0XhAdHW3i4+PN5cuXjTE31yzt2LGjqVixohkzZozTYy5cuGCF+0hdks6XCxcumJMnT1rXP7hy5Ypp2rSpyZAhg9m2bZsxxjitX3j9+vWUbxb/Wd26dU2FChWs+1999ZUV3ia9zn/Fzwipx4EDB8yTTz5pwsLCjDE3w7vmzZubqlWrmoULFxpjjPn666/NwIEDzTvvvGOFtpwjD7ek1y86OtqcPXvW2h4VFWXq16/vFN7GxMSYmTNnmhIlSli/Uz4KCG5xT8aMGWMcDofJly+fNUsy6QerRYsWGS8vL9OhQwd+aEqlEhISTGxsrBkwYIB1kaETJ06Y/Pnzm9dee8107tzZeHp6Os28TbqQHR5NSd8fQkNDzdy5c03//v3Nu+++61QzceJEU7lyZdOqVStz7NgxV7SJByjpHDh79qy5evWqiY2NNcYY88033xiHw2HKlCljBXeJiYmmf//+JiAgwOkiM3h4TJ061Wzfvt26v3v3blOlShVTqFAhp+/9xhgzaNAgU758edO7d28TFRWV0q0iBSV9H1i6dKmpUaOGKV++vKlSpYo1a/LkyZOmY8eOpkKFCubjjz92Zauwgb9ewDJ37tzmxRdfNAMGDDDG3PwlvlmzZiZDhgwmNDTUGGMe6ovPpGZJwcz+/ftNwYIFzf/+9z9rbPHixaZ27drmhRdeMFu2bHFVi3CxYcOGWReaunbtmrX92LFjJiQkxISEhNzxcYS2D6elS5c6Ter6+uuvTaVKlUyxYsVM9+7drU9pnjlzxgpvkz6heenSJRMdHe2Svh8UglvcsylTphiHw2FGjRp12/TzuXPnmmzZsvGRtlTqypUrxhhjDh8+bDZv3mwuX75sKlasaNq2bWuMMWbbtm3G09PTOBwOM3PmTFe2ihT01VdfmfTp05sCBQqYDBkymEKFCt32PWLKlCnm8ccfNx07djQ3btx4JD7agj8tWbLElCpVylSoUME0bNjQmkH3ySefGIfDYV5++WXTpEkT06xZM5M5c2aWyHhI7dmzx9SrV88cOXLE2nb9+nXTunVr4+PjY9q1a3fbH3aHDh1qihQpYt555x2TkJDA1/4jbPny5cbDw8MMHjzYDBs2zLRo0cK4ubmZ8ePHG2Nu/hLeuXNnU7RoUevjr0i9Vq5cadKlS2dGjx5tfvnlF/Pmm2+atGnTmqVLlxpjbs64at68uXE4HOaHH35wcbe4W3/3Pf7cuXPmxRdfNB07dnTavmTJElO2bFnz9ttvp0R7sKFp06YZh8Nh8ubNawV6SX+o2bRpk3E4HGbXrl2ubBH3QWJiojlx4oRxOBymWbNmJioqyoSFhZls2bKZ3r17m2HDhhkfHx/z/PPPW6/3mTNnTOPGjY3D4Xhkl9giuMW/uvUjSqdOnXLaNnLkSOPm5uY0KyJpjBmUqdPOnTtN8eLFrb+CGWPM9u3bTWBgoPn111+NMcb8+uuvpkGDBmbYsGHWNjzaYmJizFtvvWVmzpxpYmJizJw5c0zFihVN7dq1zenTp51qP/30Uz4i/QhJek/YvXu3yZAhg/nggw/MgAEDTJUqVUzevHmt8H7p0qWmc+fOpl69embgwIGsTfiQS5rpsGPHDrNp0yZjjDFxcXGmc+fOpkyZMuajjz6y/siX5MMPP+Rr/xEXFxdn6tWrZ9544w2n7cOHDzcOh8Ns2LDBGGPMkSNHTI8ePTgfUpmkT10Yc/O949q1a6ZZs2Zm0KBBxpiboV7u3LlvO3/Onz9v2rVrx/vGQ2jq1KmmZ8+e5ty5c9Yf9L755hvj4eFhvv/+e6fazZs3M6M6lfi713n+/PkmTZo0plevXk4/Q2zfvt0ULlyY3ysfIUlLLLZv3958+umn5oMPPrDGfv31V5M3b14TEhJihbdRUVGmRYsWj+w5QHCLf3TrR5QqVKhgcufObapVq2YGDx5sLl26ZIz5M7ydMGGCK1uFiyWdKzt27DDVqlUzY8aMsdYhS/oraNLsiP79+5vnn3/e6Qd0PLp++uknU6BAAfPMM8+Y3bt3W9sXLlxoqlWrZmrVqnVbeItHS1hYmFm6dKnTD127d+82lStXNnny5LGW3En66BuzLR9et752UVFR5tlnnzXVqlWzPt4aGxtr2rVrZ8qXL29GjRrltE4+Hn3Xrl0zZcuWNUOHDjXG3LygUNI507hxY/Pcc89Z3we42FDqMm7cONOuXTunc8IYY2rXrm0WLVpkTpw4YXLnzm3at29vjS1ZssR89913xhiWSHgYnTt3zrz77rvGz8/PBAUFmVatWpnDhw+bS5cumddff9306dPHxMXFWb9PJOG1frTd+vru3r3bbNu2zVy6dMkK9j/99FPj5uZmOnfubFatWmV27dpl6tata8qVK8e58ZBLTEw0CQkJ1tf8999/bzw8PIyXl5e1/GKSffv2mTx58piXXnrJWt/2UX793QTcIjEx0em+w+HQmjVr1KRJEz3//PMaN26cihUrpuXLl6tTp066cuWKevXqpY8++khvvvmmpk2b5qLO4SrGGEnShQsXJEnlypVTUFCQ5s6dq7Nnz0qSihYtqlatWqlRo0YKDAzUhAkT9P7778vHx8dlfePBSjovduzYoYMHD6pw4cIKDQ2Vu7u7VdOoUSO98cYbMsbohRdeUGRkpKvaxQOQdA6cPn1a/fr104svvqioqChrvGTJkpo6daoKFCigihUrKjIyUl5eXpJuvvfg4XTra5cjRw517NhRmTJl0gcffKAtW7bIw8NDEydOVJkyZbR48WJ99NFHunbtmgs7Rkry8vJSqVKltHjxYsXExCht2rRKSEiQJOXPn183btywvg+kTZvWla0ihSS9V3h4eKhXr15Kmzat4uLiJElXr15VunTptGrVKlWvXl116tTR1KlTJUnnz5/Xl19+qf379ysxMVFubvxaa3d//T0za9asGjJkiI4eParGjRsrMjJSTz31lAYOHKg9e/Zo06ZNunr1qtzd3a3zRBKv9SMu6fXt1auXnnvuOdWqVUtBQUHq2bOnoqKi1KZNG33yySeaPn266tSpoylTpsjT01Pbtm2Tm5vbbecZ7C/pNbt+/brc3Nzk7u6uX375RZUqVbJe1x9//FHHjh2TdPN9o3jx4lq7dq3Wrl2rkSNHKi4u7tH+3uDC0Bg2k/TX7YMHD5rvvvvOJCQkmGvXrpmWLVuarl27WnUJCQlm+vTppnz58mbkyJHW9kmTJpl9+/aleN9wvdWrV5sCBQqY6dOnW9sCAwPNSy+9ZN0/dOiQWbBggRk9erQ5dOiQC7pESluxYoXJnTu3Wb58udm8ebMpV66cKVKkiNPVQI25uSZ2SEiI0wL0eDR8++23plu3bubLL780VatWNYULF75tbdO9e/eakiVLmscff/yR/kt5avB3M6UXL15sgoODzXPPPWc2b95sjLk587Zp06amZs2a5ty5cynZJlJI0gVhzpw5Yy21ZYwx69atMxUqVDBt2rSxPr1ljDEdOnQwDRo0MNevX2fWfSry1zUpQ0NDTbNmzayfCTZs2GDSp09vypQp41TXv39/U7BgQae1tGFft76///DDD2b58uXm8OHDt11AaM6cOebtt982uXLlMg6Hw/Tv3z+lW4WL3HqOLFq0yAQEBJiVK1eaffv2mcGDB5uqVauaBg0aWNdHWLBggUmbNq0ZOnSo9QkNLkT28Prjjz9M9erVzcGDB82yZctMpkyZzI8//miMuXl9HA8PD9OiRQtz4sQJY8yfP3MeOHDAHDx40GV9pxSCWzi5cuWKeeyxx8zEiROtbS+99JJp0qTJbbXNmjUzzz77bEq2B5v6+OOPjcPhMJ6enqZbt25m6dKlJjQ01AQFBZkpU6a4uj2koKQ30YiICNO6dWszZswYa+z77783lSpVMiVLlrwtvGVN7EfPrl27jJ+fn/n888/NtWvXzIYNG0ypUqXMU089ddvH4/fv389alg+5pK/90NBQ89FHH5lRo0aZNWvWWOO3hre3Lptwa6CHh9/ixYvNtm3brPtffvmlKVu2rMmdO7dp27at9XHGadOmmaeeeso8/vjjpnv37qZx48YmY8aM5pdffnFV63CBlStXmhw5cpjPPvvM2vbxxx+bMmXKmNdff90Kb6dOnWpdwLJ58+bmtdde4wKWD5Fb/xDTr18/ky9fPlOgQAGTN29e069fP3PgwAGn+oSEBHPw4EHTpEkTU6tWLZZNSWUWLFhgBg8ebC2pY8zNc2j27NmmXLlyZuzYsdb2mTNnGjc3NzNkyJDbltTAw2Xr1q2mXr16pnDhwsbT09MsXLjQGGOs13XLli1WePvHH38YY1LX0mqP8Fxi3As3NzcZY1SgQAFJUkJCggICAnTixAmdPHnS6aMHNWrU0KlTpxQdHe2ibuEq5paPK0nSW2+9pbffflv169fXjRs3NG/ePPXp00eFCxfWDz/8wEfgUxGHw6GwsDA1bdpUu3bt0pNPPmmNBQUFaeTIkfL29latWrV05swZayxTpkyuaBcPyJ49e7R27Vo1atRITZs2lZeXl55++ml9/PHHio+PV40aNXT9+nWrvlixYtb7Dh4+xhg5HA59/fXXqlOnjr777jstXLhQ7733noYPHy5Jqlevnjp27Kg0adKoT58+Cg0NlYeHh3LlyuXi7nE/GGN08uRJtWrVSqNHj9Yvv/yiX375RW+88Ybq1aun/v37a/PmzerXr582bdqk9u3ba+zYsapatar27t2r9OnTKywsTKVKlXL1oSAF5ciRQ/Xr19dHH32kOXPmSLr5M2Xbtm116NAhDRgwQKdPn1aHDh20bt06ubu768qVK/L391doaKjTzxiwr6QldEaMGKHZs2dr1qxZOnr0qOrWratp06Zp9OjROnjwoFWfmJiowoUL68MPP9SWLVu0fPlyV7WOFBYXF6cuXbpo0KBBOnDggLXd4XCoRYsWKliwoJYsWWJtb9WqlWbNmqX33ntPY8aMcUHH+K+ScoXKlSurbt26Onz4sPz8/FSsWDFJN/OpGzduqEqVKlq/fr2++uorde3aVadPn05dS6u5NDaGy/31Y6kXLlwwRYsWNTt27LC2nTx50mTPnt00bNjQ6aPMHTp0MM8++6x1EQmkLqtWrTJvvvmm2blzpzHm5iybNm3amO3bt5v9+/ebl19+2aRJk8Y4HA4ze/ZsF3eLlBQZGWnKlStnHA6HGTVqlNNYYmKi+f77702JEiVMpUqV+Gj8IyYxMdFcvXrVlCxZ0jgcDlOnTh2n8Rs3bpj169eb8uXLmyJFity2bAIeXlu3bjW5c+c206ZNM8bcvFClj4+P8ff3N/369bPqFixYYBo2bGiOHz/uqlbxAG3dutUUKVLEtGzZ0owZM8YMHDjQGjtw4ICpVKmSefbZZ826deus7fHx8bwXpDKff/659e9du3aZTp06maJFi5qZM2da28ePH28qVapkmjdvbv3+kfQ7B+fLwyUxMdEcO3bM1KlTxyxYsMAYY8yyZcuMj4+PadKkiTUj/9aZt0kfea9ataqZO3euS/pGykr6ur506ZIJDAw0/v7+ZsuWLU4zridNmmQqVqx42xIb8+fPZ8nGh9yKFSvMJ598YsaMGWNeeeUVU6ZMGesTPPHx8dZ5sGnTJuPr62tOnjzpynZTHMEtzMmTJ601586fP2+yZ8/u9EVizM0rOubIkcM89dRTpnbt2qZJkyYmU6ZMVmiH1GfNmjUmd+7cpk6dOtaV4hs2bGhatGhh1UybNs0EBwfzRpoKnTt3zlStWtWULVvWLF++3OmjLImJiSYsLIyPxj/Cjh07ZqpUqWLy589vvv32W6fX/8aNG2blypXm6aef5hx4SN36eib9ojVq1CjTpk0bY8zN1/+xxx4zr776qunRo4fJkSOHGTZsmPWYW9c1xcMvMTHRuhK0MTfD28cee8xkzpzZtG7d2ql2//79JigoyISEhJivvvrKFe3CxQ4ePGiyZs1qatasaW3buXOnFd7eumzC+PHjTeXKlZ2WTTAmdX089mF16dIlExERYd2/du2aWblypblw4YIJCwsz/v7+1tJ8HTt2NNmzZzdNmjQxv/32m/WYWbNmGYfDwbUxHlH/9AeYmJgYU7BgQVOmTBmzYsUKc+HCBXPu3DlTpUoVU69evRTsEg9S0vfynTt3GofDYf73v/8ZY4zZuHGjqV+/vilTpowJCwuz6jds2GCMMaly4qDDmL985hmphjFG169fV8OGDRUbG6vBgwerXLlyyps3r5YvX66nnnrK+vijJJ06dUqzZ8/W0aNH5eXlpU6dOql48eIuPgq40rFjx/T5559r1qxZKlCggLp06aJ27dpp2LBhatOmjSTp2rVrSpcunYs7xYOS9D3i1KlTunz5svz8/OTl5SUPDw9FRUXppZdekru7u/r376/g4ODU9ZGWVOLW94lbHTt2TPXr11f27NnVv39/1ahRwxpLTEzU9evXlT59+pRsFf9R0pXb4+Pj5e7uroSEBKVJk0aSFBsbq127dql06dKqXbu2ChUqpJkzZ+rQoUOqXLmyYmJi1Lt3bw0ZMuRvzxk8XJLOhzsJCwtT8+bNlSVLFo0fP14VK1a0xg4cOKD69evr8ccf16xZs5QhQ4aUahk2cO3aNa1evVr9+vVT/vz5tWrVKknSrl27NG3aNG3YsEF9+/bV66+/LkmaNGmSpkyZoqpVq2rixInW9xzY19KlS/XVV1/pxIkT6t+/v2rWrClJunLlijJkyKBevXrp5MmTmj17ttzd3TVgwACtWbNG5cuX14QJE6zvK7GxsTp69Kj1kWk8Om59/5g6dar27dun33//Xb1791axYsWULVs2xcTEqFy5cvrtt99UunRpFSxYUBEREVq/fr08PDz4WeIR8eOPP+rs2bMKCwvToEGDrO2bNm3ShAkTdOjQIb3//vv66aefNH78eO3ZsydVLrNFcAutW7dOQ4cOVebMmRUSEqKJEydq2rRpyp49u+Lj4+Xp6am4uDh5e3vr0KFDCgwMZD3KVCbpjXHfvn06cuSI0qVLp8cff1y5cuXS1atXdeHCBbVu3Vrnzp1TVFSUChQooFmzZumxxx5zdet4gJLOiyVLlqh///66du2a0qZNq06dOqlhw4bKnz+/IiMj9dJLLyl9+vTq1q2bXnjhBX7IeoQknQObN2/Wtm3b9Pvvv6tVq1Z67LHHlD17dh05ckQNGzZUzpw51b9/f1WvXt3VLeMeJf2SdeDAAQ0fPlxnz55V5syZNWnSJPn4+Fh1P//8s1q0aKF58+apdOnSOnLkiHr06KHKlSurcePGrGX8iEg6H06fPq3vvvtOa9eulTFG5cuXV6NGjZQzZ05t3bpVLVu2VPny5fX222+rXLly1uMPHTokd3d3zodU5O2331adOnVUs2ZNxcXFadWqVerZs6cKFiz4r+Ht9OnTVbt2bc6Xh8CMGTP07rvvqn///ipZsuQd3/fbt2+v06dPa8aMGcqZM6defvllvfrqq6pfv74cDocSExOVmJiotGnTpvwBIEX17dtXs2bNUoMGDXT27Flt3rxZffr0UaNGjZQnTx5dunRJTz/9tI4ePap58+apdu3aSps2reLi4uTh4eHq9vEfXbp0SYGBgTp8+LBee+01zZkzxynU37ZtmyZNmqS1a9cqa9asmjt3rtPPEqmKK6b5wn42btxoqlSpYipUqGAcDodJnz69yZIli/H29jbp0qUz6dOnNz4+PiZHjhxOH1XCoy/pIwxfffWVKVCggClSpIgpX768CQoKuu2jS59++qmpXr26yZYtm4mMjHRFu0hhK1asMN7e3uajjz4yFy5cMN26dTP+/v6mR48e5siRI8aYm2veFi1a1NSpU8dcvnzZxR3jfkn6iNvXX39tvL29TaNGjUylSpVM6dKlzaBBg6wrvh4+fNgEBgaap556ylqWBw+XpNd6586dJkuWLOb11183TZo0Mfny5TNly5Y1V65csWp37dplfH19rY/AvvPOOyYkJMScO3fOJb3j/ks6H/bs2WPKlStnatasaapWrWpKly5tsmfPbkqXLm2OHTtmjLm5Ft1jjz1mGjdubH788UdXtg0XSUxMNLGxseatt94yP/30k7X96tWr5ptvvjGFChUywcHB1vakZRNKlixppkyZ4oqWcY+++uorkylTJrNo0SKn7Y0bNzavvvqqdf/jjz82hQoVMtWqVTNPPPGEKVasmLU8H+sXpx6fffaZyZ8/v/V94YcffjAOh8Pkzp3bDBs2zFrDNCYmxhQoUMCUL1/e7N6922nNWzz8wsLCTJUqVUzRokXN2bNnjTHG6TW+dOmSOXDggDl9+rSrWrQFgttU5N/Wg9q8ebOpWLGiKV++vHn//ffNb7/9Zo4ePWp++ukn88svv5hjx46ZEydOpFC3sJN169aZzJkzWz9Af/nll8bhcJjHHnvM7N+/36n25MmTTmta4dEVFRVlnnvuOfP+++8bY24GtAEBAaZs2bImICDAdO/e3VrDNCoqivVMHxGRkZHWD9Pbtm0zefLkMTNmzDDGGHPx4kXj4eFhChcubPr27WtOnTpljLl5UaKqVavyh7+H2J49e4yXl5cZOnSoMebmD9U9evQw6dKlM1u2bLHqTp8+bTp16mT8/PxM4cKFTdasWZ3CGjzcbg3xvb29zdtvv+30vX3q1KmmcOHCpkCBAtbPjFu2bLH+ePfzzz+7oGu4StLvHmfOnLF+6V65cqVZuXKlMebP8LZw4cKmdu3a1uN27dplmjdvbp566ilz8eJF1rR9CFy8eNG88MILpm/fvk7h6/PPP29y585t/YE3ycSJE03fvn3N22+/bYU0SRckw6MvLi7OfPrpp2bChAnGmJsXufbx8TFz5swxffv2NV5eXmbkyJHW+0tMTIwpVqyYKVSokNm9e7cLO8d/cafv5XFxcebHH380RYoUMUFBQSY2NtYYYwjo/4LgNpVI+iI5e/bsP/4lc/PmzaZy5cqmfv361uLPtz4eqc+lS5dMmzZtzODBg40xxpw6dcrkzZvXvPzyy6Z69eqmQIEC1sxKzpPU5erVq2bBggXmyJEjJioqyhQrVsy0b9/eGGNM+/btTY4cOUy7du2s8wMPv3PnzpnHH3/cjB8/3hhjzP/+9z/z5ptvGmOMOXLkiAkICDAdOnQwvXr1MpkyZTIDBgywZt7FxcW5rG/8NxcvXjTVqlUzfn5+TtvffPNN43A4zCeffGKOHTtmzag/e/asWblypZk6dSpf/4+gffv2GQ8PDzNixIjbxhITE82CBQtMgQIFTKNGjawL0W3atMk8+eST1kx8pA6JiYkmKirKBAQEmBUrVhhjjGnVqpVxOBxmzZo1xpi/D2/37NmT6mdYPUyOHz9usmXLZl1cyBhjVq9ebV588UVz5MgRs379euPn52deeumlOz6ekObRdqffEQ8cOGBOnTplfv/9d/PEE0+YMWPGGGP+r707D6uifP8H/j6AgCwaiwIaaoKp4L6hoihigAvimmYq7uZapkkIprigLOGWWymSYmqfVDR3P6KliLui5oZbQoksLiiLwOH+/eF1Jkjt861fcuTwfl1XVzIzZ7xx5sw8c8/z3M/zTkCVKlUSMzMzWb9+vXJuPHr0SJo1a1ZiAjsqOzTnwPHjx2Xp0qUSEhJSYgLzM2fOiKOjo7Rt21ZJ3rIH/h+YuC1HHj58+MIN9WUOHz4srq6u0qdPH6WRReXbwYMHJT4+Xh4+fChNmzaVMWPGiIjIunXrRKVSSeXKleXq1atajpJep1cl5TVDWkJDQ8Xb21sePHggIiIRERFSq1Yt8fLyYg9sHdO3b1+pVauW5OTkSHZ2tvzyyy+Sl5cnnp6eJWaQr1mzplSvXl1mzZolBQUFfLFThuXm5srixYvFxcVFPvjgAxERWbhwoRgbG0vv3r2ld+/e0rZtW6lZs6ZERETI999/r+WI6XXJzs6Wvn37iomJidLzXtNLTvMdLyoqkvHjx4udnd0Ls8pT+eTq6iqenp5SWFgoWVlZMnbsWDE0NJS9e/eKyB/JWycnJ3FxcdFytPRPnDp1SiwtLeWnn35Slj19+lR5eSMiEhsbKyqVSrZs2aKNEElLNEk4kec9Z3Nyckqsj4+PFycnJzlz5oyIPO9xP2HCBFmyZIlyf9G8/GdbsmwqXnrRxsZGXF1dpVOnTmJkZCQ//vijst2ZM2ekXr164uTkxA4ff/LyqWBJJ5mYmKB9+/bYsWMHsrKyXrldhw4dMH/+fFy9ehXfffcdcnJySjFK0ia1Wg15yXyFnTp1Qtu2bXH06FGYmpoiMDAQAGBvbw9PT0/07t37lTNLk24oKioCAJw/fx5xcXGIi4sDAFhZWQEAMjMzkZubq2x3//59BAUFISYmBjY2NtoJmv5VhYWFAICFCxfC0NAQ48aNg4mJCZycnJCcnIyUlBT0798fAJCcnIwWLVpgwIABGDp0KAwMDDgpXRklIjA2Nsbo0aMxYsQIXL9+Hc7Ozpg9ezYOHz6M77//Hlu2bMHmzZvh5+eHnTt3Yvz48bh//762Q6fXwMTEBAMHDkTHjh3Rr18/XLt2Dfr6+igqKoJKpUJhYSFUKhUmTpyItLQ03Lp1S7kvGBkZaTl6Km2aYz9q1CgkJyfjzJkzMDc3x+zZszFs2DD06NED+/btQ8WKFeHp6Yng4GAUFhbi7t27Wo6c/q66devCzMwMS5cuVZZVrFgRZmZmyrNFlSpV4O7ujnfffVdbYVIp+v777wFAmURs3rx5eO+99+Dr64sFCxYo22VkZCAtLQ2XL1/G2bNnERQUhIcPH2LixInQ19eHWq1GhQoVtPI70D+jufZrnh1UKhXi4+Px0UcfYe7cuTh69CiioqKQn5+PgQMHIiYmBgDQrFkzfPvttzA2NsZvv/2mtfjfSFpOHFMpW7p0qVhZWSlDF/+q+/nRo0dZk7Kc0NSh1Dh69KiEh4fL119/XaK3zMqVK8XY2FjpZRMQECBDhw7lhFM6av78+fLxxx8rP3///fdibm4uDg4OUrFiRZk4caKybuHChVK/fn358MMPpX///mJiYiLXrl3TQtT0b7t7966kpaUpvR7y8vIkJCREGjdurNQpPHfunLz77ruydOlSSU5OllmzZknnzp0lKytLm6HTv0TTUyI3N1e+/vpradSokbi5ub2wXuR5OQ1Nz3vSLcWP886dO8XT01Patm0r169fF5GS9SlXr14tdevWlcePH5d6nKRdL+sR9/DhQ6lVq5ZSTknk+bVizJgxYmhoqJRNyM3NLdFDk8qOwsJC+eKLL6Ry5cryxRdfvLA+Ly9PfHx8pFevXhz+XA5s375dVCqVzJ49W0Se5yCsra1l7ty5MmLECLGysipxPfjwww/FwsJC7O3tpWXLluxtqQN++eUXCQgIkLy8PMnJyZGFCxcq14a7d++Kvb29jB07Vj7++GMxNjaWH374QflsXl6etsJ+YzFxq8OKN5yK/7lp06YyYMAAbYREb6AVK1ZI586dJSEhQUREdu/eLfr6+tKhQwdRqVTSpUsX2bVrl4iI3LlzR9q3by92dnbi5eUlJiYmLBCvo4qKimT58uWiUqkkKChIioqKxMXFRb799lu5evWq/Oc//xFzc3MZPHiw8pnAwEDp27evdO3aVS5cuKDF6Onfkp6eLhYWFuLk5CSLFi1SalHdv39fGjRoID179lS2HTZsmNSsWVNq1qwpVatWVYa8UdmheZguPqxR48/J2+bNm8uAAQOUh6uXfYZ0z6uSt5oXdYWFhVJYWCjjxo0TPz8/yc7O1laoVMo0148/J24114jo6GipUaOGHD9+XFn34MEDGTdunKhUKjl48GDpBUv/WPGSKH92+/Zt6d69u1hbW8vYsWMlIyNDkpOTJS4uTjw8PMTZ2Vk5H5i81W3p6eny5ZdfiqWlpQQHB8vKlStl586dIvK8hMaGDRvExMSkRImtn376SY4fP668BGTd47Lt/fffL/GcmJiYKKdOnZKnT59K+/btZdSoUaJWq+XKlStibGwsKpVKNm/erMWI32xM3OogzY3wz28qNBe/sLAwad68udy4cUNEWCumvDt27JjUqlVL+vTpI4cPH5aBAwfKN998IyIiN27ckDZt2sh7772n1Ds+ffq0TJ8+XT755JMSBcVJNxS/Hjx79kzWrl0rBgYGMm7cOBkxYoRkZmYq6/fv3y+VKlWSDz/8sMQ++JZUd2RkZEjr1q3FxsZGZs+eLU2bNpXY2FgRETlx4oQYGxsrk0mIPH/x8+OPP3K0Rhn2yy+/yIABA+TRo0cvrHtZ8nbQoEFM2pYz/yt5GxgYKLa2tnLlyhVthUhacuvWLWnXrp3s2LHjhQmEzp49K++8844sX75cREpOnDx58mS2KcuI4hMMvqyT0I0bN2TUqFFiZmYmlpaWYmZmJi1atJCuXbsqSVsm5HSbJvGalpYm4eHhYmVlJZUrV1Z61os8b0ds2LBBTE1NZeTIka/cB5Vd3bp1UyYwLu7SpUvStGlTOXHihIg8n9zYz89PgoKCeB/4C0zc6qhbt25Jz549JSoq6oUC4MnJyWJhYSEzZ87UTnD0xtAk+U+fPi2Ojo4yYMAA8fT0LPGwdf36dXF1dRUPD48SN1y+Kdc9mmOamZmpJG0KCgpk7dq1YmFhIdWqVVOGvWoa6Pv37xcrKyvx9fXlSyAdde7cObGxsZEVK1bIunXr5K233pLAwEDZsWOHfPHFF9K+fXs5duyYtsOk/0+a739gYKB069btldsVT96uXr1aHBwcZMSIEaUSI5UOzbnw6NGjF0opabwsedupUycZNWqUmJiYsMd9ObVnzx7p3LmzWFtbS8uWLSUsLEwpryUi8tlnn4mtrW2JZSJsU5YVp06dklq1asnGjRuVZS9L3j558kSuX78uq1atkqioKDlx4oRyjJm01W3FS2RpXt4sXLhQzMzM5LPPPiuxbV5enmzcuFFUKpWEhoaWapz073rZNbxPnz4yf/58ESmZiD906JCoVCo5cuSI5OTkyIwZM6Rjx46cwPR/YOJWR12+fFm6d+8uBgYG4ubmJgEBAZKVlaX0hJs/f740aNBArl69quVISZuKX2QTEhLk3XffFT09Pdm6dWuJ7ZKSkqRjx47SsmVLpectk3S6RXMuXLlyRTw8POSTTz6RtLQ0EXmeoFm/fr0YGxvLtGnTXvjsrl27pEaNGi88iFHZlJqaKsnJycrParVaFixYIEOHDhURkSNHjsiYMWPE19dXmjdvLs2bN5f58+fzwVtHjB8/Xnx8fP5yG831PycnR7799tsXetZR2VX8XtClSxeZOXOmUsP2z4q3A3bv3i2tW7cWMzMzJm1J9uzZIwEBAWJqaipNmzYVPz8/SU5OlqNHj0qnTp2UkV3sVVe2nD17VgYNGiQNGzaU77//Xln+f30mYDtBt+3YsUOmTJki2dnZMm7cODE3N5dnz55Jenq6hIeHi6mpqQQHB5f4TG5uruzfv58JfR1w+/btEh0D27VrJxERESLy4nf/ww8/FJVKJY0aNZJKlSrJ2bNnSzPUMomJWx2XmJgoo0ePFgcHB6lRo4ZMnTpVLl68KKdPnxZ7e3ul1gxvpOWD5jjn5OTIo0eP5MiRI/L7778rvShPnz4tderUke7du5eoQSYicvXqVfH29pZff/211OOm10tzXly4cEGsrKxk0qRJsm3bthLbPHv2TKKiosTAwECmT5/+wj5Yx1A3PH36VOzs7MTNzU2WLVumLD9y5Ii4u7srL3Xu3r0rBw8elHbt2olKpZI6derwHCiDXtYDasSIETJw4EAR+euHcb680z2a8yExMVGsra1lzJgxsnfv3r/8TPHzYP/+/WwjlHN/fp64e/euzJw5Uxo1aiTVq1cXPz8/sbKyku7du2spQvr/debMGRkzZozUr19ftm/friznPYEWL14sVlZW0qpVK7G2tpZLly4p6zIzMyUiIkLeeustZcKyP2PytuxSq9WyaNEisbOzk88//1xERFq1aiVhYWGv/MzGjRslOjpaKd9Jf00lIgLSac+ePUNubi7mzZuHhIQEnDx5EtOnT8eyZctgb2+Pn3/+GWZmZtoOk16zoqIi6OnpISkpCSEhITh+/DiuXbuGKlWqoG3btoiMjMQ777yDhIQEDBkyBI0aNYK/vz9atWql7KOgoAAVKlTQ4m9Br0tKSgo8PDzQr18/zJ0795XbrV69GmPHjkVAQABmz55dihFSafn555+xYsUKnDhxAvXr18dXX32Fd955B4sXL0ZISAiuXr0KCwsLAIBarcb8+fPRt29f1KtXT8uR0z9x8+ZNrFmzBh988AEaNmyIDz/8EJaWlli6dCkAQESU+4dKpVL+TLopJSUFnTp1Qt++fRESEvLK7QoLC2FgYADg+TmiUqlKK0QqI9RqNfT19VFUVASVSoWwsDBcvnwZ69evBwCkpaXBysqK504ZoVaroVKpoKenh5s3b6Jz587Q09NDWFgY+vTpA4DXgvLqypUrqF+/PgCgW7du2LNnD4YOHYrw8HBYWVkp2z148ADR0dEICQnBsGHDEB4erq2Q6TVIS0tDdHQ01q5dCy8vL9y4cQONGjXCu+++CxGBubk58vPzkZubi5ycHDRo0ADu7u7aDrvMMNB2APT6GRkZwcjICOHh4cjIyMDOnTsRHR2NnJwc3LlzB7m5uUzc6jjNg/aFCxfQpUsX+Pr64rPPPkP79u2xYsUK/Pjjj2jfvj0OHTqENm3aICYmBoMHD8aXX36JSZMmwdXVFQCYtNVh586dQ9WqVTFx4kTlfLly5QquXLmCHTt2wMXFBd7e3hg5ciT09fUxYsQIGBoaIigoSNuh07+oqKgIbm5uqF+/Po4dO4aAgAC4ublhzJgxGD16NJKSkvDpp59i5cqVMDIygr6+Ps+BMu7MmTNYuHAhcnJy4O/vj4KCAlSqVElZr1KpoK+vX+Jn0l3Hjh1DlSpVMHnyZGXZ9evXcenSJfz000+oVq0a/P39YWBgoCTmeE7Qy2iuGyqVCiqVCv7+/sjLy8Po0aNRpUoVWFtbazlC+l/i4uKQnZ2Nbt26lbgPBAYGQl9fH82bN8eMGTMgIujbty9UKhWTt+XMuXPnMGzYMPj4+GDOnDlo164dmjRpgnXr1iE0NBTjxo1DrVq1ICKwtLSEn58fHj9+jISEBJ4rOkREULVqVQwfPhxqtRobN27EpUuXkJiYCDMzM2RmZsLAwAB6enrQ19eHvr4+fvzxR22HXaYwcVtOaC6M1tbWGDp0KLp27Yo7d+7A2toaVapU0XZ49BppknCJiYlwdXXFxIkTMWfOHKWnTGRkJNq1a4egoCD06tUL+/fvh4uLCzZu3AgvLy8YGxujefPmMDY21vJvQq/TjRs3kJSUBBsbGwBATEwMYmJikJSUBGNjY/z8889KT8whQ4bA0NAQzZo103LU9G/T9KSsUqUKfH194evri48//hixsbFYu3YtvL298eDBA5w8eRLt27fXcrT0T2juCZqk2/vvv4+CggJMmzYN5ubmuHPnDn777TeEhIQgKysLBgYGMDAwQEFBAR48eIA6depg8uTJfNjSEX9+cE5JScGTJ09gZGQE4Pm9YMOGDcq9ID09HT/99BN2795dIpFDBOClPfKLJ/OMjIyUzgD05hIRFBYW4rPPPgPw/Bh2794dANCnTx9cv34dx44dQ0ZGBiIjIzFz5kyoVCr06dOH94Zyxs7ODq1bt8bBgwdRtWpVBAQEAABsbW2xYMECAMD48eNRs2ZNAEBqaiqCg4OVawKTt7pBcwytra0xcuRIqFQqbNmyBc7OzoiOjgYAPHnyBMbGxqhQoQKePHkCc3NzLUZc9rBUAlE58Ntvv8HZ2Rk9e/ZEdHS00rAuPtRx9erVCAgIwBdffIGJEycCAM6fPw9zc3M4ODhoM3wqBbdv30a7du1gZ2cHOzs7HDp0CBMmTECPHj3Qtm1bLF++HLNnz8aBAwfQsGFDbYdLpUCT2AOel0/YtGkTVq5cCQD46KOPsGzZMja2yxjNtf/OnTvYv38/GjduDBcXFwDAt99+i4CAAKSnp8PKygotW7ZESkoK9PX1UblyZeTm5kKtVmPNmjVo0KCBln8T+jdozoeMjAzo6+vDwsICp06dQtu2bdGpUyeICBISEjB+/Hj06tULLi4u+O677zB16lTExsaWKKVE5Ysm2XL+/HlcuXIFubm5cHd3xzvvvKPt0OhflJaWhn79+gEAgoODsXTpUiQlJWHbtm3Ks0FiYiKWLVuGLVu24IcffuDQ53JEcw+5f/8+5s2bhxMnTsDHx0cZifXVV18hLCwMvXv3hq+vL0JDQ5GUlISbN28CYGkNXZaeno7Vq1fj22+/Rffu3REREQEAyM/Ph6GhIY/9P8Aet0TlwPXr1+Hs7Izbt2/jl19+gbOzM4qKimBgYKBcOEeOHIkVK1bg+PHjynD5Jk2aaDt0KiX29vbYuHEj1qxZg8LCQvz3v/9Fo0aNYGJiAgBo1qwZKleurOUoqTRpahPq6enBzc0Nbm5u8PLywpIlSzB+/Hg2uMoYzbG8ePEi+vbtC2dnZ7z99tvKPcDPzw/m5uYYP348evToAX9/f9SuXbvEPoon86ns09PTw40bN+Dp6Yn33nsPwcHBaNmyJfbu3YtVq1ZBX18fe/fuRZMmTWBqagrgeW98U1NTvPXWW9oNnrRK05vqk08+wdtvvw0TExOMGjUKW7duha+vr7bDo/8PiYmJuHPnDipXroyOHTti69at6NGjB3r27AkLCwscPHgQtWvXVu4HjRs3xujRo1G7dm24ublpO3wqBZp2g56eHoqKimBjY4PAwEDMmzcPO3fuBAAEBQVhwoQJMDQ0xJIlS7Bv3z5YWVnh6tWryn7Yjixb/k6ytUqVKhg1ahRUKhU2bdqEsWPHYsWKFTA0NATAY/9PMHFLVA64u7tj5syZWLRoEUaMGIE1a9YoydviQ9osLCyUnzn5TPliYGCgJOdelpzZunUrrK2tUb16dS1FSP+mp0+fwtTUVGk4vWrCqT8v8/X1VUqoUNmip6eHq1evokOHDhgzZgwmTpyIatWqldimd+/eePz4MWbMmAEjIyNMmjQJjo6OynombXVLUVER1q9fjzt37uDmzZsICQlBQEAAPDw80K5dOxgYGLxwzOPi4mBnZ8f6pOXc2bNnMWbMGMyfPx+jRo3CjRs38O677yIxMZGJ2zJsw4YNiIiIQI0aNeDs7Aw3NzdYWVlh586d6NevHx49eoQbN26gVq1a0NfXV9qLLVq0QIsWLQDwBZ+u27p1K/Ly8tCnTx8YGRm9NHm7d+9e2NraYuTIkRg9ejQ6duyIvLw8NGjQ4IURn1Q2aJ4Tnj59iocPH+Ls2bNwdHRElSpVULVqVQAvJnatra0xatQo5OTk4MCBA0hLS1O2pb+PpRKIdFzxi+i+ffuwePFiPHjwQEneahpYycnJGD58OAYNGgQ/Pz8OYdAx/5fj+bJ6U7/99huWLFmCb775BocPH0ajRo1KI1x6jW7cuIH27dtj6NChqF69OiZMmKCse1UCl8q+vLw8DBkyBFWrVsVXX32lLC8oKMD9+/fx5MkTZVbotWvXIjg4GJ07d8b06dNf6HlLuuP8+fNwd3dHixYtoK+vj3r16mH69OmoWrVqiQRMamoqIiMjsXr1at4Lypnjx4+jdevWAP5oJ2zbtg0xMTHYsmULbt++DTc3N/j4+GD58uUAgIcPH8LCwoJtyTJk3bp1+OijjxAVFQVvb2+lV70myfbgwQP4+PhApVJh+vTp8Pb2VpJ2bDeUH4MHD8aGDRuwefNm9OjRQ6mHrjkPUlJSMG7cOBQWFmLXrl0vfP+Z2C97NMf22rVr+OKLL3Dx4kXcuXMHarUanTp1woQJE9CtWzcAL3/efPDgAUQEVlZW2ghfZ/AqS6TjNIk4APDy8sLHH38MS0tLjBgxApcuXVJunsuWLUNGRgY8PDyUz5FuKCoqgkqlQlpaGhISEnDgwIGXbqc55pr/L1++HH5+fti9ezcOHTrEB3Ud8fPPP+P+/ftwcHDAihUr0KNHDyxevBiZmZklHr74Xle3GBgYIDU1FfXq1VOW7du3D9OmTYOzszO6desGd3d3iAiGDRuG6dOnIyEhQRkiT2Vf8e+0iECtVqNJkyaYOHEiGjdujFatWuHo0aOYP3++UvcWeD6D/ODBg7Fnzx7eC8qZ06dPo23btsokQ5r2we+//47ff/8dSUlJ6NixI7p27aq8ENq1axemT5+OJ0+esC1ZRvzyyy8ICwvDkiVLMGDAACVpKyIwMDCAWq2GpaUlduzYAQAIDQ1FbGwsRIRJ23Jm/fr1GDVqFIYNG4bY2Fg8e/YMAJRJT99++234+/tj7969uHz58gufZ9K2bCk+yXmHDh1gbW2NuXPn4vr16wgPD8fvv/+OsWPH4ocffgDw8vyBpaUlk7b/Al5piXREUVFRif8X96rk7ciRI/Hrr7/iyy+/xLJlyxAdHY233367VOOm10tzw718+TLef/99LF68WJnd8688e/YM9evXR//+/bFr1y40btz49QdLpWL48OFwd3dHQUEBTp48ifr16yM+Ph4NGzbEihUrcOLECQAoUUaByr6cnBykp6fjwoULuHbtGubPn4+PP/4YycnJmDNnDoKCgpCSkoJPP/0UADB69GgkJCTAxsZGy5HTv0HzAu/BgwdIS0tT6hMCQM2aNXH06FFMmzYNgwcPxtGjRzFv3jxkZGQAALp164auXbti586dvBeUMw0aNEBkZCRmzpyJsLAwZXmbNm1gZGQEFxcXdOrUCatWrVLWHTx4EBkZGXz5V4b89ttvyMnJgZubW4njpmkHaK4VVlZW2LZtG+7du4cDBw4wMV/OqNVqAMCqVaswYMAAjBgxAtu3by+RvAWeT0DVunVrltQp4zTPkBcuXEDbtm0xcuRILFmyBL1798bbb7+NSZMm4csvv0Tt2rUxc+ZMnDp1Stsh6zYhojJPrVaLiMjt27dl1apVcurUqZduV1RUpPx579694uPjIyYmJmJgYCCnT58ulVip9GjOi4sXL4qFhYUEBQXJnTt3lPWnTp2SJ0+e/OU+ip8zVPZpzon58+fL4MGDS6yzs7OTd955R2xtbeWTTz6R2NhYbYRIr9HBgwfFwMBAatasKebm5rJy5UpJSkoSEZH8/Hzx9PQUPz8/ZXt+/3XL9evXxcHBQZydnWX79u1y9epVZZ27u7tMmzZNRETmzJkjLi4uMmXKFLl3756I/HHtoPJpxYoVoqenJ8uWLROR5+fD2LFjxcbGRhYtWiSPHj2Su3fvyueffy5WVlZy6dIlLUdMf0dISIhYW1srP7/s2n/58mWJi4sTEZHHjx9LYWFhqcVH2lX8fCh+3IcPHy6mpqYSHR2tPE88ffpUevbsKb6+vmxD6ICUlBSxs7OTLl26KMvUanWJ82D79u3y1ltvybx580SEbcfXhVWhicq4V80U/jLF65d6eXkhPz8fFStWxIwZM9CgQYNSjpxeNz09Pdy7dw8DBw7EkCFDMGfOHGVdaGgoAgICMHbsWHz55ZevnGyKvSnKNs33XXOd0PSG6NWrF0JCQvDjjz/Cx8cHQ4cOhUqlwurVq5GdnY2PP/4YJ0+eRJs2bTiRgA7p1KkTbt26hbS0NNSsWbNEbxh9fX1UrlwZ9vb2So8rfv91R1FREaKjo5Gamgpzc3PMmjULjo6OsLa2RmhoKAYNGoSjR48iPz8fQUFBUKlUWLduHQwNDTF37lyeC+WQ5r4RFxeHrKwsVK1aFRMmTEBubi6mTJmCJUuW4NGjR4iKikJAQAAaN26MjIwMHDhwAM7OztoOn/4GR0dHZGdnY//+/fD09Hzp933dunXIzMxE+/btUalSJQCsV6rrtm3bhrp168LJyUlpTxaflG7NmjUwNjaGv78/du/ejSpVquD69evIzMzE8ePHS7Q/qezQHDMRwdOnT1G/fn2o1WrExsaiZ8+eyjrNOdGjRw94enpi//79mD59urbD11mcnIxIB1y9ehVt27Z95UzhQMlJh6RY4fDs7GzWMNRhe/bswaxZsxAVFQUnJyeoVCosX74cU6ZMQUBAAMLDwzF48GBERka+MnlLZZfmu/748WNUrly5xLrZs2fjt99+Q2pqKk6cOIE9e/agadOmAIC0tDSICIfJlxP5+fmYM2cOoqKicPjwYdSpU0fbIdFrcO/ePYSGhuLXX3+FpaUlPvjgAwQEBKBatWrIzs5GXFwc1qxZg2HDhgEAIiIi0LdvX9SqVUu7gZPW7NixAwMHDkRQUJAyZPa7777DvHnzEBAQgKKiIly+fBkXLlyAg4MD7O3tX9oGpTfbrVu30KxZM3Tu3BmRkZGoUaMGgD/aEFlZWRg+fDg6dOiAiRMnajlaKg3Z2dno0KED7O3t8cMPP7yQoC+etF+1ahXOnDmDx48fo379+ggKCoKBgYEysR2VPb/88gv279+PyZMn49ixY4iMjER6ejomT56Mnj17AiiZW+jRowdUKhW2b9+uxah1G79JRGVcXl4evvjiCwwcOBDz589XlmtmCs/OzkbdunWhp6en3ECL97xl0la3HTt2DCkpKUrS9tmzZ7CwsMC+ffvg5uYGV1dX+Pj4oLCwECtXruRbcR1y584dxMTEYN++fUhOToarqyu6d++ODz74AADQuHFjREREwNraGseOHUPt2rUBPG+IsZdt+RETE4NTp05h8+bN2LNnD5O2OszOzg7Tpk1DSEgIzp07hxs3buDUqVPYvXs34uLiEBcXB3Nzc2X7qVOnajFa0rb8/HxERUXBz88Pn3/+OQDg4cOHaNy4Mfz9/WFkZIRPP/0UDRo04KitMq527dpYuXIlhg4dCiMjI0ydOhVNmzaFSqXC77//jpEjRyIrKwtjx47VdqhUSkxNTeHj44OtW7ciLS0NdnZ2JRJ1xXvejhkz5oXPq9VqJm3LIE1+4LPPPlNe2rZt2xZ6enqIiIjAokWLAEDpeatWq5GRkQE9PT14eXmV2Af9u/iETlTG/a+Zwrt06YLOnTsrM8NyCGz5YmxsDAMDA+Tm5gIAjIyM8P7778PNzQ0A4OHhgbFjxyIxMVHZhsq+ixcvwtPTE5cvX4aTkxNGjRqFhIQETJ06VRnG5Ovri759+6JatWqoWbOm8lkm78uPa9euYc2aNUhOTsahQ4eUHteku6pVq4bAwEA0a9YMq1evxqJFi9C1a1dERETgxo0b6Nu3r7ZDpDdEUVER7t69iwoVKijLLCwsMHLkSPTu3RtTp05FeHi4FiOkf1O/fv3w1Vdf4T//+Q969OiBLl26wMvLC71790ZGRgYOHToEAwMDZYIq0l2aZ8VJkyYhNTUVS5YsAfBi+/CvymSwhEbZVHxEbvFOHK1bt8bUqVNhbW2NRYsWYdu2bQCeH+dFixYhKSkJ3bp1K7EP+nfx6YyojPu/zBT+66+/Kj1neDHVTa+qeuPt7Y3k5GR8+eWXL91WU7+odevWMDQ0fO1x0uuXmJiItm3bolevXli+fDlWrVqFwMBA7N27Fx4eHoiKisK8efMAAH379sWzZ88QHx+v5ahJG+rWrYvNmzdj7dq1qF+/vrbDoVJiZ2eHwMBAtGnTBhs3bkRISAiA573umJQhDWNjY/j6+uLIkSO4fPmystzCwgJOTk6wt7dHaGgoMjMztRgl/Vv09fUxcuRInDx5Er169UJRURHs7e0xePBgJCQkoEKFCigsLGRCTscVFRVBpVJBrVbDwsIC48aNQ1xcHH799Vdth0avSVFR0QvLKlasiOrVqwOA0i4onrxdvHgx9u/fj9DQUCxduhTfffedUmKFXg/WuCXSAXFxcfDy8kL16tXx4MEDhIeHw8PDA46OjigoKED37t1hZ2eH6OhobYdKr4Fm6FJmZibu378PtVqNhg0bAgAyMjLg7++P9evXIyQkpMTQ1/z8fAQHByt1LevWrautX4H+JTdu3EDDhg0xdepUzJkzRxnGpimTcvPmTUyYMAEpKSnYsWMHqlWrhlq1aqFLly6IiorSdvhEVIpSU1Mxb948nDt3Dh4eHggODtZ2SPSGOXDgAGbPng0nJyd88sknygueyZMnw8HBAUOGDFEmqiLdxonIdFtSUhIsLS1hZWVVYnlCQgLee+89rFmzBv379+cweB119+5dxMbGYtKkSQCAZs2aYcKECRg+fPgLx/z48eNYuHAh4uLi8PjxYyQkJKB58+baCr3cYOERIh3AmcLLL03S9tKlSxg+fDjS09MhIvD09MTXX38Na2trTJw4EY8fP4a/vz/Onj0Lb29vpKen4/Tp09i/fz8OHDjApK0OKCoqQlRUFMzNzVGlShUAf9Qg05RJcXBwwPTp09GxY0ecPn0a/fr1Q3R0NN+SE5VDtra2CAwMREBAAI4dO4bMzMwXHtpJN70s+fKyZe+99x5SUlKwdu1a9OvXDy1atEBWVhYOHTqEhIQEJm111MvOBSZtdVd8fDz69esHKysrBAcHo0mTJsq8B23atMEHH3yAsLAwuLu7cw4EHaRWq7F8+XLExsaioKAAU6ZMQWFh4SvzBq1bt8bkyZNhYGCAwMBAODk5aSPscoeJWyIdYW9vD3t7+xLLNDOFx8fHY968eUzY6hhN0jYxMRGurq746KOP0L17d/zwww/45ptv0KRJE4wbNw5NmjTBvHnz0KZNGyxevBgHDx6ElZUVWrRogaNHj3KItI7Q09PDhAkTkJOTg++++w45OTn4/PPPoa+vrwx9A4DmzZvDysoK6enpAABPT09eG4jKKVtbWyxYsAAAmLQtJ4qP0rl37x7MzMxQrVo1GBoalkjYabYbNmwYHBwccPLkSezduxfVq1fHTz/9VGJuBdItbBOUL66uroiMjMT+/fsxdOhQODk5wcvLCx999BFsbW3h5+eHuLg4XL58GVWrVmXvax2jr6+PiRMnIi8vD5s3b0ZWVhZMTU2RlZWFrVu3AnheOqewsBB5eXl48uQJWrRogejo6BI10On1YqkEIh3155nCOemMbvrz0HgAuH37NurVq4eJEyciIiKixPZZWVnIyMiAtbU1jI2NWddWB2mGP586dQq9evWCv78/gD+GOcbHx2P8+PGIiopCs2bNtBwtERGVFk0y9uLFixg2bBgePHiAihUrYvDgwZgyZcoLD+F/7nlZWFgIlUrFpA2RDrh06RJSU1NhZmaG1q1bA3heHuXo0aNYsmQJ7O3t0apVKwQHB8PX1xc1a9bEli1btBw1vS6pqamYO3cujh8/jrNnz8Lc3BzW1tZ49OiRMsl5hQoVICKIi4vjy7tSxsnJiHQQZwovH4oPjS/eU2rTpk0oKChAUlISFi1ahHXr1iEvLw+FhYWoVKkSateujUqVKjFpq6M0w59btmyJbdu2ITQ0FMAfwxy3bNkCGxsb1KpVS4tREhFRaSo+SqdNmzbo0KEDNm7ciA4dOiAmJgZPnz4tsS3wYs9LAwMDJm2JdEB0dDT69OmDIUOGoG/fvvDz8wPwvDxKcHAwkpKS0KdPHyQmJqJFixbIzs7Gtm3bcOzYMS1HTq+Lra0tgoKC4OrqilatWmHIkCG4du0aMjMzce3aNdy+fRspKSm4fPkyk7ZawB63RDoqLS0NRkZGqFy5srZDodfo999/R1hYGI4fPw4/Pz88efIECxYswPjx49GkSRNs2LABycnJuH//PurUqYNPP/0U3bp103bYVApe1vN27ty5iIyMxM8//4wGDRpoO0QiIipFFy9eRLt27TBx4kTMnTsXwPP2ore3N4KDg6FWq9GuXTtYW1sriV4i0i2rVq3CpEmTsGbNGjRs2BDffPMNvv76a6xbtw4DBgxAQUEBKlSooFwDVqxYgT179uDJkyf473//y5c3Ou7evXsICQnBiRMn0KdPH2XknmaiY05Qpx1M3BIRlXGaBN2BAwdw8+ZN7Nu3D506dQLwx032q6++wtmzZzF16lQWkS9HNOdGYmIinj17hgsXLiA+Pp4lEoiIypn8/Hy0bdsWN2/exP3795VRNzNnzkRoaCjeeecdPH78GPn5+UhISECdOnX4gE6kY2JjY9G7d29s374dPj4+AIBTp07BxcUF4eHhmDJlirJt8Vq2jx8/RqVKlaBSqVjjthzQJG/PnTsHDw8PBAcHazukco+vUYmIyjjN0BYvLy84OTnh3LlzyjrNcMcJEybg66+/ZtK2nNGUTXB0dMSDBw+QkJDApC0RUTlkaGiIpUuXwtDQEIMGDQIAhIaGYsmSJdi0aRMOHTqklNIZPXo0CgoKmLQl0iHPnj3Dvn37ULt2bdy+fVtZHhYWBgA4ffo0/P39ER4ejocPHyIvL0/ZpnLlylCpVBARJm3LATs7OwQGBqJOnTo4duwYMjMztR1Succet0REOuJVk1Jpet1S+ZWeno6ioiLY2NhoOxQiItKiEydOwNvbG1ZWVsjKysKGDRvw3nvvKev9/Pxw69YtHDlyRItREtHrcO/ePYSGhuLEiRPo378/4uPjce3aNUydOhUODg5Yv349Lly4gLt378LU1BQrV66Eu7u7tsMmLbl//z4A8PnhDcDELRGRDtEkbzm0hYiIqHz6c31azdBmTemDU6dOoX///rCxscHhw4dhZGSkrBs+fDjy8/MRFRWFChUqsNctkY7RPCvs3LkTWVlZuHDhAqpXrw7gj2tHTEwMbt26henTp7PzB9EbgIlbIiIdk5qaioCAAKSkpGDTpk2wsrLSdkhERERUiq5evYr169dj9OjRqFGjhpKA1SRoT548CW9vb3h4eGDNmjWoVKkSZs6ciSVLliA+Pp6llYh02P379xESEoL4+HgMGDAAU6dOBfC8Fram/rUGa9oSaR8Tt0REOohDW4iIiMqngoICuLq64vTp03B0dISvry9atWqFfv36ldjuxIkT6NKlC3x8fGBnZ4fFixfj6NGjaN68uZYiJ6LS8qoSa0zUEr15mLglIiIiIiLSIeHh4TAwMECDBg0QHx+PJUuWoFu3bmjTpg3Gjh2r9MA9fvw4OnTogIKCApw5cwZNmzbVcuREVFpSU1MREhKCM2fOwN3dHXPnztV2SET0EkzcEhERERER6ZDDhw/D19cXBw8eRIsWLXDv3j18/fXXCAsLQ8OGDTFixAi4ubmhbt26SExMhJmZGRwcHLQdNhGVstTUVEybNg3GxsZYtWoV61oTvYGYuCUiIiIiItIxn332Ge7du4fVq1fD2NgYAwYMQGJiIlxcXHD79m0kJCRg/vz5mDJlirZDJSItevDgAd566y3o6ekpdbCJ6M3BKQKJiIiIiIh0jIuLCyIjI2FoaIiRI0fi8OHDOHjwIJydnXHt2jXs27cPHh4e2g6TiLTM0tISAFBUVAQ9PT0tR0NEf8Yet0RERERERDqoQ4cOOHr0KGxtbbF79240btxY2yERERHR38DXKURERERERDpE0zfH398fjo6OWLZsGRo3bgz22SEiIipbmLglIiIiIiLSIZoalc2bN0dRURHOnDlTYjkRERGVDUzcEhERERER6SAbGxvMnDkTCxcuxMmTJ7UdDhEREf1NTNwSERERERHpKHd3d7Rs2RLVqlXTdihERET0N3FyMiIiIiIiIh2Wl5cHY2NjbYdBREREfxMTt0RERERERERERERvGJZKICIiIiIiIiIiInrDMHFLRERERERERERE9IZh4paIiIiIiIiIiIjoDcPELREREREREREREdEbholbIiIiIiIiIiIiojcME7dEREREREREREREbxgmbomIiIiIiIiIiIjeMEzcEhEREZFOGjp0KFQqlfKflZUVvL29ceHChf/zPmbNmoUmTZq8viCJiIiIiF6BiVsiIiIi0lne3t64d+8e7t27h4MHD8LAwADdu3fXdlhERERERP8TE7dEREREpLOMjIxga2sLW1tbNGnSBJ9//jmSk5ORnp4OAPD398e7774LExMT1K5dGzNmzEBBQQEAIDo6GsHBwUhMTFR67UZHR0NEMGvWLNSoUQNGRkaoVq0aJk2apPydtWrVwty5czFkyBCYmZmhZs2a2LFjB9LT0+Hr6wszMzM0atQIp0+fVj6TmZmJDz74ANWrV4eJiQkaNmyIjRs3lvhdOnbsiEmTJmHatGmwtLSEra0tZs2a9fr/EYmIiIhIK5i4JSIiIqJy4enTp4iJiYGjoyOsrKwAAObm5oiOjsbly5exePFifPPNN1i4cCEAoH///pgyZQqcnZ2VXrv9+/fHli1bsHDhQqxatQpJSUmIjY1Fw4YNS/xdCxcuhKurK86dO4du3bph8ODBGDJkCAYNGoSzZ8/CwcEBQ4YMgYgAAPLy8tC8eXPs2rULly5dwujRozF48GCcPHmyxH6//fZbmJqa4sSJEwgLC8Ps2bNx4MCBUvjXIyIiIqLSphJNa5GIiIiISIcMHToUMTExMDY2BgBkZ2fDzs4OO3fuRLNmzV76mYiICGzatEnpDTtr1izExsbi/PnzyjaRkZFYtWoVLl26hAoVKrywj1q1aqF9+/ZYv349ACA1NRV2dnaYMWMGZs+eDQA4fvw42rRpg3v37sHW1valsXTv3h316tVDREQEgOc9btVqNY4cOaJs06pVK3Tq1AkLFiz4m/86RERERPSmY49bIiIiItJZ7u7uOH/+PM6fP4+TJ0/Cy8sLXbp0wa+//goA2Lx5M1xdXWFrawszMzMEBQXh7t27f7nPfv36ITc3F7Vr18aoUaOwbds2FBYWltimUaNGyp9tbGwAoESvXM2ytLQ0AIBarcacOXPQsGFDWFpawszMDPv27XshluL7BQA7OztlH0RERESkW5i4JSIiIiKdZWpqCkdHRzg6OqJly5ZYvXo1srOz8c033yAhIQEffvghunbtip07d+LcuXMIDAxEfn7+X+7T3t4e165dw/Lly1GxYkWMGzcObm5uSm1cACV64qpUqlcuKyoqAgCEh4dj8eLF8Pf3x6FDh3D+/Hl4eXm9EMufe/iqVCplH0RERESkWwy0HQARERERUWlRqVTQ09NDbm4ujh07hpo1ayIwMFBZr+mJq2FoaAi1Wv3CfipWrAgfHx/4+Phg/PjxqFevHi5evPjKEgz/S3x8PHx9fTFo0CAAzxO6169fh5OT0z/aHxERERGVfUzcEhEREZHOevbsGVJTUwEADx8+xFdffYWnT5/Cx8cHWVlZuHv3LjZt2oSWLVti165d2LZtW4nP16pVC7dv38b58+fx9ttvw9zcHBs3boRarYaLiwtMTEwQExODihUrombNmv84zjp16uCHH37AsWPHYGFhgcjISNy/f5+JWyIiIqJyjIlbIiIiItJZe/fuhZ2dHQDA3Nwc9erVw3/+8x907NgRADB58mRMmDABz549Q7du3TBjxgzMmjVL+XyfPn2wdetWuLu749GjR1i7di3eeustLFiwAJ9++inUajUaNmyIH3/8EVZWVv84zqCgINy6dQteXl4wMTHB6NGj0bNnTzx+/Pj/59cnIiIiojJMJSKi7SCIiIiIiIiIiIiI6A+cnIyIiIiIiIiIiIjoDcPELREREREREREREdEbholbIiIiIiIiIiIiojcME7dEREREREREREREbxgmbomIiIiIiIiIiIjeMEzcEhEREREREREREb1hmLglIiIiIiIiIiIiesMwcUtERERERERERET0hmHiloiIiIiIiIiIiOgNw8QtERERERERERER0RuGiVsiIiIiIiIiIiKiNwwTt0RERERERERERERvmP8HVtyGdXFl4KAAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["#Top 10 Wicket Takers In IPL\n","# Plot Top 10 Wicket Takers\n","plt.figure(figsize=(14, 6))\n","sns.barplot(x=top_bowlers.index, y=top_bowlers.values)\n","plt.title(\"🎯 Top 10 Wicket Takers in IPL\")\n","plt.ylabel(\"Total Wickets\")\n","plt.xlabel(\"Bowler\")\n","plt.xticks(rotation=45)\n","plt.tight_layout()\n","plt.show()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":566},"id":"DiHciAa1hDAJ","executionInfo":{"status":"ok","timestamp":1744090632166,"user_tz":-330,"elapsed":777,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"b779a85b-149c-4cb2-c526-839b71de88d0"},"execution_count":9,"outputs":[{"output_type":"stream","name":"stderr","text":[":9: UserWarning: Glyph 127919 (\\N{DIRECT HIT}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 127919 (\\N{DIRECT HIT}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABW4AAAJOCAYAAAAnP56mAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmXBJREFUeJzs3XmcjeX/x/H3mWHG0lhGhhm7ZN/33diyRYuUXSUkEiIJhYTImjWR7NJCKUqy76khWyT7mm3GkmHM5/eH39xfp0FkxjlmXs/H4zzMue7rPvM5c27n3Pf7XPd1u8zMBAAAAAAAAADwGj6eLgAAAAAAAAAA4I7gFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAACcrUqVPlcrm0f//+u1ovNDRUBQsWjJ+i7hOXy6WOHTt6uoxbev7555U9e3ZPlwEAAPBAILgFAADwYqGhoXK5XP9669u3b7zX8sMPP6h169YqWLCgfH19bxvARUdHa8iQIcqRI4eSJUumwoULa/bs2f/6O4YMGSKXy6Vff/3Vrd3MlDZtWrlcLu3bt89t2eXLl+Xv76+mTZv+p+cVH3bs2KG+ffv+a3i8f//+O3p9/0sQnRgsX75cLpdLn3/+udMWE9zH3JIlS6bcuXOrY8eOOnHixG3XBQAA8CZJPF0AAABAQrd9+3YVK1ZMfn5+N11+5coV7dy5U4888kisZb169dJLL73k3N+0aZNGjx6tt956S/ny5XPaCxcuHPeF/8OsWbM0d+5cFS9eXCEhIbft26tXLw0ePFht2rRRqVKltGDBAjVt2lQul0uNGze+5XoVK1aUJK1evVrFihVz2rdv365z584pSZIkWrNmjXLkyOEs27Rpk65cueKs26JFCzVu3Fj+/v738nTvyY4dO9SvXz+FhobeNuBOnz69pk+f7tY2bNgwHT58WCNGjIjV90E3adIkRUdH35ff1b9/f+XIkUOXL1/W6tWrNX78eH333Xfatm2bUqRIcV9qAAAAuBcEtwAAAPHMzFS6dGmtXr36psvLli0rM7vpspo1a7rdT5YsmUaPHq2aNWsqNDQ0rku9rYEDB2rSpElKmjSpHn/8cW3btu2m/Y4cOaJhw4apQ4cOGjNmjCTppZdeUpUqVdS9e3c1atRIvr6+N123ZMmSSpYsmVavXq1XX33VaV+zZo3SpUunkiVLavXq1WrevLmzLObvGhPc+vr63vLxvU3KlCndnoskzZkzR2fPno3V7g0uXryolClT/uf1kyZNGofV3F6dOnVUsmRJSde3v3Tp0mn48OFasGCBmjRpct/qAAAA+K+YKgEAACABGDdunAoUKCB/f3+FhISoQ4cOOnfunFufmDlcN2/erPLlyyt58uTKkSOHJkyYcEe/IyQk5I6CtwULFujq1at65ZVXnDaXy6X27dvr8OHDWrdu3S3X9fPzU6lSpbRmzRq39jVr1qhcuXKqUKHCTZelSZPGmZ/2VnPcLlq0SFWqVFFAQIBSpUqlUqVKadasWbd9Lj/88INSpEihJk2aKCoqSpK0a9cuPfPMMwoMDFSyZMlUsmRJff311846U6dOVaNGjSRJVatWdU7ZX758+W1/1+188MEHKl++vNKlS6fkyZOrRIkSd3yK/4ABA+Tj46MPP/zQaVu0aJEqVaqklClTKiAgQPXq1dP27dvd1nv++ef10EMPae/evapbt64CAgLUrFkzSdKePXvUsGFDZcyYUcmSJVPmzJnVuHFjhYeH37aWf85xGzNVxAcffKCPPvpIjzzyiPz9/VWqVClt2rTpDv86d6ZatWqSFGuqDQAAAG9FcAsAAPCA69u3rzp06KCQkBANGzZMDRs21MSJE/XYY4/p6tWrbn3Pnj2runXrqkSJEhoyZIgyZ86s9u3ba8qUKXFWz6+//qqUKVO6TeUgSaVLl3aW307FihV15MgRt+B1zZo1Kl++vMqXL+9MmyBdH828du1alStXTj4+t961nTp1qurVq6czZ86oZ8+eGjx4sIoWLarFixffcp2FCxeqQYMGatSokWbMmKEkSZJo+/btKlu2rHbu3Kk333xTw4YNU8qUKfXkk0/qq6++kiRVrlxZnTp1kiS99dZbmj59uqZPnx7r73E3Ro0apWLFiql///4aOHCgkiRJokaNGunbb7+97Xq9e/fW22+/rYkTJzojmKdPn6569erpoYce0vvvv68+ffpox44dqlixYqywOyoqSrVq1VJQUJA++OADNWzYUFeuXFGtWrW0fv16vfrqqxo7dqzatm2rP//8M9aXBXdq1qxZGjp0qNq1a6cBAwZo//79evrpp2Ntv/di7969kqR06dLF2WMCAADEJ6ZKAAAAeID99ddfGjRokB577DEtWrTICS/z5s2rjh07asaMGXrhhRec/kePHtWwYcPUtWtXSVK7du1UpkwZ9ezZUy1atIiTU9mPHTumDBkyyOVyubUHBwc7NdzOjfPcZs+eXcePH9eff/6pChUqqHjx4vLx8dHatWtVt25d7dixQ2fPnnXWuZnw8HB16tRJpUuX1vLly5UsWTJn2a2mqPjyyy/VuHFjPf/885owYYLzd33ttdeUNWtWbdq0yZlD95VXXlHFihXVo0cPPfXUU8qZM6cqVaoUp1Na7N69W8mTJ3fud+zYUcWLF9fw4cNVr169m67TrVs3jRgxQp988olatWolSbpw4YI6deqkl156SR999JHTt1WrVsqTJ48GDhzo1h4ZGalGjRpp0KBBTltYWJj27dunefPm6ZlnnnHa33777f/8/A4ePKg9e/Yobdq0kqQ8efLoiSee0Pfff6/HH3/8Pz1meHi4Tp06pcuXL2vNmjXq37+/kidP/p8fDwAA4H5jxC0AAMAD7Mcff9SVK1fUuXNntxGnbdq0UapUqWKNyEySJInatWvn3Pfz81O7du108uRJbd68OU5q+vvvv296YbCYwPTvv/++7frly5eXj4+PM3ftmjVrlDRpUpUqVUoPPfSQChcu7EyXEPPv7YLbJUuW6Pz583rzzTfdQltJscJlSZo9e7aee+45tWvXThMnTnT+rmfOnNFPP/2kZ599VufPn9epU6d06tQpnT59WrVq1dKePXt05MiR2z63/+rG0Pbs2bMKDw9XpUqV9Msvv8Tqa2bq2LGjRo0apRkzZjihrXT9b3Hu3Dk1adLEqf/UqVPy9fVVmTJltGzZsliP1759e7f7qVOnliR9//33unTpUpw8v+eee84JbSWpUqVKkqQ///zzPz9mjRo1lD59emXJkkWNGzfWQw89pK+++kqZMmW653oBAADuB0bcAgAAPMAOHDgg6foIxRv5+fkpZ86czvIYISEhsS4ulTt3bknX5xstW7bsPdeUPHlyRUZGxmq/fPmys/x20qRJowIFCriFs8WKFXPWK1++vNsyPz8/ZxqGm4k5RT5mDtzb2bdvn5o3b65GjRq5zQkrSX/88YfMTH369FGfPn1uuv7JkyfjJRhcuHChBgwYoLCwMLe/7c2C52nTpunChQsaP358rItw7dmzR9L/5nv9p1SpUrndT5IkiTJnzuzWliNHDnXt2lXDhw/XzJkzValSJTVo0EDNmzd3Qt27lTVrVrf7MSHu2bNn/9PjSdLYsWOVO3duJUmSRBkyZFCePHluO50GAACAtyG4BQAAQJwKDg7WsmXLZGZuweKxY8ckXQ+P/03FihU1YcIEnTt3zpnfNkb58uU1ZcoUXb16VatXr1aJEiVijaS9l9qDg4P13Xff6eeff1bJkiWdZdHR0ZKuT0FQq1atm66fK1euOKnjRqtWrVKDBg1UuXJljRs3TsHBwUqaNKk++eSTm15crUKFCgoLC9OYMWP07LPPKjAwMNZzmD59ujJmzBhr3SRJ3A8P/P39bxp2Dhs2TM8//7wWLFigH374QZ06ddKgQYO0fv36WEHvnfD19b1p+62msrgTpUuXdnv9AAAAHjQEtwAAAA+wbNmySZJ+//135cyZ02m/cuWK9u3bpxo1arj1P3r0qC5evOg26nb37t2SpOzZs8dJTUWLFtXHH3+snTt3Kn/+/E77hg0bnOX/pmLFiho/frx+/PFH/frrr+revbuzrHz58vr777/17bff6s8//1TDhg1v+1iPPPKIJGnbtm3/GqwmS5ZMCxcuVLVq1VS7dm2tWLFCBQoUkCTn75s0adJYf9d/utlI2P/qiy++ULJkyfT999+7TUHxySef3LR/rly5NGTIEIWGhqp27dpaunSpAgICJP3vbxEUFPSvz+HfFCpUSIUKFVLv3r21du1aVahQQRMmTNCAAQPu6XEBAABwHecKAQAAPMBq1KghPz8/jR492m104uTJkxUeHh7rwlVRUVGaOHGic//KlSuaOHGi0qdPrxIlSsRJTU888YSSJk2qcePGOW1mpgkTJihTpkxuo2dvJWbO2uHDh+vq1atu62TPnl3BwcEaMmSIW99beeyxxxQQEKBBgwY50zXcWNc/pU6dWt9//72CgoJUs2ZNZ6qFoKAghYaGauLEic7o4Rv99ddfzs8xwfi5c+f+9bn+G19fX7lcLl27ds1p279/v+bPn3/LdQoXLqzvvvtOO3fuVP369Z15hWvVqqVUqVJp4MCBunr16m2fw61EREQoKirKra1QoULy8fG56RQZAAAA+G8YcQsAAPAAS58+vXr27Kl+/fqpdu3aatCggX7//XeNGzdOpUqVUvPmzd36h4SE6P3339f+/fuVO3duzZ07V2FhYfroo4+UNGnS2/6urVu36uuvv5Z0fb7X8PBwZ3RlkSJFVL9+fUlS5syZ1blzZw0dOlRXr15VqVKlNH/+fK1atUozZ8685WnxN8qaNauyZMmidevWKXv27LGmVyhfvry++OILuVwuVahQ4baPlSpVKo0YMUIvvfSSSpUqpaZNmypt2rTasmWLLl26pE8//TTWOg8//LCWLFmiihUrqkaNGlq9erUyZcqksWPHqmLFiipUqJDatGmjnDlz6sSJE1q3bp0OHz6sLVu2SLo+qtjX11fvv/++wsPD5e/vr2rVqikoKOhfn/s/1atXT8OHD1ft2rXVtGlTnTx5UmPHjlWuXLm0devWW65XtmxZLViwQHXr1tUzzzyj+fPnK1WqVBo/frxatGih4sWLq3HjxkqfPr0OHjyob7/9VhUqVNCYMWNuW89PP/2kjh07qlGjRsqdO7eioqI0ffp0+fr6/uvoZ2/0xRdfaNeuXbHaW7VqpSxZsnigIgAAgOsIbgEAAB5wffv2Vfr06TVmzBh16dJFgYGBatu2rQYOHBgrjE2bNq0+/fRTvfrqq5o0aZIyZMigMWPGqE2bNv/6e3755ZdYF+WKud+qVSsnuJWkwYMHK23atJo4caKmTp2qRx99VDNmzFDTpk3v+HlVrFhRs2fPvukI3QoVKuiLL75Q3rx5lS5dun99rNatWysoKEiDBw/Wu+++q6RJkypv3rzq0qXLLdfJlCmTfvzxR1WqVEk1a9bUypUrlT9/fv3888/q16+fpk6dqtOnTysoKEjFihXT22+/7aybMWNGTZgwQYMGDVLr1q117do1LVu27D8Ft9WqVdPkyZM1ePBgde7cWTly5HDC99sFtzHrfvbZZ2rYsKFatGihWbNmqWnTpgoJCdHgwYM1dOhQRUZGKlOmTKpUqZJeeOGFf62nSJEiqlWrlr755hsdOXJEKVKkUJEiRbRo0aI4ubjd/TZnzpybtoeGhhLcAgAAj3LZvcz4DwAAgH+1bds2vfzyy1q9evVNl5ctW1YzZsyIlwtb3Sg0NFSnTp3Stm3b4vX3AAAAALh3zHELAAAAAAAAAF6GqRIAAADug/Xr1ytNmjQ3XXbhwoX7WwwAAAAAr0dwCwAAEM8KFiyoqKgoT5cBAAAA4AHCHLcAAAAAAAAA4GWY4xYAAAAAAAAAvAzBLQAAAAAAAAB4Gea4lRQdHa2jR48qICBALpfL0+UAAAAAAAAASIDMTOfPn1dISIh8fG4/ppbgVtLRo0eVJUsWT5cBAAAAAAAAIBE4dOiQMmfOfNs+BLeSAgICJF3/g6VKlcrD1QAAAAAAAABIiCIiIpQlSxYnj7wdglvJmR4hVapUBLcAAAAAAAAA4tWdTNfKxckAAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL5PE0wU8yEp0n+bpEvAvNg9t6ekSAAAAAAAAgLvGiFsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL+PR4HbQoEEqVaqUAgICFBQUpCeffFK///67W5/Lly+rQ4cOSpcunR566CE1bNhQJ06ccOtz8OBB1atXTylSpFBQUJC6d++uqKio+/lUAAAAAAAAACDOeDS4XbFihTp06KD169dryZIlunr1qh577DFdvHjR6dOlSxd98803mjdvnlasWKGjR4/q6aefdpZfu3ZN9erV05UrV7R27Vp9+umnmjp1qt5++21PPCUAAAAAAAAAuGcuMzNPFxHjr7/+UlBQkFasWKHKlSsrPDxc6dOn16xZs/TMM89Iknbt2qV8+fJp3bp1Klu2rBYtWqTHH39cR48eVYYMGSRJEyZMUI8ePfTXX3/Jz8/vX39vRESEUqdOrfDwcKVKleqO6y3Rfdp/e6K4bzYPbenpEgAAAAAAAABJd5dDetUct+Hh4ZKkwMBASdLmzZt19epV1ahRw+mTN29eZc2aVevWrZMkrVu3ToUKFXJCW0mqVauWIiIitH379vtYPQAAAAAAAADEjSSeLiBGdHS0OnfurAoVKqhgwYKSpOPHj8vPz09p0qRx65shQwYdP37c6XNjaBuzPGbZzURGRioyMtK5HxEREVdPAwAAAAAAAADumdeMuO3QoYO2bdumOXPmxPvvGjRokFKnTu3csmTJEu+/EwAAAAAAAADulFcEtx07dtTChQu1bNkyZc6c2WnPmDGjrly5onPnzrn1P3HihDJmzOj0OXHiRKzlMctupmfPngoPD3duhw4disNnAwAAAAAAAAD3xqPBrZmpY8eO+uqrr/TTTz8pR44cbstLlCihpEmTaunSpU7b77//roMHD6pcuXKSpHLlyum3337TyZMnnT5LlixRqlSplD9//pv+Xn9/f6VKlcrtBgAAAAAAAADewqNz3Hbo0EGzZs3SggULFBAQ4MxJmzp1aiVPnlypU6dW69at1bVrVwUGBipVqlR69dVXVa5cOZUtW1aS9Nhjjyl//vxq0aKFhgwZouPHj6t3797q0KGD/P39Pfn0AAAAAAAAAOA/8WhwO378eElSaGioW/snn3yi559/XpI0YsQI+fj4qGHDhoqMjFStWrU0btw4p6+vr68WLlyo9u3bq1y5ckqZMqVatWql/v3736+nAQAAAAAAAABxymVm5ukiPC0iIkKpU6dWeHj4XU2bUKL7tHisCnFh89CWni4BAAAAAAAAkHR3OaRXXJwMAAAAAAAAAPA/BLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZZJ4ugAgISjRfZqnS8C/2Dy0padLAAAAAAAAuGOMuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8TBJPFwAACU2J7tM8XQL+xeahLT1dAgAAAAAAt8WIWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMswxy0AAPGE+Y69H/MdAwAAAPBWjLgFAAAAAAAAAC/DiFsAAID7gBHY3u9+jcBmW/B+jMYHAADegBG3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF7Go8HtypUrVb9+fYWEhMjlcmn+/Pluy10u101vQ4cOdfpkz5491vLBgwff52cCAAAAAAAAAHHHo8HtxYsXVaRIEY0dO/amy48dO+Z2mzJlilwulxo2bOjWr3///m79Xn311ftRPgAAAAAAAADEiySe/OV16tRRnTp1brk8Y8aMbvcXLFigqlWrKmfOnG7tAQEBsfoCAAAAAAAAwIPqgZnj9sSJE/r222/VunXrWMsGDx6sdOnSqVixYho6dKiioqJu+1iRkZGKiIhwuwEAAAAAAACAt/DoiNu78emnnyogIEBPP/20W3unTp1UvHhxBQYGau3aterZs6eOHTum4cOH3/KxBg0apH79+sV3yQAAAAAAAADwnzwwwe2UKVPUrFkzJUuWzK29a9euzs+FCxeWn5+f2rVrp0GDBsnf3/+mj9WzZ0+39SIiIpQlS5b4KRwAAAAAAAAA7tIDEdyuWrVKv//+u+bOnfuvfcuUKaOoqCjt379fefLkuWkff3//W4a6AAAAAAAAAOBpD0RwO3nyZJUoUUJFihT5175hYWHy8fFRUFDQfagMAAAAAP6bEt2neboE3IHNQ1t6ugQAQCLl0eD2woUL+uOPP5z7+/btU1hYmAIDA5U1a1ZJ16cxmDdvnoYNGxZr/XXr1mnDhg2qWrWqAgICtG7dOnXp0kXNmzdX2rRp79vzAAAAAAAAAIC45NHg9ueff1bVqlWd+zHzzrZq1UpTp06VJM2ZM0dmpiZNmsRa39/fX3PmzFHfvn0VGRmpHDlyqEuXLm7z1wIAAAAAAADAg8ajwW1oaKjM7LZ92rZtq7Zt2950WfHixbV+/fr4KA0AAAAAAAAAPMbH0wUAAAAAAAAAANwR3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF7GoxcnAwAAAAAAUonu0zxdAv7F5qEtPV0CgESGEbcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXYY5bAAAAAAAAL8F8x96P+Y5xvzDiFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF4miacLAAAAAAAAABBbie7TPF0C/sXmoS3j7bEZcQsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAv49HgduXKlapfv75CQkLkcrk0f/58t+XPP/+8XC6X26127dpufc6cOaNmzZopVapUSpMmjVq3bq0LFy7cx2cBAAAAAAAAAHHLo8HtxYsXVaRIEY0dO/aWfWrXrq1jx445t9mzZ7stb9asmbZv364lS5Zo4cKFWrlypdq2bRvfpQMAAAAAAABAvEniyV9ep04d1alT57Z9/P39lTFjxpsu27lzpxYvXqxNmzapZMmSkqQPP/xQdevW1QcffKCQkJA4rxkAAAAAAAAA4pvXz3G7fPlyBQUFKU+ePGrfvr1Onz7tLFu3bp3SpEnjhLaSVKNGDfn4+GjDhg23fMzIyEhFRES43QAAAAAAAADAW3h1cFu7dm1NmzZNS5cu1fvvv68VK1aoTp06unbtmiTp+PHjCgoKclsnSZIkCgwM1PHjx2/5uIMGDVLq1KmdW5YsWeL1eQAAAAAAAADA3fDoVAn/pnHjxs7PhQoVUuHChfXII49o+fLlql69+n9+3J49e6pr167O/YiICMJbAAAAAAAAAF7Dq0fc/lPOnDn18MMP648//pAkZcyYUSdPnnTrExUVpTNnztxyXlzp+ry5qVKlcrsBAAAAAAAAgLd4oILbw4cP6/Tp0woODpYklStXTufOndPmzZudPj/99JOio6NVpkwZT5UJAAAAAAAAAPfEo1MlXLhwwRk9K0n79u1TWFiYAgMDFRgYqH79+qlhw4bKmDGj9u7dqzfeeEO5cuVSrVq1JEn58uVT7dq11aZNG02YMEFXr15Vx44d1bhxY4WEhHjqaQEAAAAAAADAPfHoiNuff/5ZxYoVU7FixSRJXbt2VbFixfT222/L19dXW7duVYMGDZQ7d261bt1aJUqU0KpVq+Tv7+88xsyZM5U3b15Vr15ddevWVcWKFfXRRx956ikBAAAAAAAAwD3z6Ijb0NBQmdktl3///ff/+hiBgYGaNWtWXJYFAAAAAAAAAB71QM1xCwAAAAAAAACJAcEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAl4mT4PbcuXNx8TAAAAAAAAAAAP2H4Pb999/X3LlznfvPPvus0qVLp0yZMmnLli1xWhwAAAAAAAAAJEZ3HdxOmDBBWbJkkSQtWbJES5Ys0aJFi1SnTh117949zgsEAAAAAAAAgMQmyd2ucPz4cSe4XbhwoZ599lk99thjyp49u8qUKRPnBQIAAAAAAABAYnPXI27Tpk2rQ4cOSZIWL16sGjVqSJLMTNeuXburx1q5cqXq16+vkJAQuVwuzZ8/31l29epV9ejRQ4UKFVLKlCkVEhKili1b6ujRo26PkT17drlcLrfb4MGD7/ZpAQAAAAAAAIDXuOvg9umnn1bTpk1Vs2ZNnT59WnXq1JEk/frrr8qVK9ddPdbFixdVpEgRjR07NtayS5cu6ZdfflGfPn30yy+/6Msvv9Tvv/+uBg0axOrbv39/HTt2zLm9+uqrd/u0AAAAAAAAAMBr3PVUCSNGjFD27Nl16NAhDRkyRA899JAk6dixY3rllVfu6rHq1KnjBL//lDp1ai1ZssStbcyYMSpdurQOHjyorFmzOu0BAQHKmDHjXT4TAAAAAAAAAPBOdz3idt26dercubNGjRqlYsWKOe2vvvqqcufOHafF/VN4eLhcLpfSpEnj1j548GClS5dOxYoV09ChQxUVFXXbx4mMjFRERITbDQAAAAAAAAC8xV2PuK1ataqOHTumoKAgt/bw8HBVrVr1rue5vVOXL19Wjx491KRJE6VKlcpp79Spk4oXL67AwECtXbtWPXv21LFjxzR8+PBbPtagQYPUr1+/eKkTAAAAAAAAAO7VXQe3ZiaXyxWr/fTp00qZMmWcFPVPV69e1bPPPisz0/jx492Wde3a1fm5cOHC8vPzU7t27TRo0CD5+/vf9PF69uzptl5ERISyZMkSL7UDAAAAAAAAwN264+D26aefliS5XC49//zzbqHotWvXtHXrVpUvXz7OC4wJbQ8cOKCffvrJbbTtzZQpU0ZRUVHav3+/8uTJc9M+/v7+twx1AQAAAAAAAMDT7ji4TZ06taTrI24DAgKUPHlyZ5mfn5/Kli2rNm3axGlxMaHtnj17tGzZMqVLl+5f1wkLC5OPj0+sqRwAAAAAAAAA4EFxx8HtJ598IknKnj27unXrFifTIly4cEF//PGHc3/fvn0KCwtTYGCggoOD9cwzz+iXX37RwoULde3aNR0/flySFBgYKD8/P61bt04bNmxQ1apVFRAQoHXr1qlLly5q3ry50qZNe8/1AQAAAAAAAIAn3PUct++8846ioqL0448/au/evWratKkCAgJ09OhRpUqVSg899NAdP9bPP/+sqlWrOvdj5p1t1aqV+vbtq6+//lqSVLRoUbf1li1bptDQUPn7+2vOnDnq27evIiMjlSNHDnXp0sVt/loAAAAAAAAAeNDcdXB74MAB1a5dWwcPHlRkZKRq1qypgIAAvf/++4qMjNSECRPu+LFCQ0NlZrdcfrtlklS8eHGtX7/+jn8fAAAAAAAAADwIfO52hddee00lS5bU2bNn3ea5feqpp7R06dI4LQ4AAAAAAAAAEqO7HnG7atUqrV27Vn5+fm7t2bNn15EjR+KsMAAAAAAAAABIrO56xG10dLSuXbsWq/3w4cMKCAiIk6IAAAAAAAAAIDG76+D2scce08iRI537LpdLFy5c0DvvvKO6devGZW0AAAAAAAAAkCjd9VQJw4YNU61atZQ/f35dvnxZTZs21Z49e/Twww9r9uzZ8VEjAAAAAAAAACQqdx3cZs6cWVu2bNHcuXO1ZcsWXbhwQa1bt1azZs3cLlYGAAAAAAAAAPhv7jq4nT17tpo0aaJmzZqpWbNmbsu6d++uoUOHxllxAAAAAAAAAJAY3fUct+3bt9eiRYtitXfp0kUzZsyIk6IAAAAAAAAAIDG76+B25syZatKkiVavXu20vfrqq/rss8+0bNmyOC0OAAAAAAAAABKjuw5u69Wrp3HjxqlBgwbavHmzXnnlFX355ZdatmyZ8ubNGx81AgAAAAAAAECictdz3EpS06ZNde7cOVWoUEHp06fXihUrlCtXrriuDQAAAAAAAAASpTsKbrt27XrT9vTp06t48eIaN26c0zZ8+PC4qQwAAAAAAAAAEqk7Cm5//fXXm7bnypVLERERznKXyxV3lQEAAAAAAABAInVHwS0XHQMAAAAAAACA++euL04WHh6uM2fOxGo/c+aMIiIi4qQoAAAAAAAAAEjM7jq4bdy4sebMmROr/bPPPlPjxo3jpCgAAAAAAAAASMzuOrjdsGGDqlatGqs9NDRUGzZsiJOiAAAAAAAAACAxu+vgNjIyUlFRUbHar169qr///jtOigIAAAAAAACAxOyug9vSpUvro48+itU+YcIElShRIk6KAgAAAAAAAIDELMndrjBgwADVqFFDW7ZsUfXq1SVJS5cu1aZNm/TDDz/EeYEAAAAAAAAAkNjc9YjbChUqaN26dcqSJYs+++wzffPNN8qVK5e2bt2qSpUqxUeNAAAAAAAAAJCo3PWIW0kqWrSoZs6cGde1AAAAAAAAAAB0h8FtRESEUqVK5fx8OzH9AAAAAAAAAAD/zR0Ft2nTptWxY8cUFBSkNGnSyOVyxepjZnK5XLp27VqcFwkAAAAAAAAAickdBbc//fSTAgMDnZ9vFtwCAAAAAAAAAOLGHQW3VapU0b59+5QjRw6FhobGc0kAAAAAAAAAkLj53GnHRx55RDly5NCLL76oGTNm6PDhw/FZFwAAAAAAAAAkWnc04la6PkXC8uXLtXz5cs2ePVtXrlxRzpw5Va1aNVWtWlVVq1ZVhgwZ4rNWAAAAAAAAAEgU7ji4DQ0NdaZJuHz5stauXesEuZ9++qmuXr2qvHnzavv27fFVKwAAAAAAAAAkCncc3N4oWbJkqlatmipWrKiqVatq0aJFmjhxonbt2hXX9QEAAAAAAABAonNXwe2VK1e0fv16LVu2TMuXL9eGDRuUJUsWVa5cWWPGjFGVKlXiq04AAAAAAAAASDTuOLitVq2aNmzYoBw5cqhKlSpq166dZs2apeDg4PisDwAAAAAAAAASnTsObletWqXg4GBVq1ZNoaGhqlKlitKlSxeftQEAAAAAAABAouRzpx3PnTunjz76SClSpND777+vkJAQFSpUSB07dtTnn3+uv/76Kz7rBAAAAAAAAIBE445H3KZMmVK1a9dW7dq1JUnnz5/X6tWrtWzZMg0ZMkTNmjXTo48+qm3btsVbsQAAAAAAAACQGNzxiNt/SpkypQIDAxUYGKi0adMqSZIk2rlzZ1zWBgAAAAAAAACJ0h2PuI2OjtbPP/+s5cuXa9myZVqzZo0uXryoTJkyqWrVqho7dqyqVq0an7UCAAAAAAAAQKJwx8FtmjRpdPHiRWXMmFFVq1bViBEjFBoaqkceeSQ+6wMAAAAAAACAROeOg9uhQ4eqatWqyp07d3zWAwAAAAAAAACJ3h0Ht+3atYvPOgAAAAAAAAAA/+8/X5wMAAAAAAAAABA/CG4BAAAAAAAAwMt4NLhduXKl6tevr5CQELlcLs2fP99tuZnp7bffVnBwsJInT64aNWpoz549bn3OnDmjZs2aKVWqVEqTJo1at26tCxcu3MdnAQAAAAAAAABxy6PB7cWLF1WkSBGNHTv2psuHDBmi0aNHa8KECdqwYYNSpkypWrVq6fLly06fZs2aafv27VqyZIkWLlyolStXqm3btvfrKQAAAAAAAABAnLuji5N9/fXXd/yADRo0uOO+derUUZ06dW66zMw0cuRI9e7dW0888YQkadq0acqQIYPmz5+vxo0ba+fOnVq8eLE2bdqkkiVLSpI+/PBD1a1bVx988IFCQkLuuBYAAAAAAAAA8BZ3FNw++eSTd/RgLpdL165du5d6HPv27dPx48dVo0YNpy116tQqU6aM1q1bp8aNG2vdunVKkyaNE9pKUo0aNeTj46MNGzboqaeeuuljR0ZGKjIy0rkfERERJzUDAAAAAAAAQFy4o6kSoqOj7+gWV6GtJB0/flySlCFDBrf2DBkyOMuOHz+uoKAgt+VJkiRRYGCg0+dmBg0apNSpUzu3LFmyxFndAAAAAAAAAHCvPDrHraf07NlT4eHhzu3QoUOeLgkAAAAAAAAAHHc0VcI/Xbx4UStWrNDBgwd15coVt2WdOnWKk8IyZswoSTpx4oSCg4Od9hMnTqho0aJOn5MnT7qtFxUVpTNnzjjr34y/v7/8/f3jpE4AAAAAAAAAiGt3Hdz++uuvqlu3ri5duqSLFy8qMDBQp06dUooUKRQUFBRnwW2OHDmUMWNGLV261AlqIyIitGHDBrVv316SVK5cOZ07d06bN29WiRIlJEk//fSToqOjVaZMmTipAwAAAAAAAADut7ueKqFLly6qX7++zp49q+TJk2v9+vU6cOCASpQooQ8++OCuHuvChQsKCwtTWFiYpOsXJAsLC9PBgwflcrnUuXNnDRgwQF9//bV+++03tWzZUiEhIc7F0vLly6fatWurTZs22rhxo9asWaOOHTuqcePGCgkJudunBgAAAAAAAABe4a5H3IaFhWnixIny8fGRr6+vIiMjlTNnTg0ZMkStWrXS008/fceP9fPPP6tq1arO/a5du0qSWrVqpalTp+qNN97QxYsX1bZtW507d04VK1bU4sWLlSxZMmedmTNnqmPHjqpevbp8fHzUsGFDjR49+m6fFgAAAAAAAAB4jbsObpMmTSofn+sDdYOCgnTw4EHly5dPqVOnvuuLfIWGhsrMbrnc5XKpf//+6t+//y37BAYGatasWXf1ewEAAAAAAADAm911cFusWDFt2rRJjz76qKpUqaK3335bp06d0vTp01WwYMH4qBEAAAAAAAAAEpW7nuN24MCBCg4OliS99957Sps2rdq3b6+//vpLEydOjPMCAQAAAAAAACCxuesRtyVLlnR+DgoK0uLFi+O0IAAAAAAAAABI7O56xG21atV07ty5WO0RERGqVq1aXNQEAAAAAAAAAInaXQe3y5cv15UrV2K1X758WatWrYqTogAAAAAAAAAgMbvjqRK2bt3q/Lxjxw4dP37cuX/t2jUtXrxYmTJlitvqAAAAAAAAACARuuPgtmjRonK5XHK5XDedEiF58uT68MMP47Q4AAAAAAAAAEiM7ji43bdvn8xMOXPm1MaNG5U+fXpnmZ+fn4KCguTr6xsvRQIAAAAAAABAYnLHwW22bNkkSdHR0fFWDAAAAAAAAADgLoLbG+3du1cjR47Uzp07JUn58+fXa6+9pkceeSROiwMAAAAAAACAxMjnblf4/vvvlT9/fm3cuFGFCxdW4cKFtWHDBhUoUEBLliyJjxoBAAAAAAAAIFG56xG3b775prp06aLBgwfHau/Ro4dq1qwZZ8UBAAAAAAAAQGJ01yNud+7cqdatW8dqf/HFF7Vjx444KQoAAAAAAAAAErO7Dm7Tp0+vsLCwWO1hYWEKCgqKi5oAAAAAAAAAIFG746kS+vfvr27duqlNmzZq27at/vzzT5UvX16StGbNGr3//vvq2rVrvBUKAAAAAAAAAInFHQe3/fr108svv6w+ffooICBAw4YNU8+ePSVJISEh6tu3rzp16hRvhQIAAAAAAABAYnHHwa2ZSZJcLpe6dOmiLl266Pz585KkgICA+KkOAAAAAAAAABKhOw5upeuh7Y0IbAEAAAAAAAAg7t1VcJs7d+5Y4e0/nTlz5p4KAgAAAAAAAIDE7q6C2379+il16tTxVQsAAAAAAAAAQHcZ3DZu3FhBQUHxVQsAAAAAAAAAQJLPnXb8tykSAAAAAAAAAABx446DWzOLzzoAAAAAAAAAAP/vjqdKiI6Ojs86AAAAAAAAAAD/745H3AIAAAAAAAAA7g+CWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZrw9us2fPLpfLFevWoUMHSVJoaGisZS+//LKHqwYAAAAAAACA/y6Jpwv4N5s2bdK1a9ec+9u2bVPNmjXVqFEjp61Nmzbq37+/cz9FihT3tUYAAAAAAAAAiEteH9ymT5/e7f7gwYP1yCOPqEqVKk5bihQplDFjxvtdGgAAAAAAAADEC6+fKuFGV65c0YwZM/Tiiy/K5XI57TNnztTDDz+sggULqmfPnrp06ZIHqwQAAAAAAACAe+P1I25vNH/+fJ07d07PP/+809a0aVNly5ZNISEh2rp1q3r06KHff/9dX3755S0fJzIyUpGRkc79iIiI+CwbAAAAAAAAAO7KAxXcTp48WXXq1FFISIjT1rZtW+fnQoUKKTg4WNWrV9fevXv1yCOP3PRxBg0apH79+sV7vQAAAAAAAADwXzwwUyUcOHBAP/74o1566aXb9itTpowk6Y8//rhln549eyo8PNy5HTp0KE5rBQAAAAAAAIB78cCMuP3kk08UFBSkevXq3bZfWFiYJCk4OPiWffz9/eXv7x+X5QEAAAAAAABAnHkggtvo6Gh98sknatWqlZIk+V/Je/fu1axZs1S3bl2lS5dOW7duVZcuXVS5cmUVLlzYgxUDAAAAAAAAwH/3QAS3P/74ow4ePKgXX3zRrd3Pz08//vijRo4cqYsXLypLlixq2LChevfu7aFKAQAAAAAAAODePRDB7WOPPSYzi9WeJUsWrVixwgMVAQAAAAAAAED8eWAuTgYAAAAAAAAAiQXBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmvDm779u0rl8vldsubN6+z/PLly+rQoYPSpUunhx56SA0bNtSJEyc8WDEAAAAAAAAA3DuvDm4lqUCBAjp27JhzW716tbOsS5cu+uabbzRv3jytWLFCR48e1dNPP+3BagEAAAAAAADg3iXxdAH/JkmSJMqYMWOs9vDwcE2ePFmzZs1StWrVJEmffPKJ8uXLp/Xr16ts2bL3u1QAAAAAAAAAiBNeP+J2z549CgkJUc6cOdWsWTMdPHhQkrR582ZdvXpVNWrUcPrmzZtXWbNm1bp16zxVLgAAAAAAAADcM68ecVumTBlNnTpVefLk0bFjx9SvXz9VqlRJ27Zt0/Hjx+Xn56c0adK4rZMhQwYdP378to8bGRmpyMhI535ERER8lA8AAAAAAAAA/4lXB7d16tRxfi5cuLDKlCmjbNmy6bPPPlPy5Mn/8+MOGjRI/fr1i4sSAQAAAAAAACDOef1UCTdKkyaNcufOrT/++EMZM2bUlStXdO7cObc+J06cuOmcuDfq2bOnwsPDnduhQ4fisWoAAAAAAAAAuDsPVHB74cIF7d27V8HBwSpRooSSJk2qpUuXOst///13HTx4UOXKlbvt4/j7+ytVqlRuNwAAAAAAAADwFl49VUK3bt1Uv359ZcuWTUePHtU777wjX19fNWnSRKlTp1br1q3VtWtXBQYGKlWqVHr11VdVrlw5lS1b1tOlAwAAAAAAAMB/5tXB7eHDh9WkSROdPn1a6dOnV8WKFbV+/XqlT59ekjRixAj5+PioYcOGioyMVK1atTRu3DgPVw0AAAAAAAAA98arg9s5c+bcdnmyZMk0duxYjR079j5VBAAAAAAAAADx74Ga4xYAAAAAAAAAEgOCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DJeHdwOGjRIpUqVUkBAgIKCgvTkk0/q999/d+sTGhoql8vldnv55Zc9VDEAAAAAAAAA3DuvDm5XrFihDh06aP369VqyZImuXr2qxx57TBcvXnTr16ZNGx07dsy5DRkyxEMVAwAAAAAAAMC9S+LpAm5n8eLFbvenTp2qoKAgbd68WZUrV3baU6RIoYwZM97v8gAAAAAAAAAgXnj1iNt/Cg8PlyQFBga6tc+cOVMPP/ywChYsqJ49e+rSpUueKA8AAAAAAAAA4oRXj7i9UXR0tDp37qwKFSqoYMGCTnvTpk2VLVs2hYSEaOvWrerRo4d+//13ffnll7d8rMjISEVGRjr3IyIi4rV2AAAAAAAAALgbD0xw26FDB23btk2rV692a2/btq3zc6FChRQcHKzq1atr7969euSRR276WIMGDVK/fv3itV4AAAAAAAAA+K8eiKkSOnbsqIULF2rZsmXKnDnzbfuWKVNGkvTHH3/csk/Pnj0VHh7u3A4dOhSn9QIAAAAAAADAvfDqEbdmpldffVVfffWVli9frhw5cvzrOmFhYZKk4ODgW/bx9/eXv79/XJUJAAAAAAAAAHHKq4PbDh06aNasWVqwYIECAgJ0/PhxSVLq1KmVPHly7d27V7NmzVLdunWVLl06bd26VV26dFHlypVVuHBhD1cPAAAAAAAAAP+NVwe348ePlySFhoa6tX/yySd6/vnn5efnpx9//FEjR47UxYsXlSVLFjVs2FC9e/f2QLUAAAAAAAAAEDe8Org1s9suz5Ili1asWHGfqgEAAAAAAACA++OBuDgZAAAAAAAAACQmBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlCG4BAAAAAAAAwMsQ3AIAAAAAAACAlyG4BQAAAAAAAAAvQ3ALAAAAAAAAAF6G4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbAAAAAAAAAPAyBLcAAAAAAAAA4GUIbgEAAAAAAADAyxDcAgAAAAAAAICXIbgFAAAAAAAAAC9DcAsAAAAAAAAAXobgFgAAAAAAAAC8DMEtAAAAAAAAAHgZglsAAAAAAAAA8DIEtwAAAAAAAADgZQhuAQAAAAAAAMDLENwCAAAAAAAAgJchuAUAAAAAAAAAL0NwCwAAAAAAAABehuAWAAAAAAAAALwMwS0AAAAAAAAAeBmCWwAAAAAAAADwMgS3AAAAAAAAAOBlEkxwO3bsWGXPnl3JkiVTmTJltHHjRk+XBAAAAAAAAAD/SYIIbufOnauuXbvqnXfe0S+//KIiRYqoVq1aOnnypKdLAwAAAAAAAIC7liCC2+HDh6tNmzZ64YUXlD9/fk2YMEEpUqTQlClTPF0aAAAAAAAAANy1JJ4u4F5duXJFmzdvVs+ePZ02Hx8f1ahRQ+vWrbvpOpGRkYqMjHTuh4eHS5IiIiLu6ndfi/z7P1SM++luX9P/im3B+92vbUFie3gQ8N6AGLw34Ea8NyAG2wJuxPaAGGwLiME+JG50t9tDTH8z+9e+LruTXl7s6NGjypQpk9auXaty5co57W+88YZWrFihDRs2xFqnb9++6tev3/0sEwAAAAAAAAAkSYcOHVLmzJlv2+eBH3H7X/Ts2VNdu3Z17kdHR+vMmTNKly6dXC6XByvznIiICGXJkkWHDh1SqlSpPF0OPIztATHYFnAjtgfEYFvAjdgeEINtATHYFnAjtgfEYFu4zsx0/vx5hYSE/GvfBz64ffjhh+Xr66sTJ064tZ84cUIZM2a86Tr+/v7y9/d3a0uTJk18lfhASZUqVaL+zwN3bA+IwbaAG7E9IAbbAm7E9oAYbAuIwbaAG7E9IAbbgpQ6deo76vfAX5zMz89PJUqU0NKlS5226OhoLV261G3qBAAAAAAAAAB4UDzwI24lqWvXrmrVqpVKliyp0qVLa+TIkbp48aJeeOEFT5cGAAAAAAAAAHctQQS3zz33nP766y+9/fbbOn78uIoWLarFixcrQ4YMni7tgeHv76933nkn1hQSSJzYHhCDbQE3YntADLYF3IjtATHYFhCDbQE3YntADLaFu+cyM/N0EQAAAAAAAACA/3ng57gFAAAAAAAAgISG4BYAAAAAAAAAvAzBLQAAAAAAAAB4GYJbxLnLly97ugQAAAAAAADggUZwizg1ZcoU9enTR6dPn/Z0KQAAAAAAAMADi+AWceqXX37RDz/8oLFjxxLeAomcmbn9C8RsC1FRUR6uBAAAPMjYvwSQWBDcIk6NGTNG9erV04IFC/Thhx8S3gKJVHR0tFwulyQpMjJS0v92sKOjoz1WFzzL5XJp9uzZevzxx3XlyhVPlwMvxIE4JLaDxIrXHbdzq/1H9isTh5u9zrz2idM/X/fE8NmRxNMFIOG4du2afH19NXDgQEVHR+ubb76RJL366qtKly6dh6uDJ5iZXC6XDh06pLNnzypt2rQKDg5WkiS89SRk0dHR8vG5/r3giBEjtHr1al24cEGFChVSz549lS5dOrc+SDwOHjyoYcOG6YUXXuB9AM5nxNGjR3XhwgWlSZNGqVOnlr+/v6dLw30Usx3s2rVL4eHhSp06tfLmzevpsnCfxWwHq1ev1urVq3Xq1CnVr19fZcqUUbJkyTxdHjzsxv3GKVOmaMuWLYqIiNCLL76oSpUqebg6xDczc17/rVu36urVqypSpAj7konQje8FkyZN0rZt23Ts2DF17txZ5cqVcwYOJTQcNSPO+Pr6Ot92DB48WNWrV9c333zDyNtEKmYH/KuvvlK9evVUq1YtNWnSRF27dtXff//t6fIQj2I+THv27Kn33ntPRYsWVcaMGbVq1SqVLFlSx48fl4+PD9+SJzK//PKL3n//fT366KN64YUXEsW347i1mM+I+fPnq3r16qpfv74qV66sLl266LfffvN0ebiPXC6XvvzyS5UtW1bNmjVT4cKFNXr0aC52m4jEvB98+eWXqlu3rsLCwrRy5Ur17t1b/fv316VLlzxdIjwsZt/yzTff1DvvvKNTp07J5XKpSpUqmjlzJvsUCVSHDh20ZcsWJ4zr0aOHatSooXr16qlAgQLauHGjhyvE/RLzf/zG94K+ffsqIiJCyZIlU40aNTRlyhRFRER4ssz4Y8A9io6ONjOzy5cvW2RkpNuybt26WfHixe2dd96xU6dOeaI8eNCiRYssICDARo4caceOHbN+/fpZ6tSprXHjxnbhwgVPl4d4tGvXLsudO7ctWrTIadu+fbtVq1bN8ufPb+Hh4R6sDvfb33//bW3atLEMGTJYkSJFnPaoqCjPFQWP++mnn+yhhx6yUaNG2dWrV23gwIHm5+dn06ZN83RpiGfR0dHO/uPRo0etYMGC9vHHH9uWLVts5MiR5nK57J133rGLFy96uFLcL2vWrLHMmTPbxx9/bGZm+/bts5QpU1ru3LnttddeY1uAffLJJ5Y1a1bbtGmTmV0/znC5XJY0aVIbO3as856ChOHixYuWN29ee/TRR23Hjh32ww8/WK5cuez777+31atX25NPPmkPP/yw/fDDD7z2iUzMe8HmzZvN7Prnh8vlsuTJk9uIESMS5HEmI25xT+z/vyFftGiRWrdurdKlS2vw4MFavXq1JGno0KGqVq2avvnmG40dO1anTp3ycMWIL5s2bXK7f/LkSQ0fPlxvv/22XnvtNSVNmlSTJk1SsWLF9Ntvv6l169aMvE1A/jl69vTp0zp8+LAyZ87stOXNm1cDBw6Ur6+vlixZcr9LhAfY/387nixZMvXq1UuNGjXSgQMHNGDAAEnXz9Rg5HXiE7NdzJ8/X82aNVOnTp108uRJTZo0Sa1bt1aLFi0kSRcuXPBkmYgHJ0+elHR9lK3L5dIPP/yg6dOnq2LFimrRooUKFy6s1157TVOmTFH//v01ZMgQRlsmUHbDCMno6GgdOHBAtWvXVuvWrbVv3z5Vr15djRo1UoMGDTRr1iz1799fFy9e9GDF8KSLFy/q1KlT6t27t0qWLKmFCxfqueee00cffaRevXqpS5cumjZtGvsUCUiKFCm0fv16hYSEqGHDhtq9e7deeuklPfbYY6pQoYK++uorVa1aVU2aNNHSpUsZdZ1AtW3bVjNmzHDu//3337p06ZJ69eql4sWL6+uvv1adOnU0a9Ysde/eXb169dKsWbN07tw5zxUdHzwaGyNBmD9/vqVIkcLeeOMN69evn1WuXNmqV69u3333ndOnR48eliNHDhs0aJBdu3bNg9UiPmzcuNFcLpd98MEHbu1TpkyxzZs328mTJy1fvnzWvn17u3btmnXs2NF8fX2tTp06jLxNYFauXGlmZuHh4VaoUCEbOnSo2//5CxcuWI4cOWzo0KGeKhH3QczIh6tXr5qZOdvAwYMH7eWXX7YyZcrY8OHDnf58LiROL730kk2aNMnOnDljISEh1rZtW2fbmT9/vi1YsIBtIwHp06eP1alTx+3srHfeecdcLpflzp3bOTMrZhv45JNPzM/Pz7p168ZoywQo5nVesmSJLVy40E6dOmU7duywyMhIq169uj3//PNmdv2MjaxZs1pwcLB1796dkXWJxM1e5x07dti+ffts3759lj9/fhs5cqSZma1fv958fX3N5XLZ559/fr9LRTw7d+6cVa1a1Vwul7Vr1y7W8kaNGlmGDBls4cKFHqgO8enEiRP27rvv2pUrV9zat23bZgcPHrT9+/dboUKFbMSIEU57smTJzOVy2Zw5czxQcfwhuMU92bZtm+XNm9c++ugjM7t+SkO6dOns0UcftcqVK9vixYudvn369LE///zTU6Uing0fPtz8/Pxs+PDhsQ60R48ebXXr1rW//vrLzMw++ugjK168uD3xxBN28OBBT5SLeLBq1SrLnTu3bd682SIjI61Vq1ZWqVIl++KLL5w+58+ft9KlS9ukSZM8WCniU8zB1o8//mjt27e3p59+2kaPHm1HjhwxM7M///zT2rVrZ2XKlHEOupC4xGwjr776quXOnduyZs1qr776qhP0X7582Zo2bWq9e/eOtbOOB9exY8fst99+MzNz+9J2xIgR5nK5bOzYsbHWGT9+vAUGBjr7D0hYVq9e7YRtMf/Xd+3aZXnz5rVVq1aZmdmBAwesQYMG1qdPH/YZE4kbQ9vZs2fbiBEj3NqWL19uRYsWtb1795qZ2ZYtW6xz5842a9Ys53MECUPMMeWZM2esbt26lilTJgsLCzMz9+2kevXqVqdOHY/UiPtjypQp9u6777q1rVq1ygoXLmxbt241s+vvBb1797YpU6YkuPcCpkrAPfHx8VGtWrXUtGlTHTx4UIUKFdJzzz2n8ePHa8+ePXrvvff01VdfSZL69++vHDlyeLhixDX7/9NSunTposGDB+v111/XqFGj3Prs379f+/fvV9q0aSVJu3fvVr169TRt2jRlyZLlvteM+BEUFKTLly9r5cqV8vPz09ChQ5UiRQq9//77atGihT788EPVr19fly5d0vPPP+/pchFPYi5K+MQTTyhJkiQKCAjQl19+qZdfflmHDh1Sjhw51KNHD5UoUULjx4/X+PHjPV0y4lnM58TBgwd16NAh54Kl7777rh5++GFdunRJw4YNU5IkSRQVFaX+/ftr1apVatmypZImTerJ0hFHoqKilDFjRhUsWFBLly5VnTp1tG3bNklS586d1bdvX3Xq1Ekff/yx23ovv/yy/vzzTz388MOeKBvxaM+ePTp48KD69u2rhg0bytfXV9L/pl5au3atzpw5oylTpigyMlJdunRhnzERiI6Odi5EtX37dn3wwQeaPn26pk+f7vS5ePGitmzZop07d2r37t3q1auXDh8+rCZNmjifI3gw/XOqi5j7adOm1ezZs5UzZ041bNhQ27dvl8vlcvYvfvzxRy1cuPC+14v74/z581q6dKnmz5+vkSNHOu2nT5/Wjh07tGfPHv3222966623tHv3br3wwgsJ773Aw8ExHnBRUVHOKKqWLVta8+bNndPZHn/8cQsODrannnrKIiIiOLUpgYp5XWNGSnzwwQfmcrncRt5+9tlnVrJkSXvsscesRYsWljJlStu1a5fHasa9i3ltYy4wE7MdjB492oKDg23Lli1mZnb69Gl77733rFq1ala5cmVr1qyZs61wYaqEafPmzfboo486o6qPHDli6dKlsyxZsljVqlWdEVN79uyxLl262L59+zxYLe6Xzz//3HLnzm0ZMmSwp59+2jmFbcmSJZY9e3bLnj271alTx+rWrWvp06e3X375xcMVIy7duA946NAhS548uVWvXt127NjhtPft29d8fX1t8uTJnigR99GpU6fM39/fXC6Xde3a1W3ZpUuXrF27dpYrVy7LkiWLZciQwbkADRKP119/3Z566imrWLGiczbnpEmTnPeSdu3amcvlspw5c1rRokU5OyMBuPGMzbFjx1rr1q2tdu3atmDBAuf1jYiIsEqVKlmuXLls+/btt30MPLhulhv9+eef9sorr1iZMmVs2LBhTvtLL71kLpfLsmfPbsWLF0+w7wUuM2Zxxp2Jjo6Wj4+PTp06pWvXrilDhgzOsitXrqhSpUqqX7++evfurWvXrqlt27YqUKCAmjZtqowZM3qwcsS3TZs2qWPHjlqyZIlSpUqlESNG6PXXX9ewYcPUpUsXXbhwQVOnTtWyZct07do1vfvuuypUqJCny0Yc+OcFyHbs2KEOHTro2WefVfv27d36Xrp0SSlSpJB0ffRVkiRJ7mutuD9+/PFHffLJJ5o5c6b279+vGjVqqGrVqqpUqZIz0nbMmDHKnj0720ECZf9/4dIYe/fuVbVq1fTGG28oefLk+v7777V371516tRJLVu21JkzZ/TBBx/o77//VqZMmfTUU0/pkUce8eAzQHxYvHixzp49qyZNmujIkSMqWbKk8uTJo/HjxytfvnySpAEDBujtt9/Wp59+6lykDgnTDz/8oFatWqlgwYKaM2eO0qVL57x3XLhwQRs2bNDZs2dVsmRJZc+e3dPl4j769NNP1blzZy1dulQ5c+ZUVFSU81nRtm1bvfjii5KklStXSpIqVKggX19f9ikSiDfffFPTp0/XE088oWTJkmn06NEaMmSIWrRoofTp0+v8+fOqX7++Nm/erK1bt3JGbwITkzlJ0p9//imXy6WUKVMqKChIhw8f1nvvvadff/1VzzzzjLp16yZJWrFihfz8/FS6dOmE+17g2dwY3m7q1Kl24MAB5/6XX35pefPmtTx58ljNmjVt//79Fh0dbRcuXLAnn3zSGjVqZPPmzbO33nrLsmfPbseOHfNg9YhvMd+GrVq1ysqUKWMTJ050RlGOGjXKXC6XDRkyxG2dv//++77XifjxzTffmMvlsm7dutk333zjtL/++uuWNWtWZ/v457ffjL5P+Hbv3m3R0dH21FNPWYsWLZz2UqVKWcqUKa1evXp29epVtoVEICwszHr16uU2qm7Hjh3Wtm1bK1q0KPNdJyK9e/e2zJkzO/PcHj582DJmzGhVqlRxG3n7/vvvu93Hgy0qKsp5r7/xwnRmZt9//72lSJHC2rRp4+wf8rmAt99+28qXL29RUVHOPuSxY8esfPnyliNHDps8ebKzncT8y1lcCcP06dMtW7Zs9vPPP5uZ2dq1a83lclmSJEmsT58+znzn586ds/bt2/O6JzA3vv+/8847VrhwYcubN6+FhITYlClTzOz6WTsxFzq+8WLXMe8VCXWbILjFLYWHh9vDDz9spUqVsmPHjllYWJilT5/e3n33Xfv444+tWLFizoWIzK6HupUqVbKsWbO6tSPhiXlTDQ8PN7PrO+KvvPKKVapUyc6cOeP0GzVqlPn7+9u7777rdmo9Hkz/3Ek+e/asffrpp/bYY49Zrly57Omnn7ZffvnFjh49aqGhobEmkEfCE7MtXLhwwSIiItyWHTt2zPLnz29z5841s+vvF82bN7cxY8Y4U+wgYRkyZIi1b9/ezK7vQJ8+fdqeeuopS5cunTVs2NCtb0x4W7p0aRs1apTTzmdEwvHP1zIsLMwef/xxGzBggJ0/f97Mrk+lkjFjRqtevbpzcREkDL/99pvzOpuZLV682Nq0aWNNmza1NWvWOPuQ3333nSVPntzatm3Ll/uJXEzgMmDAACtWrJgz/V7Mqc8rV660lClTWtWqVW3WrFkeqxNx55+DOyZNmmTjx483M7Ovv/7aUqVKZXPmzLGxY8da0qRJbfDgwXb8+HG3dRJqUJeYvfvuu5Y+fXpbvHixnT9/3ho0aGCBgYHOl7oHDx50LnQ8fPhwZ72EvA9JcIvb2r9/v+XPn98qV65sCxYssLfffttZFhkZaeXLl7dHHnnEfv31VzO7vgO+b98+O3HihIcqxv2yePFiK1iwoH355Zdmdj24yZkzp7300ktu/QYPHmyBgYF2+vRpT5SJOHLjjtXly5fN7H8fjgcPHrSVK1damTJlrGTJkla2bFkrV66c1a9fP1aYh4Rn/vz5VrlyZStWrJgNHDjQzp07Z2bXg9py5cpZ8+bNbfv27fbWW29Z0aJFY+1wI2GIjIy0iRMnxpq/fNmyZfbkk09axowZ7auvvnJbtnPnTmvatKlVqVLF2W6QsHz//ffWv39/5/7w4cMtc+bMtn//fqft6NGj5ufnZ48//nisEZl4MH311VeWMWNG++STT8zs+plZSZIksRYtWlj+/PktZ86cNnToUGf03HfffWepUqWypk2bEt4mIreaj3Tbtm2WJEkS69Wrl1v7kiVL7JlnnrGaNWtaaGgo20oC8tprr9natWvt6NGjdvDgQTt8+LAVLVrUmct0z549lipVKnO5XPbRRx95uFrEpRuD95gzuR977DHny5mvvvrK0qZNa+PGjTMzs6tXr5rZ9Tlv27dvb5UrV7Yvvvji/hd+nxHc4l8dOHDAcufObS6Xy+2UV7P/hbd58uSxjRs3JuhvOeCud+/e5nK5LFWqVPbWW2/Z8uXLbdmyZVasWLFY34LfOAoXD54bd6zHjBljTZo0saeeespGjRplly5dcpZFR0fbN998Y+3btzeXy2XFixfnPSGB27Rpkz388MPWtWtX6969u/n7+1vz5s2dC5CNGzfOihQpYhkyZLBs2bJxJkYCF/P/ffXq1da8eXOnfc2aNfbkk09a1apVbcGCBW7r/P7770yrlABFR0fbuXPnLFeuXOZyuaxDhw722WefmZnZc889ZxUqVHDrf+zYMfv99989USriScOGDa1AgQI2Y8YMe/31123s2LHOsi5duljBggXt/fffd8Lb+fPnW3BwMO8HicSN+4eTJ0+2N9980z788EP7448/zOz6dH1Jkya1zp0728aNG2337t1Wt25d69evn+3evdtcLpctWrTIU+XjHt34+n/zzTfm5+dnP/74o9P2888/W4ECBZwpE3bv3m1vvfWWffHFF05whwdfo0aNrG3btm4XFDt69KhlyJDB/vjjD1u2bJk99NBDzijsS5cuWe/eve3QoUNmdn2QYenSpa1bt24eqf9+4uJkuC37/4sEHDhwQM8++6zCw8O1aNEi5ciRw1l25coVFStWTMmTJ9eaNWvk7+/v6bIRD+wfF5u5evWqunbtqmPHjikoKEh//fWXLly4oODgYCVLlkzvvfee0qZN68GKEdfefPNNTZkyRR07dtSxY8e0YcMGFSlSROPGjVPy5Mnd+q5du1ZlypSRr6+v2yTzeLDF7DLEvBds2rRJCxcuVL9+/SRJGzduVJUqVfTEE09o7NixCgwM1P79+3X06FHlyJFDISEhHqsd8Svm//mZM2c0Y8YMjRkzRpUrV9bHH38s6fpFZEaOHKkzZ86oW7duevzxxz1cMe6HefPm6eWXX1bFihWVMWNGHT58WC1bttSECROci1j+c/8CD7YbLwrTqFEj/fHHH5KkPn366Omnn3b6de3aVd9//71eeOEFtWzZUkFBQbp48aJSpkzpkbpx/9y4Xxizb/noo4/q/PnzSp48uSZPnqyCBQvqyy+/VIcOHZQkSRKZmTJkyKDVq1fr9OnTqlatmubOnatixYp5+NngXnz22WfaunWrQkJC9Morrzjtq1atUmhoqCZOnKjChQurf//+crlc+uabbyRxkeOEYtq0aWrbtq1ee+01DRgwQEmTJpUkNWvWTGfPntWKFSv04YcfOhckPHLkiBo3bqyXX35ZTZs2lcvlcj5XPvvss4S9TXguM4a3utUIuf3791vu3LmtXLlydvjwYbe+kZGRtm/fvvtVIjxk0aJF1r9/f9u5c6eZXZ9Avn379rZx40bbtGmTVa9e3Vwul7lcLvv66689XC3i0rRp0yx37ty2adMmM7t+2oq/v7/lzJnTGjVq5Jyu9s/TXJl3KmGJec9fs2aNjR071po0aWJvvfWWW58NGzZYsmTJrGnTps7IWyQOs2bNspYtW9ru3btt7NixVqRIEWvVqpWzfMWKFdaoUSMrWrSofffdd54rFPHq559/tk2bNjmfBz179rQuXbrY6tWr7dVXX7WAgAALCQmxcuXK2dGjRz1cLeJbq1atzOVyWa9evdzO0jEz69atmwUHB9vIkSPt2rVrnKWTCNx4Ftcff/xhL730kjPl3k8//WT169e3vHnz2pYtW8zs+oWI1q9fb6tXr3bW7dmzp+XJk4fR2Q+4bdu2WfHixS158uTOXPc3jqbt06ePuVwuy5kzp5UsWdJtVCYefDHHiPPmzbOkSZNaz5497cKFC2Z2/QzPrFmzWoMGDZz+ERERVqdOHatataqz7vnz5+2FF16wX3755f4/gfuM4BZubjwoHz58uPXo0cO2b9/uLN+/f789+uijVq5cOefiMuxkJR4zZ860hx9+2J544gnnlLcaNWpYly5dnD5DhgyxihUrOuEuHkw37lhHR0fb3Llz7fXXXzczswULFlhgYKCNGjXKRowYYalTp7bnn3/euYgEEraFCxeay+WycuXKmcvlssKFC9vatWvd+mzcuNFcLpe99NJLnNKWwN14scL8+fPbiBEjzOz6vOdjxoyxokWLuoW3P/74o7Vo0cJtjlMkDNHR0XblyhUrVKiQlSlTxrp06WKXLl2yJUuWWMOGDe23334zs+sBf/Xq1S1dunQELwlMzPvBr7/+amvWrHHamzdvbrlz57Zp06bF2lfo1auXc3o8Eq6Ya2LEmD17tj3yyCNWvnx5O3XqlNO+evVqq1+/vuXLl8/CwsLc1tm2bZs1b97c0qVL54S9eHD8MzOIioqy6dOnW5EiRSx//vzOtCk3BrS//vqr/frrr85xCfuUCcONA3u2b99u3bt3N5fLZe+8846ZXX+du3TpYoULF7bixYvbc889Z2XLlrUiRYo420fMYySWbYLgFrF8+eWX9vDDD1vVqlWtWrVqljJlSps+fbpz4ZD9+/dbvnz5LF++fIyUSIS2bt1qvXv3tixZslizZs3s888/t4cfftjmzZvn9In5tgwPvkGDBtnUqVPN7PrFB0+dOmUlSpSw999/32nLli2bpU6d2t58801Plop4dOOF6F566SWbNGmSRUVF2bp16yx79uzWuHFjZzR2jM2bN/MFTiKxePFi6969u7Vu3drtImPnz5+3MWPGWJEiRax169ZO+z9H3eHBdbMv78+cOWMjR460ihUrWu7cuW3NmjVWq1Ytq1mzptNn3759dvLkyftZKuJZzLbwxRdfWI4cOeyNN96wAwcOOMsbNWpk+fLls08//ZQvehOZjz76yMqVK2fXrl1zwpZp06ZZlSpVLG3atM5goBgx86IHBgba3r17zex6SBMWFmZvvPGGbdu27b4/B9ybGweEREZGOvsBUVFRNmfOHCtVqpTVrl3bCfFvNrqWs/gSnu7du1vu3Lmtbdu2VrJkSfPx8bGuXbua2fVAdsGCBdapUyfr2LGjffDBB05Im1jC2hsR3MLNmjVrLEOGDDZ58mQzu37Q5XK5LE2aNDZu3DjnCvF//vmnlShRgukRErCYHfBdu3bZ0qVLbfXq1W5Xi9+1a5eVKlXKypUrZ5kyZbJ69eo5E4XjwXXjjtW0adMsKCjIuTCA2fXT4LNkyWJbt241s+tXhX/22Wft888/v+XVgZEwbNy40Ro2bGjlypVzO2havXq15cyZ05599lm3bQWJQ3R0tH3wwQfmcrksa9asdvbsWTMzt9PYxo0bZ9myZbNXXnnFWQcJQ8xruW3bNlu5cqXzBU5UVJQdO3bMWrRoYQUKFLDWrVubv7+/czosEqbvvvvOkiVLZhMmTLDz58/HWv7cc89ZoUKFbOLEiXyBk4gcP37c+Uy48Uve+fPnW4kSJaxixYpuIb/Z9WkT3njjjVhhXWIMbBKSAQMGWPXq1a1+/fo2d+5cM7v+eTFz5kyrUKGC1a1b1wlvOa5I2H744QcLCAhwzs64cOGCTZ482ZIkSeKc5XkziTXAJ7iF4+rVqzZp0iTr3bu3mV0fDZE1a1br0qWLdevWzZIlS2Yff/yxc1DGB2fCFXMg9uWXX1quXLkse/bsVqpUKatRo0asETIjRoyw4sWLW/r06Z1TXPDgW7x4sb377rs2ZswYM/vfh+TOnTutQIEC1rlzZ9uyZYvVrl3bGjVq5GwzifXDNDFYvny5FStWzJInT26ffvqp27I1a9ZYnjx5rE6dOpy+mEjcGL6Gh4fb+PHjzdfX19577z2nPeb9ICIiwiZNmuSMnMKDbeDAgTZo0CC3fYWAgADLlSuX+fj42LvvvusWyk2dOtVefPFFc7lcVq1aNUZbJhDz5s2z3bt3m9n194OLFy9ao0aNrE+fPmZ2/f/9tm3brF+/fjZ8+HBnvVq1alnZsmXdRucjYXrzzTfdrn2wfPlyc7lcbl/gfP7551atWjULDQ295bz47FsmDKNGjbLg4GB744037JlnnjEfHx9neqWY8LZy5cpWunRpCw8P92yxiHdffPGF5c6dO9aZuqNHjzaXy2UDBw5kf+EGBLdwO/j67bffLCwszC5evGhVq1a1l156yaKjo+2vv/6ytGnTmsvlssmTJzNaJhFYsmSJpU6d2saPH29XrlyxGTNmmMvlsiJFitjx48fd+u7bt49pMxKIq1ev2rFjx5yLzPXq1ctt+aVLl6x///6WO3duy5Qpk5UrV845nYlvxhOmrVu3OmdbbNy40SpWrGg1a9a0xYsXu/VbsWKFFStWzLl4JRKmGy9KeuO+wPnz552RtyNHjnTaYw642W9IOAYMGOCEL8ePH7eiRYva5MmTbefOnTZ58mTz8fGxbt262ZkzZ5x1jh8/bnPnzmX6lAQgOjrawsLCLHfu3LHOtKpfv741aNDAjh49am3btrXQ0FArVKiQpUyZ0tq0aeP043Mi4du7d68FBARYhQoVnPD2wIED9tZbb1natGntww8/dPrOmzfPqlWrZtWrV+dszgTkn8cFo0ePdi5eHRERYUOHDjWXy2XDhg0zs+v7C5MmTbKXX36ZY4pEYPXq1ebj4+OMuI15zcPCwixlypTmcrmcAUQguE20rl696hxE3WwOmd9//92KFi1qy5YtM7PrwVy7du3szTfftB07dtzPUuEB586ds+bNm9vAgQPN7PoBV5YsWeypp56yEiVKWKFChZzTWDgYf/AdP3481ki4bdu2Wfr06a1MmTKxDrQvXbpkBw4csI0bN3KxgATuwIEDVqpUKXvmmWec8HbVqlVWqVIlq1+/fqzw9u+///ZEmbhPYt7vf/jhB2vUqJE9/vjj1rZtW2f55cuXnQOx0aNHe6pM3AcjR450Rte2adPGbYTtvHnznPCWUZUJ1+nTp83s+v5CzIWMP/30UytSpIj5+vpaw4YNbfbs2WZ2/eysChUqMIoukdm8ebPlyZPH7Uv+w4cPW58+fSwgIMAtvP3iiy+sUKFC1rFjR0+Vizh0Y/A6f/58mzNnjpUrV86ZHsHs+vHEBx98YL6+vs7I2xvXI7xNGG71OoaHh9szzzxjVatWtQ0bNjjtBw8etPbt29vixYs5vrwBwW0ic+MVXs2unw7dsGFDa9u2rU2aNMlp/+mnn8zPz88WLlxop06dsrfffttCQ0NvGvIiYZo/f76tX7/eTp8+bUWKFLGXX37ZzMzGjh3rzGV44sQJD1eJezVjxgwrXry4BQcHW8mSJW3Pnj3Osi1btljKlCntmWeeue0V4DmFLeGKjIy0oUOHWsWKFa1ly5ZOeLty5UqrVKmSPfXUU87oCTO+yEkMvvrqK0uVKpW98sorNnLkSAsODrZ69eo57xGXL1+2YcOGmcvlsvHjx3u4WsSnG+c2jjkTJ+Y9YN68eZYsWTJr3769876BB1vMwXd4eLjzOh85csSCg4OtVatWduDAAbt27ZodOXLEfvrpJ7d127Zta88++6zbafNIHDZv3myPPvqolS1b1jmOPHTokBPe3jiibtmyZexTJgA37gu++eabljRpUitWrJi5XC7r1KmT2/vApUuXbPjw4eZyuZwvepBw3BjafvXVV/bxxx/bmDFj3AYC1KtXz4oUKWKffPKJLVy40GrVqmVVq1Z1+hDeXkdwm4gsX77cgoKC7N133zWz6wfeSZIkseeff94qV65sBQoUsE6dOjn9mzVrZi6Xy/Lly2dp06a1zZs3e6p0xKOoqKjbhi2fffaZhYaGOld8/fbbb6169er2zDPPuIV8ePBMmDDBkiVLZiNHjrRFixZZoUKFrG7dumb2v52uzZs3W4oUKaxRo0a3DW/x4LvV+0BkZKSNGjXKypQpYy1atHBCmNWrV1uhQoWsSZMmseanwoPvZtvD9u3bLW/evM6B9rFjxyxTpkzm7+9vpUqVci4u8/fff9uHH37IGToJTMw2cerUKedAavz48eZyuWzo0KGxtpkZM2ZYunTp+JI3Adm1a5fVrFnTPv30U+eAfNq0aZY9e3Zr166d7dq1K1b/bt26WZo0aZyLmiLx+fnnn28Z3qZJk8YGDx7s1p/wNmHYtm2bVa5c2TZt2mR//vmnTZw40TlT48bX+OLFizZ79mwCugTmxn2CHj16WEhIiFWqVMmCg4OtcuXKFhYWZmbXjyc6dOhgKVKksIIFC1qlSpWc9wkGhPwPwW0isn//fuvZs6fly5fPBgwYYB9//LFzKuPJkyftww8/tJw5czojK83MZs6cafPmzeOCIgnQPy8ytn79ehs7dqzNmzfPOf3NzGzo0KGWJk0aJ5h588037eWXXyaoecBNnjzZkiZNagsXLnTaPv74Y3vhhRds3bp1tmPHDmcb+fnnny1VqlRWrVo1O3bsmKdKRjzatWuXzZo1y8yun5nRo0cPt53qyMhIGz16tBUpUsRat27t/P9fu3YtgX4CdvLkSbf5BpcvX+5cwPTQoUPOPsOOHTssQ4YM9vjjj9uff/7poWoRn2IOnhYuXGhNmza1hQsXOsHd8OHDzcfHx21u45j+jLZNOC5fvmx16tQxl8tlDRs2tGnTpjnbwOzZsy1TpkzWvn17Z3qllStXWtu2ba1AgQLOAToStn+eEn3jhWs3b95suXLlcgtvDx8+bK+99prVqFHDoqOjCWkSkIEDB1qDBg2scePGboHsxx9/fNPwNgbhbcIzfPhwCwkJcQYBzps3z1wul5UqVcp++eUXp9+RI0fs+PHjTMN3CwS3Cdw/P0D/+usv69WrlxUuXNhy5MjhdkrCmTNn7MMPP7QcOXJYhw4d7nepuI8+/PBDe/rpp50d6W+++caSJk1qZcqUMZfLZc8++6wzv/GOHTusRIkSlitXLqtfv76lSJHCtm3b5sHqca+2bdtmadOmtSeeeMKtvVKlSpYxY0ZLnz69ZciQwZ599lnnwiMbNmyw6tWrM99UAnT16lUrWrSovf3222Zm9sYbb1iBAgWsd+/esXaqX3rpJXvooYesUaNGBDIJ3Llz56xMmTLWtm1b++OPP8zs+kF4zKi55557zpo2bWqRkZF2+fJlq1KlirlcLqtatSo72wnUF198YcmTJ7eBAwfa7t273ZYNGTLEfHx83OasRMLz0UcfWfLkya1o0aJWs2ZNmzlzplt4mzlzZmvfvr3t27fPIiMjbdWqVVyILJG4cf9w6tSp1qNHD3vllVfcQvuY8PbGOW9PnjzpBLYEtw+ufx4ffPrpp+ZyuSxbtmyxBoBNnjzZ/Pz8rHv37hxXJEBnz551fj558qS99tprNn36dDO7vh+RJk0aGzVqlOXLl89Kly5t69evj7XfyHYRm4+QYEVHR8vHx0dHjhzRnDlzNGXKFPn6+qp9+/Zq0KCBzp49q/Xr1zv906ZNq+bNm6t79+6aOXOmunfv7sHqEZ+yZcum9evXa8SIEVqzZo2mTp2qcePGaf369Vq/fr12796tkSNHauXKlcqXL5+GDRumWrVqKSQkRJs2bVKBAgU8/RRwD9KmTauXX35Zf/75pwYNGiRJeu655/TXX3/pq6++0o4dO9SuXTv99NNPWrp0qa5du6bSpUvrxx9/lI+Pj6Kjoz38DBCXfH19de3aNWXJkkWS1LNnTz311FNasmSJevfuratXrzp9y5Urp5w5cyoqKkoRERGeKhn3QerUqfXMM89ozZo1GjdunHbv3i2Xy6VChQrp4sWLOnjwoKpVqyY/Pz/5+/urQIECWr58uaZMmaIkSZJ4unzEsV27dqlbt24aM2aMevbsqVy5cunatWvaunWrLl26pO7du+v9999Xp06dNHHiRE+Xizh27do1SVLDhg3VokULtW7dWkmSJNGHH36ouXPnKjo6Wo0bN9bQoUO1aNEi9e7dW0ePHlXFihWVKVMmD1eP+8HH53qs0KNHD/Xp00d79uzRyZMnVbp0aS1YsECSVLx4cc2dO1dnzpxRvnz5FBUVpfTp08vlcsnM5HK5PPkUcA9iXv+tW7fq8uXLatmypebPn6+DBw9q9OjR+uuvv5y+L774oj744AOtW7eO1zyBWbFihZ599llt2rRJkhQYGKg6deqoVq1a2rJli3r06KF+/fqpU6dOeuedd7Rp0yY1b95ce/bscXucmO0JN/B0coz4EfMtxdatW61gwYL29NNPW69evZyruR45csTeeusty5Ytm7333ntu654+fdomTZrE/KUJzD+/xV60aJFlzZrVWrdu7XZhGTOzjRs3WvHixe3xxx93u6Ado6gSjqNHj9o777xj+fLls5w5c1rRokXt6NGjzvKrV69apkyZrE+fPh6sEvfDlStXrFSpUvbtt986bREREdazZ08rW7as27QJb731lvXv39/OnDnjqXIRT24c3XDjhUjHjBljefLksa5duzojb6Oioixv3rxWv35927Bhg3Xt2tUyZ87s9h6ChOXXX3+1AgUK2M6dO+3KlSs2evRoq1ixomXKlMkKFy7sjLAZO3YscxsnADHvB5cuXYo11+CLL75ozZs3t6tXr1r9+vWtQoUKbiNvP/30U8ufPz9TKyUiMdvGpEmTLHPmzPbzzz+b2fXrYrhcLkuRIoUz4s7s+vRszz77LHPZJjCff/655c6d2z7++GO7fPmymZnNmTPHXC6Xde3aNdY0fYy0Tng+++wzq1Chgj3xxBO2ceNGM/vf58nEiRMtNDTUmfd+9uzZ1qlTJ2vRogXvBXeA4DYBinnz27lzpwUGBtpbb73lBLY3Onz4sPXq1cvy5MkTK7xleHrCEvN6njlzxsLCwpyD60WLFlnmzJnN39/flixZ4rbOpk2brEyZMhYaGmrLly83Mz5YE5qY8DZz5sxuFya8du2aHT9+3EqWLGmTJk3yYIWILwcPHrTPP//czK7PW5glSxZbsGCBmf3vC5qIiAjr3bu3FS9e3HLmzGlPPvmkJU+ePNbFZ/Dgi/mMOHbsmF24cME54IoxcuRIy507t3Xp0sV+//13MzNbt26dBQcHW/bs2S179uxu85ThwfTPfb8bD6R++eUXK1q0qD399NOWI0cOa9Cggb311lv2/fffW7Zs2Wzs2LH3u1zEs507d1rNmjXtlVdesQMHDtilS5fM7PrF6R599FFbtGiRnT592mrVqmUVK1a02bNnO9sMU+kkDjeG8+Hh4TZgwACbPHmymZl9/fXXFhAQYBMnTrTXXnvNUqZM6ex33IjAJuGIiIiw+vXrW/ny5W3KlCnOvsTs2bPN5XJZ9+7d7fjx427rcGyZ8Hz11VdWo0YNe/zxx23Tpk1O+xtvvGGPPvqoHTp0yM6ePWuPP/64jRgxwlnOe8HtEdwmUBcvXrSnnnrKWrZs6faf4J9vjocOHbJevXo58xki4Yk5ENu+fbtVqVLFypcvby+++KIzgmL58uWWJUsWa9y4sW3ZssVt3XXr1lloaKgzzykSnhtH3sbMcWpmVq9ePStVqhQfoglQZGSktWnTxgoWLGhz5841M7OQkBD75ptvzMz9c+L8+fO2atUqe+2116xDhw62fft2j9SM+Ld3715zuVyWNWtWa9CggX300Ue2YcMGZ/m0adMsV65c1rVrV2d+0/Pnz9vWrVvtr7/+8lTZiGN79uyxcePGuY26jjFjxgx78803rW/fvm5n6VSqVMm5uCEShsuXL9tjjz1mLpfLMmbMaI8++qh1797deZ07d+7s7DMcP37c6tWrZwULFrR58+aZGWFMYjBnzhyrUKGCffnll05bWFiY7d+/3/bs2WN58+a1UaNGmdn1Yw2Xy2Uul8sWL17sqZIRh241yOvChQv25JNPWpkyZdzC27lz55rL5WIe9ATsxvf9L774IlZ4e+TIEcuQIYNlzJjRcuTIYYUKFbrpvgZujknIEqgLFy5ox44deuutt+Tr6+u0x8wjc+3aNfn6+ipz5szq2rWrLl68qB9++EGdO3dWunTpPFU24piZycfHR9u2bVOVKlX08ssv68UXX1T27Nnl6+srM1OVKlX08ccfq02bNho+fLhef/11FSpUSJJUtmxZLV68WP7+/h5+Jvivdu3apdSpUys4OPimy4ODg9WuXTtJ0rx58+Tr66tff/1Ve/bs0bZt25z5T298H8GDzc/PT+3atdPff/+tUaNG6ejRo8qWLZsuX76sDRs26OrVq0qRIoWioqLkcrl09uxZvfHGGwoODmYusgTs7NmzSpkypY4cOaJatWqpX79+SpYsmQICAvTUU0+pcePGatmypb799lslTZpUzz//vPLmzet8XuDBd/HiRdWoUUMHDx7U9OnT9fjjj6tWrVoqUaKEJKlZs2a6cuWK/Pz8JElRUVHq37+/9u/fr7Jly3qydMQxf39/9e7dW5GRkcqdO7eSJk2qoKAgdezYUevXr9fhw4f17bf/196dx9d07f8ff52TRExBmiJBiaJquqagFSSNIipmYp7KDS7SXlVBCBGhhq8qaqwkmkS57tWoKRSNGqpVaqopNNSUiKkVxJDs3x++OTcpevu733KSk/fz8fB4yD77JJ/knLP3Wu+99lob6NChA3Xr1iUiIoJhw4bh4eEBoHOFjUtNTWXMmDGcO3eOChUqANCxY0dq164NwJYtWyhSpAjt27cHoHDhwrzzzjtUr16d5s2bW61u+fNkzUEaExND8eLFadu2LQBFihQhOjqaPn36MGvWLOzt7fH398ff3x8XFxe8vLysWbY8Q9nnqu7UqRMACxcuJDQ0lPHjx9OoUSOOHDlCbGwsTk5O9OvXD3t7ex4+fKi1Ef4Ak2EYhrWLkD/fwYMHeeONN/j888/x9vZ+6gdi6dKl9O7dm+vXr1OgQAFKlixphWrlWUpNTcXPz4+GDRsyb948y/bMzExLw9pkMrF582YCAgJo0aIFw4YNo27dugBaLCCPMgyD48eP4+XlxbBhwxg6dCilS5d+6v6XL19m6dKlTJs2DXd3dw4fPoyDg4NOpjbs0KFDzJgxg2PHjnHo0CGKFy+O2Wzm3r17wKPjgp2dHQ4ODuzdu5dKlSpZuWJ51r799lveeustevbsyd///nfS0tJYsmQJp06d4ptvvqFp06bEx8cDjxaxCw0N1fHBhmRmZjJhwgTc3d0pUKAA33zzDbGxsQQGBlKvXj06d+5s2Tc6OpqdO3eydu1a4uPjLW0GsS3bt29n0qRJuLm5ERgYSIUKFZg3bx6JiYnExcWRkJBA06ZNMZlMlkWRJX+YNGkS8+bNo2LFiri6ujJ48GBLeLdq1Sp69OjB119/Tbly5QgMDKRYsWLExMQAqG1pI9LS0qhXrx6lSpUiJCSEli1bWh7LyMigWrVqlChRgr59+xIQEJDjop9ef9uVPTv4/PPPWbBggeVi4G8v8mpw0B+nT4yNcnV1xTAM4uPj8fb2xt7e/rEA7osvviA+Ph5/f3+t+GrDzpw5w82bN+nbt2+O7VmN66wDZqtWrViyZAldunTB0dGRDz/8kAIFCii0zaNMJhPVq1dn8ODBfPrppxQoUIC3334bV1fXJ+7v5ubG22+/Tbly5ejXrx92dnZqWNm42rVrM3r0aD744APs7Ozw9fUlKCgIwzC4du0a9vb2FCtWjPT09N8N/cV2NGrUiLi4OFq3bs3NmzdZvnw58+fPB+Drr7/m8uXLPHz4kJSUFPr06aPjg40xm81UqlSJ0NBQ9u/fT79+/ejZsyerV6+mf//+rFmzBn9/f3x9fSlbtixOTk58/fXXVK1a1dqlyzPi4+OD2Wxm/PjxfPDBB4SGhjJ9+nQA9u7dm6MTrtA2f8hqG3bv3p2ff/6ZZs2aERkZyYcffghA27Zt6datG3FxcTRr1oyKFStStGhRvv/+e8v30Lkjbzp69CgXLlygTJkyVKhQgeLFi7Njxw66dOlCeHg4hmHQokULzGYzdnZ2/OUvf2HXrl2cOHECBwcHy/fR628bnha6Zh9527FjRwAWLFjA1KlTmTRpEvXq1bPsq9D2j9OIWxuU9ZIOHz6cFStW8PHHH9OzZ88cj5tMJoKDgzl//jwLFy6kSJEi1ipXnrGPP/6YkJAQrl27BvDEERHp6elcvXqVcuXKsXXrVipUqECVKlWsUa78H2V9vrOfTCdNmsSyZcsYOnTo74a32ekKaP5x6NAhpk+fzrlz5/jb3/5Gr169AI2IyM927dqFn58frVu3ZsmSJTg5OVkee/jwIXfv3s2xTWyLv78/ZcqUYc6cOcCjW6CPHj2Ku7s7t27d4uzZsyxfvhwvLy8KFixo3WLludixYwfjxo2jZMmSDBs2jBYtWgBPblOKbbp27VqO6fTu37+Pn58fHh4ejB07Fj8/PwoUKEBgYKBl5G18fDx2dnb4+PhoQEAeFxkZyeTJk4FH/cagoCCGDBlCwYIFSUlJoV27dhQsWJAxY8bQsmVL7OzsGDRoEP369cPT0xOz2ay7OG3EiRMnePXVVy1fP+11zb59zZo1LFy4kIoVKzJt2jRNzfnfeK4z6spztXv3bqNhw4aGu7u7ZYVPw3i0INn7779vvPjii1poJh/YuHGjYW9vb2zbtu2p+wQHBxtdu3bVQlQ24P79+8adO3eMCxcu5FgZfsKECUa5cuWM8PDwHKsAS/7xe5/vgwcPGj169DC8vLxynC/EtjxtMZEnLSS0a9cuo3jx4kbPnj0tK8RrwSHblvX6zps3z2jTpo1hGIbRv39/o3Tp0kZiYqJhGI8WLdVChflTQkKC4enpaXTp0sXYtGmTtcuR52jFihWGh4eHMWzYMOPixYuWc8IPP/xgVK1a1fjxxx+NM2fOGJ6enkaLFi0si51mpz5G3rVo0SLDwcHBiI6ONq5cuWK88847Rrly5XL0My5dumQ0bdrU8PDwMN58802jadOmRvXq1S3tjqe1PyRv+cc//mGYTCajXbt2RmxsrHH69Okcj//2dc7ebly2bJlRsmRJY//+/c+lVlujEbd5VNYVbuN/r2QYT7nSsXXrVqZOnUpCQgINGjTg4cOHlChRgqSkJNasWUOdOnWef/HyXB04cICWLVvSrl07Jk6caFlEIIthGIwcOZIXX3yRcePG6UpoHrZlyxbi4uJYv349t27dwtPTk3bt2hEQEABASEgIkZGR/18jbyXv+vnnn9m7dy/JyckEBARQsGDB3x1JffjwYcaNG0dGRgarVq2iWLFiz7lieZay2g1Xrlzh5MmTGIbBq6++SqlSpYAnj5jYtWsXHTt25PXXX+ezzz7T3Tn5xJ07d6hRowa3bt3C0dGRDRs2qL1oY347UvaPjpzduXMnQ4cOpW7duixevJjChQs/yzIlF7hy5QqNGzfm/PnzvPDCC5QtW5bXX3+dli1b8uabbzJw4EC8vLwYPHgwJ0+eJCAggLS0NObOnYunp6e1y5f/o8jISAICAli3bh2+vr4AJCUl0a9fP3r06AGAh4cHDRo0IDU1laVLl3LmzBkKFSrEnDlzsLe318h8G7Ju3Tpmz55N+fLlsbe3Z/369YSEhFC3bl0aN25s2S/7a571//T0dOrVq8fUqVPp0KGDlX6DvEvBbR6U9eY/f/488fHxtG7dmnLlyuXYJ3sHLCkpiQMHDrBx40YAPD09ad68+WMBntiumTNnEhQURGBgIEOGDLHc3nD37l2mTJnCZ599xubNmzU9Qh4WERFBSEgI3bp1o3Tp0pQoUYJ58+Zx7do1evfuzYwZMwCYOHEiERERDB06lIEDB2ruUht1+PBhOnTogLOzMz/99BOurq4cOHCAQoUK/e7zjh49irOzs+Y9tzFZ7YYjR47QtWtXHjx4QFJSEq1bt+b999/H29v7qc9NSEigf//+7NmzhzJlyjy/osUqsi7uLFu2jPDwcBYvXmy5LV5sy4kTJ4iOjiYgIIDy5cv/4Qv3u3fvpmzZsri7uz/bAiXXWL9+PR988AH16tXD0dGRUqVKMWXKFIYMGcK2bds4f/48+/fvp1y5cpw8eZI5c+bw8ccfK6zL427cuEGLFi24fPkyFy9etGx/66232L9/PxUqVODmzZtcvHiRjRs34uXl9dhFYE2PYVuOHTtGcHAwI0eOpGnTpixcuJCEhAR++uknPD096devH9WqVXviNEoRERGEhYWxY8cOypcvb4Xq8zgrjfSV/1LW8PMjR44Y1atXN/z9/Y3Y2Ngn7qtbGvOH377O2b/O/v/x48cbJpPJ8PDwMCZNmmSMGjXK6Natm+Hi4mIcOHDgudUrf75FixYZBQoUMD777DPj/v37lu2nTp0y+vXrZ5QuXdqYMWOGZXtoaKhRvnx5Y9asWUZaWpo1SpZn6ODBg0ahQoWM4OBgIzk52UhMTDTKlStn/OMf/7B2aWIFWe2GQ4cOGYULFzaCgoKMAwcOGKtWrTKKFy9u9OjR4z8eB+7cufM8SpVn6Eltwt+7dfXgwYNG6dKljZiYmP+4r+Q99+/fNxo0aGCYTCajSpUqxqhRox47R+jWdsl+3PjnP/9pvP7660afPn2MH3/80UhMTDRCQkKMZs2aGU5OTsbPP//82HFGx428LSMjw/j222+NV155xWjWrJlhGIbRrVs3o3r16sbx48eNzMxM47vvvjNq1apldOjQwbhz546OG/lAYGCgUb9+fUvbMSkpyXjhhReMYsWKGZ6ensYbb7xhxMXFPda23LFjh3Hy5ElrlGwTNOI2DzH+9wrWsWPHaNasGQMGDOCdd9753dG2T9r+tMcl78kaRXXr1i0yMjJ48OABJUuWfOr+sbGxrFq1igMHDuDm5sZrr73G8OHDtSJ0HhYXF0enTp1Yu3Ytbdu2tVzZzho1debMGQYNGsTt27dZvXq1ZaR9aGgoH330EfHx8TRs2NDKv4X8WU6fPk2tWrUYNWoUYWFhlu1NmjTB29ubCxcu0KpVKzw9PXW1Ox85ffo0devWpUePHixZssSyPTw8nFmzZnHkyJHH2hJiO7LaCteuXSMlJYWMjAxq1aoF/P5ClBMmTGDZsmXs3btXxwsbNHPmTOzt7alZsya7d+9m7ty5tGnThsaNGzNkyBBLX0H9hvwt++sfFxfH1KlTqVixIpMmTaJatWpkZmZy7tw5KlasqPeKjdq/fz/+/v5cvHiRV155ha1bt1qmWQLo1KkT8GgBKrFd9+/fp0CBApw/f54BAwYQFhZGw4YNqV+/Pm5ubixdupTvv/+exYsXc/fuXb766isdD/5Eun8hDzGZTNy+fZvRo0fTq1cvZs6caeloZWRk8Msvv5CSkvLUD0jWdn2AbENWR+zYsWN06NCBRo0aUatWLWJiYh7bN+v6TK9evYiLiyMxMZF9+/YxZ84chbZ52L1799i8eTMvv/wy586dA8gR2hqGQaVKlRg7diz79+/n/PnzludOnDiRKlWqsGjRImuVL3+yzMxMIiIicHJyyrFa6wcffMA333zDTz/9xIkTJ+jfvz8ffvght2/ftmK18jwdP36cu3fv8sILL5CYmGjZ7urqirOzM/fv37didfIsZbUVjh49SuvWrWnTpg1t27a1zH3+pNA2q83w2muv4e7uToECBZ5rzfJ8NGjQgEmTJuHs7MykSZP48ccfqVy5MqNGjaJx48YsXbqUU6dOqd+Qz2UN+gHo0KEDwcHBJCUlMXnyZPbs2YPZbKZixYpkZmbqvWKj6tevz8qVK6lbty4ODg45Qtu7d+/y66+/8sorr1ixQnkWjh49yo4dO0hISACgQIECGIZBqVKlcHZ2Zvbs2dSvX58SJUoQERFBuXLl6NChA5s2bbKEthoj+udRcJsHZL3hf/31VwzD4MyZM7z++uuWx7dv305QUBBVq1alVq1aTJw4kRs3blirXHkOsjpiBw8epFGjRlSvXp0BAwbg4+PDgAED+Pzzz3Psn70hZTKZLPNcau6pvM3R0ZGQkBD8/PyIiYlh+vTpwKOOeGZmpmW/rI53VlCXkZEBPAptXF1dc+wreZfZbGb48OH07NmTlStXsmjRImbMmMHs2bPZsGEDsbGx7N27l4CAAJYtW0Zqaqq1S5ZnJOsznfVZb9u2LVFRUcTExDB37lxu3rxJamoqQUFB9OrVi5dfftma5cozktVWOHToEK+99hrNmjUjMjISPz8/li9fzsKFCwEe61hltRnatGnD2rVrtZCljfL29iYgIIA5c+aQnp6Om5sbx48fp3z58lStWpWYmBhq1qzJ7NmzrV2qWFn2AKZ9+/aW8HbBggXs3LkTUJ/CljwpbPPw8GDevHn88ssvNGnSxLK9U6dOpKSkMGXKlKc+V/KeqKgoOnfuTI8ePejTpw8DBgwAHh0LHB0dmTJlCvHx8Tg4OLBu3Trc3NyAf7/+JpNJF3P+ZJopOg8wmUykpqZaVnB1dXVl3759+Pj4EBMTQ1RUFJUrV+bdd9/F0dGR9957j1dffdWy0qPYHrPZzPHjx2nYsCGhoaGMHTsWeDSJfFJSEjNnzuStt97C0dHxsef+NsSVvM3NzY0xY8YQHh5uCeyDgoIwm82WaROOHDlC/fr1qV69OoBlypWvvvqK8PBwNbZtSJkyZSzvhzlz5nD69Gm2bNmCj48Pd+/epVChQrRu3ZqNGzdy7949a5crz0BWWHf27Fm2bNlC7dq1adSoEb179wZg7NixpKWlsXnzZrp3726ZUkO3uNoes9nM6dOnee2113JMn1KhQgXLyt/w77bAk1aB/r3plyTva9SoEbNnz6ZAgQIMGjSIhIQEtm3bRo0aNTh58iSbN2+mefPm1i5TcoHs0+21b98es9lMYGAglStXpmnTptYuT/6PduzYwd27d/H19X3i1IomkwkPDw9WrVpF9+7d8fLyonDhwiQlJXHkyJEcd/xJ3rZ48WICAwNZtmwZtWrVYunSpSxZsgRfX1+6devGw4cPKVOmDO3bt8fJyQknJydLmyH7e0b9yz+Xgts8Ii0tDTs7O1566SXatm3LkiVLiImJ4c6dO0ybNo2WLVtablH45z//ydatWxXc2rCMjAxWrFjBw4cPad26NQAPHjzA2dmZatWqkZqaqhNnPuLq6kpwcPBj4a29vT23bt0iIiKCV1991TK1itlspnr16pw7dw5nZ2drli7PgKurK+PHj8dsNuPo6MgPP/yAj4+PZaT9li1bKFmyZI5b3cQ2ZDWcjxw5QpcuXahRowblypWzdMB69+6NyWQiMDAQNzc3RowYYXmuQlvb87TpU1auXMmDBw9ITExkzpw5uLi40LVr1xxTIqjDlT906dKFefPm4eDggKurK5s3b6ZGjRoAVK1aVdNp5RO3b9+mSJEi/3G/7IFe27ZtcXZ2znEXqORNv/zyC2FhYdy5cwd7e3vefPPNp66LkzVtQqdOnShUqBBHjhzBwcHBMlhE8ra4uDiGDh1qWTsFoF+/fixYsIALFy4Aj6blc3JywtfXl0GDBjFw4EA8PDysWXa+oE9XHlGxYkVKlixJQkICI0eOpHHjxvz666/UrFmTMmXKWPa7desWhQoVombNmlasVp6F7CdPOzs7RowYQVJSEk2aNGHDhg14eXlx7tw5Vq9eTVhYmE6e+cxvw1s7OztGjRpFnz59uHjxImvXrs1xq5vJZKJEiRLWLVqemdKlSzN27FgyMzNZvXo1Dx8+JCgoiClTprBs2TJ2796t0N4Gmc1mTpw4gZeXF4MHD2bEiBE52gjwaK5zk8nE6NGjWbhwIcOHD6dy5cpWqliepazpU+7cucPKlStxdHTk1q1bzJw5k+DgYOrUqUNsbCznz58nODiYKlWqMHLkSNq0aWPt0uU5yGpXBgUFkZyczPTp06ldu7ZG3+cz69atY9OmTbz77rt/aJ7S7IFe1i3zGmmZd+3du5eXX36ZmTNnMmnSJKZNm0ZmZiYtW7Z8anhbr1494uPjqVq1ao47/CRvy752SlJSkmX7jBkzAPj+++8JCgrihRde4K9//StdunRh+fLlLF++XMHtc2AyNBFJrpP9VrXsX3ft2pWiRYsSGRn51OeGhIQQHR3Ntm3bNGedDcl6D9y8eZNr165hZ2eHu7s79+7do3///mzYsIGIiAiCgoJo0aKFZcEpNb7zn+TkZKZOncr+/fs5ffo0JUqU4OjRozg4OKhhnQ8lJycTHh7OoUOHuHfvHocPH2bXrl3Ur1/f2qXJM5Cenk7fvn0pVaoU8+fPt2x/8OABKSkp3Lp1i2rVqgEQGRnJ5MmT8fHxITg4WG0GG5Z1HPjyyy85c+YMmzdvxsfHB8DS4Z4/fz4HDhxg1KhRlml1JH9ISUmhSZMmOaZOkfwjMjKSkSNHMmDAAP72t7/pQl4+cvbsWfz9/SlTpgxLly7l8uXLjB07lvT0dIKCgmjZsiXw+/1J9S1sy+XLl5k+fTrffvst3bp1Y/fu3Zw8eZJRo0ZRqVIloqOjOXz4MOfOnbOMuv2f//kfvQeeAwW3udRPP/3Epk2baN68OUWKFOGll15ixYoVREVFsX79euzs7HJ8QLZs2cLatWtZtWoVX375JXXr1rVi9fJnyr4i9NChQzl79iz29va0a9eOjz76iPT0dP76178SGxuLn58fX3zxRY5RlZL/JCcnExQURGpqKmvXrtUtTPlccnIy48aNY+fOnaxevZo6depYuyR5Rh4+fIiPjw/+/v4MHz4cgM2bNxMfH09ERAQuLi5UqFCB7du3YzKZWLJkCR999BHbt2+ndOnSVq5enqWUlBSmTp1KQkICffv25b333gPg/v37likSdJ7Iv2JiYhgyZAjbt2+nYcOG1i5HnoP09HQKFiwIQGxsLEFBQXTu3JkRI0ZYwtvsgd3t27dJS0vTucLGLF26lBUrVlC6dGnmzZv3X4W3YluyLvauX7+eX3/9lcOHD1O2bFng37nEp59+yqVLlxg1ahT29vaPDTyUP5+C21zGMAwePnxI79692bt3L3Z2dly7do3GjRtz+vRpbt26xf79+ylbtqzlCteaNWuIjo4mMzOTadOmaaSEDcm+InSTJk3o27cvTZo0YfPmzXz55Ze8/fbbhIWFcfnyZSZPnkx0dDRbtmyhcePGOoDmczdu3KB48eK6hUkASE1NJTMzUx0uG/frr7/SqFEjmjZtynvvvceaNWtYvnw5NWvWpFmzZhQtWpRp06bh5+fHhx9+aHlOsWLFrFy5PA9ZnbF9+/bRsWNHgoKCAAW2AhcvXqR3795ER0db5sMX27VlyxZL3yJrjtqYmBjGjBnzWHgLjy789OjRg/bt2/POO+9Yq2z5E2UPYqOioli2bBlly5ZVeCvAvy/27t69m+7duzNq1Cgg58XeLBp1/XwouM2l7ty5Q+HChUlMTOT48eP8/PPPfP311xw7dgx3d3eWLVuWowN+7Ngx3NzcNGehDTp9+jS1atXi/fffZ/LkyQDcvXuXNm3akJ6ezu7duzGZTFy9epW///3vrF+/ns8//xxvb2/rFi65ggJ8kfxl+/bttGrVirJly3L9+nVmzpxJ8+bNqVy5Mg8ePMDPzw83NzeioqIAdcTym6zw9ocffqB58+aEhoZauyTJJbKPwBTbFRkZyYQJE2jXrh0DBgygQYMGlseio6MZO3ZsjvA2NTWVrl27cvbsWRITE3FwcLBi9fJn+qPh7ZgxY2jRooWVq5Xn7WkXexXUWoeC21zqaR2puLg4Zs2aRdGiRYmOjqZkyZJWqE6el8zMTMaPH88nn3zC+PHjCQwMtDwWFhbGhg0biI+PtywydfXqVQYNGsT3339PYmKiZRV5ERHJP86fP8+VK1eoUKECL774omV7ZmYm3bt3p2rVqpYLgQpt85/k5GTGjh3LhQsXWLlyJS4uLtYuSUSeg5UrVzJw4EAiIyPx9fV94t0WUVFRjB8/nq5du9KtWzfGjh1LcnIyhw8f1tRbNuj3wttLly4RHBxMRkYGoaGhmkYlH8q+dsobb7zBlClTrF1SvqXgNo/IGjWXtUL44sWLuXv3LuvWrcvRKRPbc+nSJWbMmMHevXtp164d48aN4+rVq1SsWJEJEyYwevToHPtfu3aNe/fuPbaSuIiI5F/3798nLCyMiIgIEhISqFKlirVLEitKSUkB0PQpIvlEamoq/v7+dOnShWHDhlm2p6WlcezYMR48eICnpyfwaFTuxIkTuXr1KpUqVeLAgQMKbW1Y9vA2MjKSiIgIypYty9y5c7l06RLDhg3Dx8eHsLAw3aWTDyUnJzN69GgKFizI4sWL9fpbiYLbPCTrQGkYBtHR0axcuZJFixZRvnx5a5cmz1jWrQoHDhzA09OTzz77jI4dOzJ37lxAt7qKiMjTxcTEsG/fPlatWsWmTZu0gKmISD6TmpqKt7c34eHhdOjQAYCFCxeyfft2/vWvf1GmTBnc3d3ZuXMnJpOJqKgoVq5cyfr167G3t1doa+N+G95GRkZSoUIFlixZwtSpU9m4cSPffPPNY/ObSv5w/fp1SpQogdlsVu5gJQpu85js4W1aWhpOTk7WLkmek8uXLzN16lT+9a9/UbZsWfbt2wdoUREREXm6kydPMmTIEJydnQkPD6datWrWLklERJ6z1NRU6tWrh6+vLz169GDBggWcOnWKJk2a0LFjR3755ReCgoLo168fISEhOZ6rvkb+kD2Qi4iIYOHChYSEhLB3716+/fZb1q5dS5EiRaxcpViT1k6xHgW3eZCucuRfKSkphIeH89133+WYJFwHUREReZorV67g6OhI8eLFrV2KiIhYybZt2+jcuTMuLi44OTkxe/ZsateujYuLCzdu3MDHx4f27dszadIka5cqVpI9Z/D19eX27du4uroyceJEatasaeXqRPIvXTrLgxTa5l+lS5dm3LhxhIeHs27dOu7cuUNoaKhCWxEReapSpUpZuwQREbGy5s2bk5iYSFpaGhUrVnzscScnJ62Rkc9l3dlrMpl4+eWXMZlMTJkyBWdnZ2uXJpKvKe0RyWNcXV0JDg6mSpUq7Nmzh2vXrlm7JBERERERyeVKliz5WGibmppKnz59uH//PgMHDrRSZZJbmEwmrl69ysGDBxk6dKhCW5FcQFMliORRWhFaRERERET+G1evXuWTTz5h165dXLlyhd27d+Pg4EBGRgZ2dnbWLk+sLD09nYIFC1q7DBFBUyWI5FkKbEVERERE5L9x4cIFdu/eTeXKlYmLi8Pe3l4LkYmFQluR3EMjbkVERERERETymZs3b1K8eHFMJpNG2oqI5FIKbkVERERERETyqawFqUREJPfR4mQiIiIiIiIi+ZRCWxGR3EvBrYiIiIiIiIiIiEguo+BWREREREREREREJJdRcCsiIiIiIiIiIiKSyyi4FREREREREREREcllFNyKiIiIiIiIiIiI5DIKbkVERERERERERERyGQW3IiIiIiJ/ooSEBEwmEzdv3rR2KSIiIiKShym4FRERERGb1r9/f0wmk+Wfi4sLvr6+HD582NqliYiIiIg8lYJbEREREbF5vr6+XL58mcuXL7Nt2zbs7e3x8/OzdllPdf/+fWuXICIiIiJWpuBWRERERGyeo6Mjrq6uuLq6UqdOHcaMGcP58+dJTU0F4MiRI/j4+FCoUCFcXFwICAggLS0NgKNHj2I2my37Xr9+HbPZTPfu3S3ff8qUKTRp0uSpP3/Xrl00bdqUQoUK8dJLLxEYGMjt27ctj7u7uxMWFkbfvn0pVqwYAQEBz+LPICIiIiJ5iIJbEREREclX0tLSiImJoXLlyri4uHD79m1atWqFs7Mz+/btY/Xq1WzdupXhw4cDUKNGDVxcXNixYwcAO3fuzPE1wI4dO/D29n7izztz5gy+vr507tyZw4cPs2rVKnbt2mX5/llmzZpF7dq1+eGHH5gwYcKz+eVFREREJM9QcCsiIiIiNm/9+vUULVqUokWL4uTkxBdffMGqVaswm82sWLGC9PR0Pv30U2rWrImPjw/z588nOjqalJQUTCYTzZo1IyEhAXi0+NiAAQO4d+8eJ06c4MGDB+zZswcvL68n/uxp06bRq1cv3n33XapUqULjxo2ZO3cun376Kenp6Zb9fHx8eO+996hUqRKVKlV6Hn8WEREREcnFFNyKiIiIiM174403OHjwIAcPHuS7776jVatWtG7dmnPnznH8+HFq165NkSJFLPt7enqSmZnJyZMnAfDy8rIEtzt27MDHx8cS5u7bt48HDx7g6en5xJ996NAhoqKiLMFx0aJFadWqFZmZmSQlJVn28/DweHZ/ABERERHJc+ytXYCIiIiIyLNWpEgRKleubPn6k08+oXjx4ixduvQPPd/b25t3332XxMREjh07RpMmTThx4gQJCQncuHEDDw8PChcu/MTnpqWlMXjwYAIDAx97rHz58jlqFBERERHJouBWRERERPIdk8mE2Wzm7t27VKtWjaioKG7fvm0JT3fv3o3ZbKZq1aoA1KpVC2dnZ6ZMmUKdOnUoWrQo3t7eTJ8+nRs3bjx1fluAevXqcezYsRzBsYiIiIjIf6KpEkRERETE5t27d4/k5GSSk5M5fvw4I0aMIC0tjbZt29KrVy8KFixIv379OHr0KF999RUjRoygT58+lC5dGsAyz21sbKwlpP3LX/7CvXv32LZt21PntwUICgpiz549DB8+nIMHD5KYmMjatWsfW5xMRERERCQ7BbciIiIiYvPi4+Nxc3PDzc2NRo0asW/fPlavXo23tzeFCxdm8+bNXL9+nQYNGtClSxeaN2/O/Pnzc3wPLy8vMjIyLMGt2WymWbNmmEymp85vC48C3h07dnDq1CmaNm1K3bp1CQkJoUyZMs/yVxYRERGRPM5kGIZh7SJERERERERERERE5N804lZEREREREREREQkl1FwKyIiIiIiIiIiIpLLKLgVERERERERERERyWUU3IqIiIiIiIiIiIjkMgpuRURERERERERERHIZBbciIiIiIiIiIiIiuYyCWxEREREREREREZFcRsGtiIiIiIiIiIiISC6j4FZEREREREREREQkl1FwKyIiIiIiIiIiIpLLKLgVERERERERERERyWUU3IqIiIiIiIiIiIjkMv8PKmh483LDsDIAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["# Calculate average runs per over per match\n","runs_per_over = (\n"," delivery_df.groupby(['match_id', 'over'])['total_runs']\n"," .sum()\n"," .reset_index()\n",")\n","\n","# Now calculate the average across all matches per over\n","avg_runs_per_over = runs_per_over.groupby('over')['total_runs'].mean().reset_index()\n","avg_runs_per_over.rename(columns={'total_runs': 'average_runs'}, inplace=True)\n","\n","# Calculate total wickets per over per match\n","wickets_per_ball = delivery_df[delivery_df['is_wicket'] == 1]\n","wickets_per_over = (\n"," wickets_per_ball.groupby(['match_id', 'over'])['is_wicket']\n"," .sum()\n"," .reset_index()\n",")\n","\n","# Average wickets per over\n","avg_wickets_per_over = wickets_per_over.groupby('over')['is_wicket'].mean().reset_index()\n","avg_wickets_per_over.rename(columns={'is_wicket': 'average_wickets'}, inplace=True)\n","\n","# Plot corrected average runs per over\n","plt.figure(figsize=(12, 6))\n","sns.lineplot(data=avg_runs_per_over, x='over', y='average_runs', marker='o')\n","plt.title(\"📈 Corrected: Average Runs per Over in IPL\")\n","plt.ylabel(\"Average Runs\")\n","plt.xlabel(\"Over\")\n","plt.xticks(range(1, 21))\n","plt.grid(True)\n","plt.tight_layout()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":643},"id":"TQIzLE3PhC8D","executionInfo":{"status":"ok","timestamp":1744090633015,"user_tz":-330,"elapsed":828,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"12d6fb4e-fb07-4ffd-a72f-6e0d9a9cff0c"},"execution_count":10,"outputs":[{"output_type":"stream","name":"stderr","text":[":32: UserWarning: Glyph 128200 (\\N{CHART WITH UPWARDS TREND}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128200 (\\N{CHART WITH UPWARDS TREND}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAuUxJREFUeJzs3Xd4U2X/BvA7o0lnUloo3ZvZlj3LLEOGgLIRlYK+goCT14UTVJw40FfFCcgQEARRFJUtlj3bslq6927SnXF+f9TmZ2lBSsdJ0vtzXVyac06S+2laSL95nu8jEQRBABERERERERERUQuSih2AiIiIiIiIiIhaHxaliIiIiIiIiIioxbEoRURERERERERELY5FKSIiIiIiIiIianEsShERERERERERUYtjUYqIiIiIiIiIiFoci1JERERERERERNTiWJQiIiIiIiIiIqIWx6IUERERERERERG1OBaliIiIqNHWrl0LiUSCpKQksaMQWYWDBw9CIpHg4MGDYkchIiJqNixKERER3YBGo8Hy5cvRvXt3ODo6ws7ODqGhoXj22WeRkZEhdrwGKysrw7Jly8z+l9x+/fpBIpHgs88+EzuKWakpUtT8kclkcHNzw7Rp03Dp0iWx41mEv/76C5MnT0b79u2hVCrh7++PBQsWICUlRexoLcLf3x8TJkyodeyf31NSqRSenp6444476vw9Ud99iYiIGksudgAiIqKmFhsbi549e0KhUNR7vqqqCpcuXUJQUNANHyMhIQGjRo1CSkoKpk+fjvnz50OhUODChQv4+uuvsWPHDly9erW5htAsysrKsHz5cgDA8OHDxQ1zA3FxcTh58iT8/f2xceNGLFy4UOxIZuexxx5D3759odPpcOHCBaxevRoHDx5ETEwM3N3dxY5ntj7++GM8/vjjCAwMxKOPPgoPDw9cunQJX331FbZs2YJffvkF4eHhYsc0GTp0KMrLy2/491hTGj16NObMmQNBEJCYmIhPP/0UI0aMwO7duzFu3Lhmf34iImq9WJQiIiKrIwgC+vXrhyNHjtR7fsCAARAE4Yb31+v1mDJlCrKzs3Hw4EEMHjy41vkVK1bg7bffbpKspaWlcHBwqHPcaDSiqqoKtra2TfI8lmLDhg1wc3PDe++9h2nTpiEpKQn+/v4tmuFGr4m5GDJkCKZNm2a63alTJyxcuBDffvstnnnmGRGTiausrAz29vb1nvvrr7/wxBNPYPDgwdizZ0+t6xYuXIhBgwZh2rRpiI2NRZs2bVoq8k2/16RSaYv9/Hfs2BH33Xef6fbkyZPRrVs3fPjhhyxKERFRs+LyPSIiouts374d58+fxwsvvFCnIAUAKpUKK1asqHXs+++/R+/evWFnZ4e2bdvivvvuQ3p6eq1r5s6dC0dHR1y7dg3jx4+Hk5MT7r33XgDVS2geeeQRbNy4ESEhIVAqldizZw8AID09HQ888IBpyVFISAi++eabOrkqKiqwbNkydOzYEba2tvDw8MCUKVNw7do1JCUloV27dgCA5cuXm5brLFu2zHT/y5cvY9q0aXBxcYGtrS369OmDXbt21Xme2NhYjBgxAnZ2dvD29sbrr78Oo9FY57ri4mJcvnwZxcXF//IV/3+bNm3CtGnTMGHCBKjVamzatMl0btu2bZBIJDh06FCd+33++eeQSCSIiYlp0HhqemEdOnQIixYtgpubG7y9vQEAycnJWLRoETp16gQ7Ozu4urpi+vTp9fbNunDhAoYNG1bra7JmzZp6+2z9+uuvGDJkCBwcHODk5IQ777wTsbGxt/w1ut6QIUMAANeuXTMdmzt3br3FvGXLlkEikdQ6VvO9t3PnToSGhpq+x2q+/2potVo88cQT8Pf3h1KphJubG0aPHo0zZ87cNF/Nc16+fBkzZsyASqWCq6srHn/8cVRUVNS5fsOGDaafJRcXF8yaNQupqam1rhk+fDhCQ0Nx+vRpDB06FPb29nj++edvmOG1116DRCLBunXr6hSugoKC8M477yAzMxOff/45AGDlypWQSCRITk6u81hLly6FQqFAYWGh6djx48cxduxYqNVq2NvbY9iwYfjrr7/q/TpcvHgRs2fPRps2ber9+6VGfT2lasZ98eJFREREwN7eHl5eXnjnnXdu+Di3IywsDG3btkViYmKTPi4REdH1WJQiIiK6Tk3h4v7777+l69euXYsZM2ZAJpPhzTffxEMPPYQffvgBgwcPRlFRUa1r9Xo9xowZAzc3N6xcuRJTp041ndu/fz+efPJJzJw5E6tWrYK/vz+ys7MxYMAA7N27F4888ghWrVqF4OBgPPjgg/jwww9N9zUYDJgwYQKWL1+O3r1747333sPjjz+O4uJixMTEoF27dqYeTZMnT8b69euxfv16TJkyBUB1oWnAgAG4dOkSnnvuObz33ntwcHDA3XffjR07dpieJysrCxERETh37hyee+45PPHEE/j222+xatWqOl+XHTt2oEuXLrXufzPHjx9HfHw87rnnHigUCkyZMgUbN240nb/zzjvh6OiIrVu31rnvli1bEBISgtDQ0AaNp8aiRYtw8eJFvPzyy3juuecAACdPnkRUVBRmzZqFjz76CA8//DD27duH4cOHo6yszHTf9PR0REREIDY2FkuXLsWTTz6JjRs31vs1Wb9+vWkcb7/9Nl566SVcvHgRgwcPvu0m8TX3a8wMnyNHjmDRokWYNWsW3nnnHVRUVGDq1KnIz883XfPwww/js88+w9SpU/Hpp5/iqaeegp2d3S33s5oxYwYqKirw5ptvYvz48fjoo48wf/78WtesWLECc+bMQYcOHfD+++/jiSeewL59+zB06NA6P0v5+fkYN24cevTogQ8//BARERH1Pm9ZWRn27duHIUOGICAgoN5rZs6cCaVSiZ9//tmUVSKR1Pu9tnXrVtxxxx2mr/f+/fsxdOhQaDQavPLKK3jjjTdQVFSEESNG4MSJE3XuP336dJSVleGNN97AQw899K9ft+sVFhZi7Nix6N69O9577z107twZzz77LH799dcGP9bNnqOwsBCurq5N9phERET1EoiIiKxMdHS0MGjQoBue79+/vxAXF3fD8z179hTUavUtPVdVVZXg5uYmhIaGCuXl5abjP//8swBAePnll03HIiMjBQDCc889V+dxAAhSqVSIjY2tdfzBBx8UPDw8hLy8vFrHZ82aJajVaqGsrEwQBEH45ptvBADC+++/X+exjUajIAiCkJubKwAQXnnllTrXjBw5UggLCxMqKipq3S88PFzo0KGD6dgTTzwhABCOHz9uOpaTkyOo1WoBgJCYmGg6vmbNGgGAsGbNmjrPV59HHnlE8PHxMeX9/fffBQDC2bNnTdfcc889gpubm6DX603HMjMzBalUKrz66qsNHk9NxsGDB9d6TEEQTF/bfzp69KgAQPj2229Nxx599FFBIpHUypmfny+4uLjU+ppotVrB2dlZeOihh2o9ZlZWlqBWq+scv96BAwcEAMI333wj5ObmChkZGcKePXuE4OBgQSKRCCdOnDBdGxkZKfj5+dV5jFdeeUW4/u0fAEGhUAjx8fGmY+fPnxcACB9//LHpmFqtFhYvXnzTjPWpec5JkybVOr5o0SIBgHD+/HlBEAQhKSlJkMlkwooVK2pdFx0dLcjl8lrHhw0bJgAQVq9e/a/Pf+7cOQGA8Pjjj9/0um7dugkuLi6m2wMHDhR69+5d65oTJ07Uev2NRqPQoUMHYcyYMabvW0Go/t4JCAgQRo8eXefrcM899/xrZkH4/9f7wIEDpmM14/7n919lZaXg7u4uTJ069V8f08/PT7jzzjtrHQMgPPjgg0Jubq6Qk5MjHD9+XBg5cqQAQHjvvfduel8iIqLG4kwpIiKi62g0Gjg5Od3StadOnUJOTg4WLVpUq//LnXfeic6dO2P37t117nOj5t3Dhg1D165dTbcFQcD27dsxceJECIKAvLw8058xY8aguLjYtHRq+/btaNu2LR599NE6j3v9cq3rFRQUYP/+/ZgxYwa0Wq3pOfLz8zFmzBjExcWZliL+8ssvGDBgAPr162e6f7t27UzLEP9p7ty5EAQBc+fOvenzA9UzyLZs2YKZM2ea8o4YMQJubm61ZkvNnDkTOTk5tZY0bdu2DUajETNnzmzweGo89NBDkMlktY7Z2dmZ/l+n0yE/Px/BwcFwdnautWRtz549GDhwIHr06GE65uLiUudr8scff6CoqAj33HNPrddSJpOhf//+OHDgwL9+nQDggQceQLt27eDp6YmxY8eiuLgY69evR9++fW/p/vUZNWpUrcb/3bp1g0qlQkJCgumYs7Mzjh8/fts7Ty5evLjW7Zrv1V9++QUA8MMPP8BoNGLGjBm1vj7u7u7o0KFDna+PUqnEvHnz/vV5tVotAPzrz7STkxM0Go3p9syZM3H69OlayyK3bNkCpVKJu+66CwBw7tw5xMXFYfbs2cjPzzdlLi0txciRI3H48OE6S1sffvjhf818M46OjrX6PykUCvTr16/Wa9VQX3/9Ndq1awc3Nzf0798ff/31F5YsWYInnniiUVmJiIj+DRudExERXef6X8ZvpqbnTKdOneqc69y5c51m63K53NSz6HrXLy3Kzc1FUVERvvjiC3zxxRf13icnJwdAdT+hTp06QS5v+D/t8fHxEAQBL730El566aUbPo+XlxeSk5PRv3//OufrG39D/P7778jNzUW/fv0QHx9vOh4REYHvvvsOb7/9NqRSqalvz5YtWzBy5EgA1YWCHj16oGPHjg0eT436lnWVl5fjzTffxJo1a5Cenl6rOf4/+2QlJydj4MCBde4fHBxc63ZcXByA6mJbfVQqVb3Hr/fyyy9jyJAhKCkpwY4dO7B582ZIpY37nNHX17fOsTZt2tTqm/TOO+8gMjISPj4+6N27N8aPH485c+YgMDDwlp6jQ4cOtW4HBQVBKpWalh/GxcVBEIQ619WwsbGpddvLy+uWdqarKUbVFKduRKvV1ipcTZ8+HUuWLMGWLVvw/PPPQxAEfP/99xg3bpzptap5TSMjI2/4uMXFxbWWVt5oCeGt8vb2rlNobtOmDS5cuHDbj3nXXXfhkUcegUQigZOTE0JCQsy62T8REVkPFqWIiIiu07lzZ5w9exapqanw8fFp0sdWKpU3LCD8c2YOANMMi/vuu++Gv/R269at0Zlqnuepp57CmDFj6r3m+gJLU6uZDTVjxox6zx86dAgRERFQKpWmvlCffvopsrOz8ddff+GNN94wXXs747n+aw9Uz+RZs2YNnnjiCQwcOBBqtRoSiQSzZs2qt7H7v6m5z/r16+Hu7l7n/K0WFMPCwjBq1CgAwN13342ysjI89NBDGDx4sOn79Uaz4wwGQ73Hr58lVuOfhbgZM2ZgyJAh2LFjB37//Xe8++67ePvtt/HDDz/c1g5t12c0Go2QSCT49ddf683j6OhY63Z9r1l9goODIZfLb1q0qaysxJUrV9CnTx/TMU9PTwwZMgRbt27F888/j2PHjiElJaXWzps1r+m7775ba6ZcU+S+kVt5rRrK29vb9D1FRETUkliUIiIius7EiRPx3XffYcOGDVi6dOlNr/Xz8wMAXLlypc4MmCtXrpjO34527drByckJBoPhX39hDAoKwvHjx6HT6erMKKlxo0JFzUwXGxubf30ePz8/0+yQf7py5cpN73czpaWl+PHHHzFz5kxMmzatzvnHHnsMGzduNDWynjlzJtatW4d9+/bh0qVLEATBtHSvoeO5mW3btiEyMhLvvfee6VhFRUWdhtt+fn61ZnfVuP5YzfI4Nze3Ji0AvPXWW9ixYwdWrFiB1atXA6ieOXN9TgD17ibXEB4eHli0aBEWLVqEnJwc9OrVCytWrLilolRcXFytWULx8fEwGo2mXQKDgoIgCAICAgJMs96agoODAyIiIrB//34kJyfX+zO5detWVFZWYsKECbWOz5w5E4sWLcKVK1ewZcsW2NvbY+LEiabzNa+pSqViUYeIiOg2sKcUERHRdaZNm4awsDCsWLECR48erXNeq9XihRdeAAD06dMHbm5uWL16NSorK03X/Prrr7h06RLuvPPO284hk8kwdepUbN++HTExMXXO5+bmmv5/6tSpyMvLw//+978619XMoLC3tweAOsUKNzc3DB8+HJ9//jkyMzNv+jzjx4/HsWPHau0qlpubW6vvU43i4mJcvny51lK3+uzYsQOlpaVYvHgxpk2bVufPhAkTsH37dtPXd9SoUXBxccGWLVuwZcsW9OvXr1axoyHjuRmZTFZn9snHH39cZ7bRmDFjcPToUZw7d850rKCgoM7XZMyYMVCpVHjjjTeg0+luO9f1goKCMHXqVKxduxZZWVmmY8XFxbVmB2VmZt7yTojXMxgMdV5HNzc3eHp61vq+v5lPPvmk1u2PP/4YAEwFrSlTpkAmk2H58uV1vu6CINTaCbChXnzxRVN/s/Ly8lrnEhMT8cwzz8DDwwMLFiyodW7q1KmQyWT47rvv8P3332PChAm1lrX17t0bQUFBWLlyJUpKSuo87+2+pkRERK0FZ0oRERFdx8bGBj/88ANGjRqFoUOHYsaMGRg0aBBsbGwQGxuLTZs2oU2bNlixYgVsbGzw9ttvY968eRg2bBjuueceZGdnY9WqVfD398eTTz7ZqCxvvfUWDhw4gP79++Ohhx5C165dUVBQgDNnzmDv3r0oKCgAAMyZMwfffvstlixZghMnTmDIkCEoLS3F3r17sWjRItx1112ws7ND165dsWXLFnTs2BEuLi4IDQ1FaGgoPvnkEwwePBhhYWF46KGHEBgYiOzsbBw9ehRpaWk4f/48AOCZZ57B+vXrMXbsWDz++ONwcHDAF198AT8/vzrLo3bs2IF58+ZhzZo1N212vnHjRri6uiI8PLze85MmTcKXX36J3bt3Y8qUKbCxscGUKVOwefNmlJaWYuXKlXXuc6vjuZkJEyZg/fr1UKvV6Nq1K44ePYq9e/fC1dW11nXPPPMMNmzYgNGjR+PRRx+Fg4MDvvrqK/j6+qKgoMA0Q02lUuGzzz7D/fffj169emHWrFlo164dUlJSsHv3bgwaNKjeouKtePrpp7F161Z8+OGHeOuttzBr1iw8++yzmDx5Mh577DGUlZXhs88+Q8eOHWs1ab9VWq0W3t7emDZtGrp37w5HR0fs3bsXJ0+erDWT7GYSExMxadIkjB07FkePHsWGDRswe/ZsdO/eHUB1Ie3111/H0qVLkZSUhLvvvhtOTk5ITEzEjh07MH/+fDz11FMNzg4AQ4cOxcqVK7FkyRJ069YNc+fOhYeHBy5fvowvv/wSRqMRv/zyS63eT0B14S0iIgLvv/8+tFptrRl5ACCVSvHVV19h3LhxCAkJwbx58+Dl5YX09HQcOHAAKpUKP/30021lNkfx8fF4/fXX6xzv2bNnowrwRETUirX4fn9ERETNLDo6Whg0aNANz/fv31+Ii4v718cpLCwUXn75ZSEsLEywt7cXbG1thdDQUGHp0qVCZmZmrWu3bNki9OzZU1AqlYKLi4tw7733CmlpabWuiYyMFBwcHOp9LgDC4sWL6z2XnZ0tLF68WPDx8RFsbGwEd3d3YeTIkcIXX3xR67qysjLhhRdeEAICAkzXTZs2Tbh27ZrpmqioKKF3796CQqEQAAivvPKK6dy1a9eEOXPmCO7u7oKNjY3g5eUlTJgwQdi2bVut57lw4YIwbNgwwdbWVvDy8hJee+014euvvxYACImJiabr1qxZIwAQ1qxZc6MvsZCdnS3I5XLh/vvvv+E1ZWVlgr29vTB58mTTsT/++EMAIEgkEiE1NbXe+93KeGoynjx5ss79CwsLhXnz5glt27YVHB0dhTFjxgiXL18W/Pz8hMjIyFrXnj17VhgyZIigVCoFb29v4c033xQ++ugjAYCQlZVV69oDBw4IY8aMEdRqtWBraysEBQUJc+fOFU6dOnXDr0HN/QAI33//fb3nhw8fLqhUKqGoqEgQBEH4/fffhdDQUEGhUAidOnUSNmzYILzyyivC9W//bvS9989xVlZWCk8//bTQvXt3wcnJSXBwcBC6d+8ufPrppzfNLAiC6TkvXrwoTJs2TXBychLatGkjPPLII0J5eXmd67dv3y4MHjxYcHBwEBwcHITOnTsLixcvFq5cuWK6ZtiwYUJISMi/Pvf1Dh8+LNx1111C27ZtBRsbG8HX11d46KGHhKSkpBve58svvxQACE5OTvXmFYTq13/KlCmCq6uroFQqBT8/P2HGjBnCvn376nwdcnNzbylrzet94MAB07EbjTsyMlLw8/P718f08/MT7rzzzlrHbvZ3z/X3BVDvnwcffPBf709ERFQfiSA0oisiERGRGYqJicHDDz9cZ+e7GgMGDMCGDRuavXk3tW5PPPEEPv/8c5SUlNywOXVrsGzZMixfvhy5ublo27at2HGIiIjIjLCnFBEREVEjXd+nKD8/H+vXr8fgwYNbdUGKiIiI6GbYU4qIiKzSsWPH4OzsXO+5+hoSEzXGwIEDMXz4cHTp0gXZ2dn4+uuvodFo8NJLL4kdjYiIiMhssShFRERWJzQ0FHq9XuwY1IqMHz8e27ZtwxdffAGJRIJevXrh66+/xtChQ8WORkRERGS22FOKiIiIiIiIiIhaHHtKERERERERERFRi2NRioiIiIiIiIiIWpzV95QyGo3IyMiAk5MTJBKJ2HGIiIiIiIiIiCyWIAjQarXw9PSEVNq4uU5WX5TKyMiAj4+P2DGIiIiIiIiIiKxGamoqvL29G/UYVl+UcnJyAlD9xVKpVCKnoevpdDr8/vvvuOOOO2BjYyN2nCbBMVkGjslyWOO4OCbLwDFZDmscF8dkGTgmy2GN4+KYLIM1jqmgoAABAQGmektjWH1RqmbJnkqlYlHKDOl0Otjb20OlUlnNDyjHZBk4JsthjePimCwDx2Q5rHFcHJNl4JgshzWOi2OyDNY6JgBN0iKJjc6JiIiIiIiIiKjFsShFREREREREREQtjkUpIiIiIiIiIiJqcSxKERERERERERFRi2NRioiIiIiIiIiIWhyLUkRERERERERE1OJYlCIiIiIiIiIiohbHohQREREREREREbU4FqWIiIiIiIiIiKjFsShFREREREREREQtjkUpIiIiIiIiIiJqcSxKERERERERERFRi2NRioiIiIiIiIiIWhyLUkRERERERERE1OJYlCIiIiIiIiIiohbHohQRERERERGRBXJychI7AlGjsChFREREREREZEHKq/QQJDKE9BoAQSJDWZVe7EhEt0UudgAiIiIiIiIiujWVOgNWH0rAmqhEaMr1UNnJMS88AIuGB0FpIxM7HlGDsChFREREREREZAHKq/RYfSgBq/bFmY5pyvWm2wuGBcJewV/zyXJw+R4RERERERGRBZBJpVgTlVjvuTVRiZBL+Ss+WRZ+xxIRERERERFZAG2FDpry+vtHacr10FboWjgRUeOwKEVERERERERkARyVcqjs6l+ep7KTw04hw3u/X0F8jraFkxHdHhaliIiIiIiIiMyYIAh47/crOByXi8iB/vVeEznQH0fi8vDx/niMev8wpq+OwvbTaajQGVo2LFEDsAMaERERERERkZmq0BnwzLYL2HU+A0HtHLFzcTikEkm9u++dSy3CHV3bY9/lHJxMKsTJpEIs/ykWU3p5Y1Y/H3R2V4k9HKJaWJQiIiIiIiIiMkMFpVWY/+0pnEouhFwqwYKhgXCytcGCYYFYHBGMotIKODvYQm80QmkjQ/9AV/QPdEW2pgLbTqfhuxMpSCssx9qoJKyNSkJPX2fc09cXE7p7cJc+MgtcvkdERERERERkZhJySzD5079wKrkQTrZyrHugH2b09QEA2CvkkAgGxJw+BolgqFNgaq+yxeKIYBx+OgLfPtAP48PcIZdKcDalCM9sv4D+K/bhxZ3RiEkvFmNoRCYsjRIRERERERGZkeMJ+Viw4TSKynTwbmOHNXP7okN7pzrXabU3b2gulUowtGM7DO3YDrnaSmw/k4bNJ1KQlF+GDcdSsOFYCrp5qzGrry8m9fCEo5IlAmpZ/I4jIiIiIiIiMhM7zqbhmW0XoDMI6O7jjK/m9EE7J2WjH7edkxIPDwvC/CGBOJaQj+9OpuK3mCxcSCvGhbRovL77Iu7q4YlZfX3RzVsNiUTSBKMhujkWpYiIiIiIiIhEJggCVu2Lw4d74wAA40Ld8f6MHrBTyJr0eaRSCcKD2yI8uC0KSqvww5k0bDqRgoTcUnx3IhXfnUhFVw8V7unvi7t6eEJla9Okz0/0TyxKEREREREREYmoUm/Ac9ujseNsOgBgwdBAPDu2M6TS5p2t5OKgwH+GBOLBwQE4kViAzSdTsTs6ExczNXhpZwze2H0JE7p54J7+vujp48zZU9TkWJQiIiIiIiIiEklRWRXmrz+NE4kFkEklePWuENzb369FM0gkEtPOfa9M7IofzqTjuxMpiMspwfen0/D96TR0au+Ee/r5YHJPb6jtOXuKmgaLUkREREREREQiSM4vxbw1J5GQVwpHpRyf3NsLwzq2EzWTs70CDwwOwLxB/jiTUohNx1OxOzoDV7K1WPbTRbz562XcGVY9e6qPXxvOnqJGYVGKiIiIiIiIqIWdSirA/PWnUVBaBU+1Lb6Z1xed3VVixzKRSCTo7eeC3n4ueHliV/x4Lh2bjqfgcpYWP5xNxw9n0xHs5ohZfX0wtZc32jgoxI5MFohFKSIiIiIiIqIWtOt8Bp76/jyq9EaEeanxdWQfuKlsxY51Q2o7G8wZ6I/7B/jhfFoxvjuegp8uZCA+pwSv776Ed/ZcwdhQd9zTzxcDAl04e4puGYtSRERERERERC1AEAR8ciAeK3+/CgAY3bU9Vs3qAXuFZfxqLpFI0MPHGT18nPHihC7YdT4Dm0+kIjq9GLvOZ2DX+QwEtHWonj3V2xttHZViRyYzJxXzyQ8fPoyJEyfC09MTEokEO3furHW+pKQEjzzyCLy9vWFnZ4euXbti9erV4oQlIiIiIiIiuk1VeiOe2XbBVJB6cHAAVt/X22IKUtdzsrXBvf398NOjg/HTI4Mxu78vHJVyJOaV4s1fL2Pgm/uweOMZHInLg9EoiB2XzJSo3/2lpaXo3r07HnjgAUyZMqXO+SVLlmD//v3YsGED/P398fvvv2PRokXw9PTEpEmTREhMRERERERE1DDF5Tos3HAaUdfyIZUAyyaFYM5Af7FjNZkwbzXCvMPwwvgu+PlCBjadSMX51CLsjs7E7uhM+LrYY2ZfH0zv4w03p5svU3Rycmqh1GQORC1KjRs3DuPGjbvh+aioKERGRmL48OEAgPnz5+Pzzz/HiRMnWJQiIiIiIiIis5daUIZ5a08iPqcEDgoZ/je7FyI6u4kdq1k4KOWY2dcXM/v64mKGBptPpmDH2XSkFJTh3d+u4IM/rmJkFzfc088XQzq0g0z6/72nyqv0kEllCOk1AIJEhrIqvcXOIqNbZ9avcHh4OHbt2oUHHngAnp6eOHjwIK5evYoPPvhA7GhEREREREREN3UmpRAPrTuF/NIquKts8fXcPgjxVIsdq0V09VTh1btCsXRcF+yOzsR3J1JwOrkQv8Vm47fYbHg522FmXx/c088XKls5Vh9KwJqoRGjK9VDZyTEvPACLhgdBaSMTeyjUjMy6KPXxxx9j/vz58Pb2hlwuh1QqxZdffomhQ4fe8D6VlZWorKw03dZoNAAAnU4HnU7X7JmpYWpeE2t6bTgmy8AxWQ5rHBfHZBk4JsthjePimCwDx2Q5xBjXrzFZeHp7DCr1RnRxd8Ln9/WEh9q2yTJYymsllwB3dWuPu7q1R1x2CbacTsPOcxlILyrH+39cRRcPJ0SnFeOj/fGm+2jK9Vi1Lw4AMH9oABSidsNuHEt5nRqiKcciEQTBLDqOSSQS7NixA3fffbfp2MqVK/Hll19i5cqV8PPzw+HDh7F06VLs2LEDo0aNqvdxli1bhuXLl9c5vmnTJtjb2zdXfCIiIiIiIiIIArA/Q4JdKdUzfLo6GxHZ0QhbTvgx0RmB8/kSxGptsWHxCAx4cx805fo616ns5Dj5/Ejs3/sHqqqqREhK9SkrK8Ps2bNRXFwMlUrVqMcy26JUeXk51Go1duzYgTvvvNN03X/+8x+kpaVhz5499T5OfTOlfHx8kJeX1+gvFjU9nU6HP/74A6NHj4aNjY3YcZoEx2QZOCbLYY3j4pgsA8dkOaxxXByTZeCYLEdLjUtnMGL5z5ex5VQaAOD+/j54flwnyGVNP9XHWl6rogoD+q7Yd8Pzp18cBZXScqdKWcvr9E/5+fnw8PBokqKU2S7fq1luJ5XW/uaTyWQwGo03vJ9SqYRSqaxz3MbGxmq+AayRNb4+HJNl4JgshzWOi2OyDByT5bDGcXFMloFjshzNOS5NhQ6LN57Dn3F5kEiAlyd0xbxBAc3yXP9k6a+VWiKDyk5+w5lSTrY2sJFbblGqhqW/Tv/UlOMQtShVUlKC+Pj/XzeamJiIc+fOwcXFBb6+vhg2bBiefvpp2NnZwc/PD4cOHcK3336L999/X8TURERERERERP8vrbAMD6w9iavZJbCzkeGje3pidNf2YseyCAajEfPCA0w9pP5pXngA9EYjFLD8ohTVT9Si1KlTpxAREWG6vWTJEgBAZGQk1q5di82bN2Pp0qW49957UVBQAD8/P6xYsQIPP/ywWJGJiIiIiIiITC6kFeHBdaeQq61EOyclvonsizDv1rHDXlOwU8ixaHgQANTafS9yoD8WDAuEvcJsF3hRExD11R0+fDhu1tLK3d0da9asacFERERERERERLfmt9gsPL75LCp0RnR2d8LXc/vCy9lO7FgWR2kjw4JhgVgcEYyi0go42Stx+GouHtl0Fp/e2wu2NuwSb604B46IiIiIiIioAQRBwFd/JuDhDadRoTNiaMd2+P7hgSxINYK9Qg6JYEDM6WMoLa/ECztisP9yTr3L+sh6sChFREREREREdIv0BiNe/jEWr+++BEEAZvf3xTeRfeBkax1NrMWm1WqhtrPBismhAIDPD13D+dQicUNRs2FRioiIiIiIiOgWlFTq8Z9vT2H9sWRIJMDz4ztjxd2hkMv4q3VTGxPijkndPWEUgKe3nUel3iB2JGoG/MkhIiIiIiIi+heZxeWY9lkUDl7Jha2NFJ/d2wvzhwZBIpGIHc1qLZsUgraOClzNLsHH++LFjkPNgEUpIiIiIiIiopuISS/G3Z/8hctZWrR1VGDz/IEYG+ohdiyr5+KgwGt3VS/j++zQNcSkF4uciJoai1JEREREREREN7DvUjZmfH4U2ZpKdHBzxI5Fg9DDx1nsWK3GuDAP3BnmAYNRwFPfn0eV3ih2JGpCLEoRERERERER1WPtX4l46NtTKKsyYHBwW2xbGA4fF3uxY7U6y+8KgYuDApeztPjkAJfxWRMWpYiIiIiIiIj+wWAUsGxXLJb9dBFGAZjZxwdr5vWF2o477ImhraMSr94VAgD45EA8YjO4jM9asChFRERERERE9LfSSj0WrD+FtVFJAIBnxnbCW1PDYMMd9kR1Z5gHxoa4Q28U8PT3F6AzcBmfNeBPFRERERERERGAbE0FZn5xFHsv5UAhl+J/s3ti0fBg7rBnBiQSCV67OxTO9ja4mKnBZweviR2JmgCLUkRERERERNTqXcrU4O5P/kJMugYuDgp899AATOjmKXYs+od2Tkosn1S9jO/j/XG4nKURORE1FotSRERERERE1KodvJKDaZ9FIbO4AoHtHLBz0SD09msjdiyqx6TunhjdtT10hurd+LiMz7KxKEVERERERESt1oZjyXhw3SmUVhkwINAFOxYOgq8rd9gzVxKJBCvuDoXazgYx6Rp8cThB7EjUCCxKERERERERUatjNApYsfsiXtwZA4NRwNRe3vj2gf5Q23OHPXPnprLFKxO7AgBW7Y3D1WytyInodrEoRURERERERK1KeZUBCzeexpd/JgIA/ju6I1ZO7waFnL8iW4rJPb0wsrMbqgxGPP39eei5jM8i8SeOiIiIiIiIrJ6TkxMAIEdbgVlfHMVvsdlQyKRYNasHHh3ZgTvsWRiJRIIVk8PgZCvH+bRiU4GRLAuLUkRERERERGS1yqv0ECQyhPQaAEEixaUMDUoqDXC2t8HGh/rjrh5eYkek2+SutsXLE6qX8X2w9yric7iMz9LIxQ5ARERERERE1BwqdQasPpSANVGJ0JTrobKTI3KgP7Y9PBClVXp4t2FDc0s3rbc3dkdn4uCVXDz1/QVsXxgOmZSz3iwFZ0oRERERERGR1Smv0uPTg9ewal8cNOV6AICmXI+P98djbVQSXBwUIiekpiCRSPDmlDA4KeU4l1qEr49wNz5LwqIUERERERERWR2ZVIo1UfX3GVoTlQi5lL8OWwsPtR1enNAFAPDe71dxLbdE5ER0q/hTSERERERERFZHU6EzzZCqc65cD22FroUTUXOa0ccHQzq0RaXeiGe2XYDBKIgdiW4Bi1JERERERERkVSp0Bjgo5VDZ1d9GWWUnh5OtTQunouYkkUjw1tRucFTKcTq5EGujksSORLeARSkiIiIiIiKyGtoKHeatOYkjcbmIHOhf7zXzwgOgNxpbNhg1Oy9nOzw/vnoZ37u/XUZSXqnIiejfsChFREREREREViFXW4lZXxzD0YR8fLQ3DguHBeHxkR1MM6ZUdnI8PrIDFg0Pgr2Cm9Fbo3v6+WBQsCsqdNXL+IxcxmfW+FNIREREREREFi+1oAz3f30cSfllcHVQ4I0p3WCvlGPBsEAsjghGUWkFnB1soTcaobSRiR2XmolEIsFbU7phzIeHcSKpAN8eTcLcQQFix6Ib4EwpIiIiIiIismiXMjWY8lkUkvLL4OVsh+8fHogwbzUAwF4hh0QwIOb0MUgEA2dItQI+LvZYOq4zAODtPVeQnM9lfOaKRSkiIiIiIiKyWCcSCzDj86PI1VaiU3sn/LAoHIHtHOtcp9VqRUhHYrm3vx8GBLqgXGfAs9u5jM9csShFREREREREFmnvxWzc//VxaCv06OPXBlsXDER7la3YscgMSKUSvDO1O+xsZDiWUICNx5PFjkT1YFGKiIiIiIiILM73p1KxYMNpVOqNGNHZDesf7A+1vY3YsciM+Lra49mxnQAAb/56GakFZSInouuxKEVEREREREQW5fND1/D0tgswGAVM6eWFz+/vDTsFm5dTXXMG+qOfvwvKqqqX8QkCl/GZExaliIiIiIiIyCIIgoA3frmEN3+9DAB4aEgAVk7rDhsZf7Wl+kmlErwzrRtsbaSIupaPTSdSxI5E/8CfXCIiIiIiIjJ7eoMRT2+7gC8OJwAAlo7rjBfu7AqpVCJyMjJ3/m0d8PSY6t343th9CWmFXMZnLliUIiIiIiIiIrNWoTPg4Q2nse10GmR/z3xZMCxI7FhkQeaG+6OPXxuUVhmw9IdoLuMzEyxKERERERERkdkqLtfh/q+PY++lHCjlUqy+rzdm9PEROxZZmJpiplIuxZ9xedh6KlXsSAQWpYiIiIiIiMhM5WgqMPPzoziZVAgnWznWP9gfo7u2FzsWWajAdo546o7q3fhe//kSMorKRU5ELEoRERERERGR2UnMK8WUz6JwOUuLdk5KbF0wEP0CXMSORRbugcEB6OnrDG2lnsv4zACLUkRERERERGRWYtKLMX11FNIKy+Hvao8fFoaji4dK7FhkBWRSCd6d1g0KuRSHruZi2+k0sSO1aixKERERERERkdmIupaHWV8cQ15JFUI8Vfj+4XD4uNiLHYusSLCbE5aM7ggAePXni8gqrhA5UevFohQRERERERGZhT0xmZj7zUmUVOoxMNAVm+cPQDsnpdixyAr9Z3AAunuroa3Q4/kdXMYnFhaliIiIiIiISHSbjqdg0cYzqDIYMTbEHWvm9YWTrY3YschKyWVSvDu9OxQyKfZfzsGOs+liR2qVWJQiIiIiIiIi0QiCgP/tj8PzO6JhFIB7+vnik3t7wdZGJnY0snId2zvh8VEdAADLdsUiR8NlfC2NRSkiIiIiIiIShdEoYPlPF7Hy96sAgEdHBOONyaGQSSUiJ6PWYsHQQIR5qaGp0OP5HTFcxtfCWJQiIiIiIiKiFlelN+KJLeewNioJAPDKxK747x2dIJGwIEUtp3oZXzfYyCTYeykbu85niB2pVWFRioiIiIiIiFpUWZUe//n2FHadz4BcKsGqWT0wb1CA2LGolersrsKjI6qX8b2yKxa52kqRE7UeLEoRERERERFRiyksrcLsL4/j8NVc2NnI8FVkH9zVw0vsWNTKLRwehK4eKhSV6fDSTi7jayksShEREREREVGLyCgqx/TPj+JcahGc7W2w6aH+GN7JTexYRLCRSbFyenfIpRLsic3C7uhMsSO1CixKERERERERUbOLz9Fi6mdRiM8pgYfaFtseHoievm3EjkVk0tVThcURwQCAl3+MRV4Jl/E1NxaliIiIiIiIqFmdTSnEtNVHkVlcgaB2Dti2MBzBbk5ixyKqY3FEMDq7O6GgtAqv/Bgrdhyrx6IUERERERERNZtDV3Mx+8vjKCrTobuPM75/OBxeznZixyKql0JevYxPJpVgd3QmfuEyvmbFohQRERERERE1ix/PpeM/606iXGfAkA5tsek//eHioBA7FtFNhXqpsWh4EADgpZ0xKCitEjmR9WJRioiIiIiIiJrc2r8S8cSWc9AZBEzs7omvI/vCQSkXOxbRLXlkRDA6tndEfmkVlu3iMr7mwqIUERERERERNRlBEPD+71ew7KeLEAQgcqAfVs3sAYWcv36S5VDKZaZlfLvOZ2BPTJbYkawS/1YgIiIiIiKiJmEwCnhhZww+2h8PAPjv6I5YNikEUqlE5GREDdfN2xkLhgYCAF7cGYNCLuNrcixKERERERERUaNV6g14ZNMZbDqeAokEWDE5FI+O7ACJhAUpslyPjeyAYDdH5JVU4tWfL4odx+qwKEVERERERESNoq3QYd6ak/g1JgsKmRSfzO6Fe/v7iR2LqNFsbWR4d1o3SCXAjrPp2HsxW+xIVoVFKSIiIiIiIrpteSWVuOfLY4i6lg8HhQxr5/XF+DAPsWMRNZmevm3w0JDqZXzP74hGcZlO5ETWg0UpIiIiIiIiui2pBWWY9lkUYtI1cHVQYPP8gQgPbit2LKIm9+Tojghs54AcLZfxNSUWpYiIiIiIiKjBLmdpMPWzKCTll8G7jR22LQxHmLda7FhEzaJ6GV93SCTA9jNp2H+Zy/iaAotSRERERERE1CAnkwowY/VR5Ggr0am9E7YvDEdAWwexYxE1q95+bfDgoAAAwPM/xKC4nMv4GotFKSIiIiIiIrpley9m476vjkNToUcfvzbYumAg2qtsxY5F1CL+e0cnBLR1QJamAit2cxlfY7EoRURERERERLdk2+k0LNhwGpV6I0Z2dsP6B/tDbW8jdiyiFmOnkOGdad0gkQBbT6Xh0NVcsSNZNBaliIiIiIiI6F99cfganvr+PAxGAVN7eWP1/b1hp5CJHYuoxfX1d8HccH8AwHPbL0BTwWV8t4tFKSIiIiIiIrohQRDw5i+X8MYvlwEA84cGYuX0brCR8ddJar2eHtMJfq72yCyuwJu/XBI7jsXi3yJERERERERUL73BiKe3XcDnhxMAAEvHdcbz47tAIpGInIxIXPYKOd6e2g0A8N2JVByJyxM5kWViUYqIiIiIiIhMnJycAAAVOgMe3nAa206nQSaV4J1p3bBgWJDI6YjMx4BAV0QO9AMAPLv9Akoq9SInsjwsShERERERERHKq/QQJDKE9BoAQSLDudRCJOaVQSmXYvV9vTGjj4/YEYnMzjNjO8PHxQ7pReV461cu42soudgBiIiIiIiISFyVOgNWH0rAmqhEaMr1UNnJETnQH98/PBBphWXo5u0sdkQis+SglOPtKd0w+6vj2HAsBeNDPRAe3FbsWBaDM6WIiIiIiIhasfIqPT49eA2r9sVBU169/EhTrsfH++OxLioJwW6OIickMm/hwW1x3wBfAMCzP1xAKZfx3TIWpYiIiIiIiFoxmVSKNVGJ9Z5bE5UIuZS/NhL9m+fGdYGXsx1SC8rxzp7LYsexGKL+7XL48GFMnDgRnp6ekEgk2LlzZ63zEomk3j/vvvuuOIGJiIiIiIisSFy2FnkllaYZUtfTlOuhrdC1cCoiy+Oo/P/d+NYdTcaxhHyRE1kGUYtSpaWl6N69Oz755JN6z2dmZtb6880330AikWDq1KktnJSIiIiIiMh6nE8twn/WncTML47B2d4GKrv62w2r7ORwsrVp4XRElmlwh7a4p1/1hgDPbr+Asiou4/s3ojY6HzduHMaNG3fD8+7u7rVu//jjj4iIiEBgYGBzRyMiIiIiIrI6p5ML8fH+OBy8kgsAkEqAK1lazAsPwKp9cXWunxceAL3RCAU7vxDdkufHd8GhK7lIzi/Du79dwfNjO8LJyUnsWGbLYnbfy87Oxu7du7Fu3bqbXldZWYnKykrTbY1GAwDQ6XTQ6Tjt1NzUvCbW9NpwTJZBp9PBycnJ6sb0z/9aC2scF8dkGTgmy2GN4+KYLIMljelEUgE+OZiAqGsFAACZVIJJ3dzx8NBABLZzQBcPFQDU2n1vXngAFg4PggxGixjjzVjSa3WrOCbzZCsDXr+rK1b8ehXhQa4wSqQI6TUAgkSG0kodFFZQ323K10ciCILQZI/WCBKJBDt27MDdd99d7/l33nkHb731FjIyMmBra3vDx1m2bBmWL19e5/imTZtgb2/fVHGJyEI5OjoiuHNXuLu1Q1FpFZwdFMjKzkX8lYsoKSkRO16jKBQKKJVKVFZWoqqqSuw4REREJDJBAOI0EvyWJkW8RgIAkEoE9GsnYLSXEW3/8WuVo6Mjgjt1hXv7diguq4La3nreIxG1NEdHR/QeMBhf/5WEdUeTTIXeueH+WDDYH8eijlj0z1VZWRlmz56N4uJiqFSqRj2WxRSlOnfujNGjR+Pjjz++6ePUN1PKx8cHeXl5jf5iUdPT6XT4448/MHr0aNjYWMdadY7JvBkgxWcHr93wU0BLVWUEbGQyFJZUoI2jLXQGg1V8CgNY1/dfDY7JMnBMlsMax8UxWQZzHZMgCDhyLR+fHEjA6ZQiAICNTIJpvbwwf0gAvNvY3fC+Op0Ox44dw4ABA8xqTI1lrq9VY3BM5qvKCHxxOLHeJbGPj+yA+UMDLPq9en5+Pjw8PJqkKGURy/f+/PNPXLlyBVu2bPnXa5VKJZRKZZ3jNjY2Fv1Nbe2s8fXhmMxPeZUeqw9dq/WPg6Zcb7p9Tz8f5GgroZBLoZBJq/8rl0Ipk5n+XyaViBX/hip1BnxxuG6hbdHwIChtZGLHazKW/v1XH47JMnBMlsMax8UxWQZzGZMgCDhwJQer9sXjfGoRAEAhl+Kevj5YMCwIns43Lkb9k1arNZsxNTVrHBfHZH4EvRFrohLrPbcmKhGLI4JhI7fcqlRTvjYWUZT6+uuv0bt3b3Tv3l3sKERkYfQGI+JySnAlS4OxoR43/cdhwbBAjP/oCApKb7z0TSaV1CpYKWRSKOW1b9f3/8o65/6/0FVd+LrBY/zLcxiMAj4/lHDDQtuCYYGwV1jEX/VERER0m4xGAX9cysbH++MQk17dU9fWRop7+/thwdBAuKlu3P6EiJqetkIHTXn9O+9pyvXQVujg6lh3Mk1rJOpvKiUlJYiPjzfdTkxMxLlz5+Di4gJfX18A1cvvvv/+e7z33ntixSQiC2EwCkjMK8GFtOK//xThYqYGFTojOrV3Qm8/l5v+41BYqkNXDydcytSiSm9EpcGIKr2xznOUGw0o1xlaYkg35eKgwJFnI/71UxgiIiKyTkajgD2xWfhoXxwuZ2kBAPYKGe4f4If/DAlEOyf+0kskBidbG6js5PX+7qGyk8PJ1nJngTU1UYtSp06dQkREhOn2kiVLAACRkZFYu3YtAGDz5s0QBAH33HOPGBGJyEwJgoCUgjKcTytGdFoRLqQVIya9GKVVdYtFTko5/Fzt0c5JedN/HNo5KbHhPwPqPI/OIKDq7wKV6Y/BgMpat2v//z/P6Qy1r6m8/vrrblea/t9Q73U6Q3UrwHaOSuSXVPFTGCIiolbGYBTw84UM/G9/POJyqpslOyrliAz3w4ODA+HioBA5IVHrZjAaMS88oN6eUvPCA6A3GqGA5S7fa0qiFqWGDx+Of+uzPn/+fMyfP7+FEhGRORIEARnFFabi04W0YkSnF6O4vO5WpHY2MoR4qtDN2xndvNUI81YjwNUBUqkE5VX6Bv/jIJFIoJBLoJBLATOp7RiNwt/FKSOUchk/hSEiImol9AYjdp2vLkYl5JUCAJxs5XhgUADmDfKHsz2LUUTmwE4hx6LhQQBg9X1fG4uNRojI7ORoKxCdVmyaBRWdXoy8krp9nhQyKbp4qtDNS41u3mp083ZGUDsHyGX1f+pgLf84SKUS2EplsLWR3VahjYiIiCyLzmDEjjPp+ORgPJLzywAAzvY2eHBQACIH+UPFD6GIzI7SRoYFwwKxOCIYRaUVcHawhd5otJjfOVoKi1JEJKrC0ipcSC+uNQsqS1NR5zqZVIJO7Z3Q3UeNMK/qWVAd2ztVz2BqAGv7x8FaCm1ERERUV6XegG2n0/DZwWtIKywHUN1T8qEhgbh/oB8clfx1jsic2Svk0Ol0iDl9DEOGDIG9ggXk6/FvMSJqMZoKHWLSixFd04g8vQipBeV1rpNIgA5ujqbiUzdvNbp4qGDbRAUWa/vH4Z+FtlxtBdo4KJBZXMGCFBERkYWq0Bmw9VQqPjt4DZnF1R/WtXVUYsHQQNw7wJc76xJZGK1WK3YEs8W/zYjoljg5OTXo+rIqPS5maP6/EXl6MRJyS+u9NqCtA8L+sQQvxFMFhxb45M+a/nGoKbR98csJ/JSgw5iQ9nhzSjexYxEREVEDlFcZsOlECj4/dA052koAQHuVEg8PC8I9/Xyb7AM6IiJzwaIUEd1UeZUeMqkMIb0GQJDIUFalr/PpXKXegEuZWkSnFf1dhCpGXI4Wxnr2MfBytqu1BC/USw21nWXPVDIn0koNCkpliE4vFjsKERER3aLSSj02Hk/GF4cTTH00PdW2WBgRjOm9vVmMIiKrxaIUEd1Qpc6A1YcS6vQqWjAsEAcu5+BIfD6i04twJUsLnaFuBaq9SokwL2d0/3sXvDAvNVwdzWQLOyvl41D9OlzJ0qJSb4BSzjexRERE5kpbocO3R5Px1Z8JKCyr3lXYu40dFkcEY2ov7wb3ziQisjQsShFRvcqr9Fh9KKHWrm6acj1W7YuDURAQ5qXGdydSTOdcHBTVy++81Ajzrp4F1V5lK0b0Vs1FCajt5Cgu1+NqVgnCvNViRyIiIqLrFJfrsC4qCV8fSURxeXUxyt/VHosjgnF3Ty/Y3GAnYSIia8OiFBHVSyaVYk1UYr3n1h1NwvGlo/Dk6I7o6OaIMG81vJztIJFIWjglXU8iAUI8VYi6VoDo9GIWpYiIiMxIUVkVvjmSiDV/JUFbqQcABLVzwKMjOmBCNw/IWYwiolaGRSkiqldxeRU05fp6z2nK9Sir0uPxkR1aOBXditB/FKWIiIhIfPkllfjqSCK+jUpCaZUBANCxvSMeHdEB48M8IJPygz0iap1YlCKiWoxGARuPJ2Nqb2+o7OT1FqZUdnI42bI5ubkK9VQBAGIzWJQiIiISU662El/+mYD1R5NRrqsuRnXxUOHxkcG4o6s7pCxGEVErx6IUEZlkFVfgv9+fw1/x+XBX22LuQH98tD++znXzwgOgNxqhAKeYm6OufxelLmdqUaU3skkqERFRM3JycqpzLFtTgdWHrmHT8RRU6o0AgDAvNR4b2QGjurix5QER0d9YlCIiAMCv0ZlYuiMaRWU62NpIUaEzYHFEMCQSSZ3d9xYND4KSWxObLd82dlDZyqGp0ONqthahXuwrRURE1NTKq/SQSWUI6TUAgkSGsio9Sir0+N+BeGw+mYqqv4tRPX2d8djIDhjesR2LUURE12FRiqiVK63UY/lPsdh6Kg1A9ad4H87qgaB2jgCABcMCsTgiGEWlFXB2sIXeaGRBysxJJBKEeqkRdS0fMenFLEoRERE1sUqdAasPJdT64G5uuD8iB/rjr/h8VOmN6OvfBo+P7IhBwa4sRhER3QCLUkSt2NmUQjyx5RyS88sgkQALhwXhiVEday33slfIodPpEHP6GIYMGQJ7BXtJWYKwv4tS0enFmCV2GCIiIitSXqXH6kMJWLUvznRMU67HR/viIQjAG5NDYRSAAYEuLEYREf0LFqWIWiG9wYhPD17Dqn1xMBgFeKpt8f7MHhgQ6HrD+2i12hZMSI1VMzsqhjvwERERNSmZVIo1UYn1nlt3NAmPjujAfo5ERLeIRSmiVia1oAxPbjmHU8mFAICJ3T3x+l2hUNtzBpQ1Cfu7KHUpSwudwQgbGd8cExERNQVNha7e3YmB6hlT2godXB2VLZyKiMgy8bcUolZCEAT8cCYN41b9iVPJhXBUyvHBzO74aFYPFqSskJ+rPZxs5ajSG3E1m7PciIiImsLRa3mwV8igsqv/s32VnRxOtnxfRUR0q1iUImoFist1eGzzOSzZeh4llXr08WuDXx8fgsk9vdnrwEpJJBKEenIJHxERUVOo0Bmw/KdY3PPlcfwVn4fIgf71XjcvPAB6o7FlwxERWTAu3yOycscS8rFkyzlkFFdAJpXgiZEdsHB4EORczmX1wrzVOJqQj5h0DWb2FTsNERGRZbqcpcHj353Dlb9nHl/K1GJxRDCkEkmt3ffmhQdg0fAg7lJMRNQALEoRWakqvREf7L2K1YeuQRCql3N9OLMHevq2ETsatZAQTxUAIJozpYiIiBrMaBSwJioJb++5jCq9EW0dFXh3WndEdHYDACwYFojFEcEoKq2As4Mt9EYjC1JERA3EohSRFbqWW4LHN59FTLoGADCzjw9entgVDkr+yLcmpmbnmRroDUbOjiMiIrpF2ZoKPPX9efwZlwcAGNHZDe9M64a2/2hgbq+QQ6fTIeb0MQwZMgT2CvaSIiJqKP6GSmRFBEHAxuMpeH33RVTojHC2t8FbU8IwNtRD7GgkAn9XBzgq5Sip1CMupwRdPFRiRyIiIjJ7v8Vm4bntF1BYpoOtjRQv3NkV9/X3vWEfTq2WG4oQEd0uFqWIrER+SSWe3X4Bey/lAAAGB7fFyund4a62FTkZiUUqlSDEU4XjiQWITi9mUYqIiOgmSiv1eO3ni9h8MhVA9TL4VbN6INjNSeRkRETWi0UpIitw8EoOnvr+AvJKKqGQSfHM2E54YFAApFLurNfahXmpcTyxADHpxZjRx0fsOERERGbpfGoRnthyDol5pZBIgPlDA/Hf0Z2gkHPpOxFRc2JRisiCVegMeOvXy1gblQQA6ODmiFWzeqKrJ2fEULUw7+q+Umx2TkREVJfBKOCzg/H4cG8c9EYBHmpbvDejO8KD2oodjYioVWBRishCXcrU4PHNZ3E1uwQAMDfcH8+N6wxb7vpC/xDKZudERET1Si0ow5Kt53AyqRAAcGc3D7xxdxjU9mxYTkTUUliUIrIwRqOAb/5KxDt7rqDKYERbRyXend4NEZ3cxI5GZijgH83O43NL0Nmds+iIiIh2nk3HSztjoK3Uw1Epx/JJIZjSy+uGzcyJiKh5sChFZEGyNRX479bzOBJfvT3xqC5ueGtq7e2Jif5JKpWgq6cKJxILEJOuYVGKiIhateJyHV7aGYNd5zMAAL392uDDmT3g42IvcjIiotaJRSkiC7EnJhPP/RCNor+3J35pQlfM7nfj7YmJaoR6qv8uShVjWm9vseMQERGJ4nhCPpZsPY/0onLIpBI8NqIDFkcEcWk7EZGIWJQiMnOllXq8+tNFbDlVvT1xqJcKH87siWA3R5GTkaUI866eHcVm50RE1BrpDEZ8uPcqPj14DYIA+Lna44OZPdDLt43Y0YiIWj0WpYjM2LnUIjyx+SyS8ssgkQALhgZhyeiO3J6YGiTs72bnFzM0MBgFyKScXUdERK1DQm4JnthyDhfSqj+Ymd7bG69MCoGjkr8GERGZA/5tTGSGDEYBnx6Ix4f74mAwCvBU2+K9GT0wMMhV7GhkgQLaOsJeIUNZlQHXckvQsb2T2JGIiIialSAI2HwyFa/+dBHlOgPUdjZ4a0oYxoV5iB2NiIj+gUUpIjOTWlCGJ7ecw6nk6u2JJ3TzwApuT0yNIJNKEOKpwsmkQkSnFbMoRUREVq2gtArPbr+APy5mAwAGBbti5fTu8FDbiZyMiIiux6IUkRm5fnviV+8KweSe3J6YGi/US11dlEovxlQ2OyciIit16Gounvr+PHK1lVDIpHh6TCc8ODgAUi5dJyIySyxKEZkBbk9Mza2mr1QMm50TEZEVqtAZ8Navl7E2KgkA0MHNEatm9URXT5W4wYiI6KZYlCIS2fXbEz8+sgMWDef2xNS0TM3OM9nsnIiIrMvlLA0e/+4crmRrAQCRA/2wdHwX2NrIRE5GRET/hkUpIpFU6au3J/7sELcnpuYX2M4RdjbVzc4T80oQ7Ma+UkREZNmMRgHf/JWId/ZcQZXBiLaOSrw7vRsiOrmJHY2IiG4Ri1JEIriWW4InNp9D9N9LqWb08cbLE7k9MTUfmVSCrp4qnE6u7ivFohQREVmybE0Fnvr+PP6MywMAjOrihremdkNbR6XIyYiIqCH4GzBRCxIEAd+dSMVrP3N7Ymp5YV7q6qJUmgaTe4qdhoiI6PbsicnC0h8uoLBMB1sbKV68syvu7e/LjWGIiCwQi1JELSS/pBLP/RBda3vi96b3gLvaVuRk1FqEstk5ERFZsNJKPV77+SI2n0wFAIR6qfDhzJ4IdnMUORkREd0uFqWImoGTU+2lUdyemMxBTbPz2IxiGI0Cv/+IiMhinEstwhObzyIpvwwSCbBgaBCWjO4IhZwbwxARWTIWpYiaUHmVHjKpDCG9BkCQyFBSqcPav5Kw8verALg9MYkrqJ0DbG2kKK0yICGvlJ8sExGR2TMYBXx2MB4f7I2DwSjAU22L92b0wMAgV7GjERFRE2BRiqiJVOoMWH0oAWuiEqEp10NlJ0fkQH/MDffHjrMZGBzsyu2JSVRymRRdPVQ4k1KEmPRiFqWIiMispRaUYcnWcziZVAgAmNDNAyvuDoPa3kbkZERE1FRYlCJqAuVVeqw+lIBV++JMxzTleny8Px4A8O0DfeHVxl6seEQmYV5qnEkpQnR6Me7u6SV2HCIionrtPJuOl3bGQFuph6NSjlfvCsHknl5sZk5EZGVYlCJqAjKpFGuiEus9t+5oEh4d0aGFExHVj83OiYjInBWX6/DSzhjsOp8BAOjt1wYfzuwBHxd+uEdEZI1YlCJqAtoKHTTl+nrPacr10Fbo4OqobOFURHWFedc0O9ew2TkREZmV4wn5WLL1PNKLyiGTSvD4yA5YNDwIchmbmRMRWSsWpYiagJOtDVR28noLUyo7OZxs2fuAzENwO0co5VKUVOqRlF+KwHbsK0VEROKq0hvxwd6rWH3oGgQB8HO1x4cze6CnbxuxoxERUTPjxw5ETcBgNGJeeEC95+aFB0BvNLZwIqL6yWVSdPGo3v0xmkv4iIiohTk5OdW6fS23BFM/i8JnB6sLUjP6eGP3Y0NYkCIiaiU4U4qoCdgp5HhwcACMgoB1R5NMu+/NCw/AouFBUHLHPTIjYV5qnEut3oHvrh5sdk5ERM2vvEoPmVSGkF4DIEhkKKvSY9+lbDyzLRrlOgPUdjZ4a0oYxoV5iB2ViIhaEItSRE1AU6HD7C+P4bGRHXDyhVEoLq2Es4Mt9EYjC1JkdsL+bnbOmVJERNQSKnUGrD6UgDVRiaYP7uYO9EdkuD88ne3grlbivek94K62FTsqERG1MBaliJrAtlNpiMnQYOXvVzC8gwtiTh/DkCFDYK9gLykyPzU78MWms9k5ERE1r/IqPVYfSsCqfXGmY5pyPT7aHw8BwOr7eiGonSP/LSIiaqXYU4qokYxGAeuPJQMA5gz0h0QigVarFTkV0Y11aO8IhVwKbaUeyQVlYschIiIrJpNKsSYqsd5z644mwc/VgQUpIqJWjEUpokY6HJeLxLxSONnKMbkn+/OQ+bP5R7PzGC7hIyKiZqSt0NW7OzFQPWNKW6Fr4URERGROWJQiaqRvj1bPkpre2wcOSq6IJcsQ5sWiFBERNa+U/FLYK+RQ2dX//khlJ4eTLVsdEBG1ZixKETVCcn4pDlzJAQDMGegnchqiWxfqyWbnRETUPCp0Bnzwx1WM+uAwjsTnInKgf73XzQsPgN5obNlwRERkVjitg6gR1h9NhiAAwzu1g39bB7HjEN2ymmbnMenFEAQBEgn7eRARUeMdvpqLl3+MQVJ+dc/CvRezsWxSKKQSSa3d9+aFB2DR8CDuUkxE1MqxKEV0m8qq9Nh6KhUAEBnuL24Yogbq2N4JCpkUmgo9UgrK4OfKoioREd2+rOIKvPbzReyOzgQAtFcp8fKEEIwPc4dEIsGCYYFYHBGMotIKODvYQm80siBFRERcvkd0u3aezYCmQg9/V3sM69BO7DhEDaKQS9HZwwkAl/AREdHt0xuM+OrPBIx87yB2R2dCKgEeGBSAvUuG4c5uHqaZuPYKOSSCATGnj0EiGGCv4GfjRETEmVJEt0UQBKyLSgIA3D/Qn1sZk0UK9VLjQloxotOLMaGbp9hxiIjIwpxOLsSLO2NwKVMDAOjl64zX7g5FyN99C+uj1WpbKh4REVkAFqWIbsPxxAJcydbCzkaGab29xY5DdFvC/tFXioiI6FYVllbh7T2XsflkdRsDZ3sbPDe2M2b08eEHdURE1CAsShHdhppZUlN6eUFtx62MyTL9f1FKw2bnRET0r4xGAdtOp+HNXy+hsEwHAJjRxxvPju0MV0elyOmIiMgSsShF1EAZReX4/WI2AGDODbY4JrIENc3Oi8t1SCssh4+LvdiRiIjITF3O0uDFHTE4lVwIAOjU3gmvTw5FX38XkZMREZElY1GKqIE2Hk+GwShgYKArOrk7iR2H6LYp5FJ0cndCdHp1XykWpYiI6HollXqs2nsV3/yVBINRgL1ChidHdcTcQf6wkXHPJCIiahwWpYgaoEJnwHcnqvsnRIb7iZyGqPFCvVSmotT4MA+x4xARkZkQBAF7YrKw/KeLyNJUAADGhrjj5Yld4elsJ3I6IiKyFixKETXA7guZKCitgqfaFqO6tBc7DlGjhXqpAaSy2TkREZkk55filV2xOHglFwDg62KP5ZNCENHZTeRkRERkbViUImqAb48mAQDuHeAHOaeskxWoaXYenV7MZudERK1cpd6Azw8l4JMD8ajUG6GQSfHwsEAsigiGrY1M7HhERGSFWJQiukVnUwpxPq0YCrkUs/r6iB2HqEl0cneCjUyCojI2Oycias2OxOXhpR9jkJhXCgAYFOyKV+8KRVA7R5GTERGRNWNRiugWfXs0GQAwsZsntz0mq6GUy9CxvRNiMzSIYbNzIqJWJ1tTgdd3X8JP5zMAAO2clHhpQldM7ObB2bNERNTsRF1/dPjwYUycOBGenp6QSCTYuXNnnWsuXbqESZMmQa1Ww8HBAX379kVKSkrLh6VWLVdbiZ8vVL9ZmxvuL24Yoib2zyV8RETUOugNRqz5KxEj3zuEn85nQCqpfo+z77/DMKm7JwtSRETUIkSdKVVaWoru3bvjgQcewJQpU+qcv3btGgYPHowHH3wQy5cvh0qlQmxsLGxtbUVIS63Z5hMp0BkE9PR1Rpi3Wuw4RE0q1EsNnExlUYqIqJU4m1KIF3fGIDZDAwDo7uOMFXeH/r35BRERUcsRtSg1btw4jBs37obnX3jhBYwfPx7vvPOO6VhQUFBLRCMy0RmM2HC8eule5EB/ccMQNYOamVKxGRo2OycismJFZVV457cr+O5ECgQBUNnK8ey4zpjV1xcyKf/uJyKilme2PaWMRiN2796NZ555BmPGjMHZs2cREBCApUuX4u67777h/SorK1FZWWm6rdFUfwKk0+mg0+maOzY1UM1rYs6vza8xWcjWVKKtowKjO7f916yWMKaG4pgsw+2OKcjVFnKpBAWlVUjJ08LT2a454t02vlaWgWOyDNY4JsA6x9WUYxIEATvOZeDt366ioLT68Sb39MSzd3SAq6MSRoMeRkOjn+Zf8XWyDNY4JsA6x8UxWQZrHlNTkAiCIDTZozWCRCLBjh07TAWnrKwseHh4wN7eHq+//joiIiKwZ88ePP/88zhw4ACGDRtW7+MsW7YMy5cvr3N806ZNsLdnA19quI9iZLimlWCMlxHjfY1ixyFqFu+clyG9TIIHOhrQ3dUs/lkgIqImkFkGfJ9Q/V4GANztBEwPNCBYJXIwIiKyWGVlZZg9ezaKi4uhUjXuHxSznikFAHfddReefPJJAECPHj0QFRWF1atX37AotXTpUixZssR0W6PRwMfHB3fccUejv1jU9HQ6Hf744w+MHj0aNjY2Ysep41KmFteOHoVcKsFLs4ejverf+5mZ+5huB8dkGRozpj8rY7HtTDqUHsEYP6pDMyW8PXytLAPHZBmscUyAdY6rsWMqrdTjfwcTsDY6GXqjADsbKR6JCMK8cD/YyMTZ64ivk2WwxjEB1jkujskyWOOY8vPzm+yxzLYo1bZtW8jlcnTt2rXW8S5duuDIkSM3vJ9SqYRSqaxz3MbGxmq+AayRub4+m06mAQDGhLrD29WpQfc11zE1BsdkGW5nTN19nLHtTDouZpaY7deDr5Vl4JgsgzWOCbDOcTV0TIIg4LfYbLz6UywyiisAAHd0bY+XJ3aFdxvzWDXA18kyWOOYAOscF8dkGaxpTE05DrMtSikUCvTt2xdXrlypdfzq1avw8/MTKRW1JkVlVdh5Lh1A9RbJRNasZselmPRiNjsnIrJQqQVleGVXLPZfzgEAeLexw/JJIRjZpb3IyYiIiOonalGqpKQE8fHxptuJiYk4d+4cXFxc4Ovri6effhozZ87E0KFDTT2lfvrpJxw8eFC80NRqbD2VigqdEV08VOjj10bsOETNqouHCjKpBPmlVcgsrjC7ZudERHRjlXoDvjycgI/3x6NSb4SNTIL5QwPxSEQH2ClkYscjIiK6oQYXpVJTUyGRSODt7Q0AOHHiBDZt2oSuXbti/vz5DXqsU6dOISIiwnS7phdUZGQk1q5di8mTJ2P16tV488038dhjj6FTp07Yvn07Bg8e3NDYRA1iMApYfywZADA33I+zRsjq2drI0MHNEZeztIhOL2ZRiojIQkTF5+HFH2OQkFsKABgY6IrX7g5BsFvD2g4QERGJocFFqdmzZ2P+/Pm4//77kZWVhdGjRyMkJAQbN25EVlYWXn755Vt+rOHDh+PfNv974IEH8MADDzQ0JlGjHLicg9SCcqjtbDCpu5fYcYhaRJiXGpeztIhNL8aYEHex4xAR0U3kaCuwYvcl/HguAwDQ1lGJF+/sgrt6ePLDNCIishgN3nojJiYG/fr1AwBs3boVoaGhiIqKwsaNG7F27dqmzkckinVHkwAAs/r6cNo7tRph3tV9paLTi0VOQkREN2IwClgXlYSRKw/hx3MZkEiAOQP9sO+/w3B3Ty8WpIiIyKI0eKaUTqcz7W63d+9eTJo0CQDQuXNnZGZmNm06IhFcyy3Bn3F5kEiA+wawqT61HjXNzqPTNWx2TkRkBpycai/BO59ahBd3xpg+POjmrcaKu8NMHyoQERFZmgYXpUJCQrB69Wrceeed+OOPP/Daa68BADIyMuDq6trkAYla2vqj1b2kRnZuDx8X89g6magldHFXQSoB8koqka2phLvaVuxIREStUnmVHjKpDCG9BkCQyKAp12HNX4n4cF8cBAFwspXjmbGdMbufL2RSfoBARESWq8FFqbfffhuTJ0/Gu+++i8jISHTv3h0AsGvXLtOyPiJLVVKpx7bTaQCAyHDOkqLWxU4hQwc3J1zJrm52zqIUEVHLq9QZsPpQAtZEJUJTrofKTo7Igf6YG+6PXecz0c1bjefHd0E7J6XYUYmIiBqtwUWp4cOHIy8vDxqNBm3atDEdnz9/PuztOauELNsPZ9JQUqlHYDsHDA5uK3YcohYX6qU2FaVGd20vdhwiolalvEqP1YcSsGpfnOmYplyPj/fHAwA2PNgPHtwdlYiIrEiDG50DgEwmq1WQAgB/f3+4ubk1SSgiMQhCdeNQAIgc6M9+OtQqhXmpAAAxbHZORNRiqvRGxKQXQyKRYE1UYr3XrDuaBFdHzo4iIiLr0uCZUtnZ2Xjqqaewb98+5OTkQBCEWucNBkOThSNqSX/F5+NabikclXJM7e0tdhwiUXAHPiKi5pdVXIEzKYU4m1KIMylFiE4vRoCrA76K7ANNub7e+2jK9dBW6FiYIiIiq9LgotTcuXORkpKCl156CR4eHpxNQlZj3dEkAMDUXl5wVDb4R4PIKnT1UEMqAXK1lcjWVKC9in2liIgao0JnQGxGMc6mFOFsShHOpBQis7iiznVVBgPaOiqhspPXW5hS2cnhZGvTEpGJiIhaTIN/8z5y5Aj+/PNP9OjRoxniEIkjtaAM+y5lAwDuH+gvbhgiEdkpZAh2c8TV7BLEpBezKEVE1ACCICCtsBxnU4tMs6AuZhRDZ6i9skAqATq7q9DT1xm9fNugp68zAto6oEJnwLzwgFo9pWrMCw+A3miE4va6bxAREZmlBhelfHx86izZI7J0G44nwygAQzq0RbCbo9hxiEQV6qXG1ewSRKcXY2QXNjsnIrqR8ioDLqQV4WxqEc4kF+JsahFytZV1rmvrqEAPnzbo5eeMnj5t0M1bDYd6ZmXbKeRYNDwIAGrtvjcvPACLhgdBaSNr9jERERG1pAYXpT788EM899xz+Pzzz+Hv798MkYhaVoXOgC0nUwEAczhLigihnmr8cCadzc6JiP5BEAQk55fhbGohziQX4WxqIS5lamEw1v6wVi6VoKunyjQDqpdvG3i3sbvllhdKGxkWDAvE4ohgFJVWwNnBFnqjkQUpIiKySg0uSs2cORNlZWUICgqCvb09bGxqr20vKChosnBELWHXuQwUleng3cYOIzpzB0kiNjsnIgJKKvW4kFr0d0Py6tlQBaVVda5rr1LWKkCFeqlh28gCkr1CDp1Oh5jTxzBkyBDYK9hLioiIrNNtzZQishaCIGBtVBIA4P4BfpBJ2bifqKuHChIJkK2pRI62Am5O7CtFRNbNaBSQkFf6/wWolEJczdbiuklQUMikCPVSoec/ilAeattm2/hHq9U2y+MSERGZiwYXpSIjI5sjB5EoTicX4mKmBkq5FDP7+ogdh8gsOCjlCGrniPic6mbnIzqzKEVE5s/JyemWry0u1+HcP5qRn0sphKai7o53Xs526OnrjJ6+bdDL1xldPVVQyrmMjoiIqKk0uCiVkpJy0/O+vr63HYaopdXMkrq7hxec7RXihiEyI2FeasTnlCA6TYMRndnsnIjMV3mVHjKpDCG9BkCQyFBWpYe94v/f4hqMAuJytDib8v/NyONzSuo8jq2NFN28nE1FqJ6+ztyBlIiIqJk1uCjl7+9/0ynKBoOhUYGIWkq2pgJ7YrIAAHPC/UROQ2ReQr3U2HE2nX2liMisVeoMWH0ooc5OdfOHBmLLyVTsu5yN86nFKKmsOwvKz9UePX2c0cuvDXr6tEFnDyfYyKQijIKIiKj1anBR6uzZs7Vu63Q6nD17Fu+//z5WrFjRZMGImtvG4ynQGwX09W+DEE+12HGIzEqYV/XPRGwGi1JEZJ7Kq/RYfSgBq/bFmY5pyvVYtS8ORkFAmJcaf8XnAwDsFTJ093ZGLz9n9PRpgx6+zmjrqBQrOhEREf2twUWp7t271znWp08feHp64t1338WUKVOaJBhRc6rSG7HpePVS1Mhwf3HDEJmhEM/qZueZxRXIK6nkL29EZHZkUinWRCXWe27d0SSceH4UVk7vhq4eanRyd+JmJkRERGaoyeYod+rUCSdPnmyqhyNqVr/GZCKvpBLtVUqMCXEXOw6R2XFQyhHY1gEAuISPiMxKSn4ZPtp3FdmaCmjK6y7LA6pnTJVW6jGttw+6eqpYkCIiIjJTDZ4ppdFoat0WBAGZmZlYtmwZOnTo0GTBiJrTur8bnN/b34/9I4huINRLjWu5pYhJK0ZEJzex4xBRK3cxQ4PVh67h5wsZcLZX4D9DAqGyk9dbmFLZyeFkayNCSiIiImqIBhelnJ2d6zQ6FwQBPj4++O6775osGFFziU4rxpmUItjIJJjVz0fsOERmK8xLjR/PZXCmFBGJ6kRiAT47GI8DV3JNx8K81NCU6zAvPKBWT6ka88IDoDcaoWi6RQFERETUDBpclDpw4ECt21KpFO3atUNwcDDk8gY/HFGLW3c0CQBwZ5gH3Jy41TPRjYT+3ew8hkUpImphgiBg/+UcfHbwGk4lFwIApBJgfJgHFg4PMm1Qsmh4EADU2X1v0fAgKG1kouUnIiKiW9PgKtKwYcPqPZ6ZmYkVK1bgf//7X6NDETWX/JJK7DqfAQCYwwbnRDcV4qkCAGQUVyC/pBKubHZORM1MbzDi5wuZ+OzgNVzJ1gIAFDIppvXxxvwhgfD/u9ddDaWNDAuGBWJxRDCKSivg7GALvdHIghQREZGFaFBRKjY2FgcOHIBCocCMGTPg7OyMvLw8rFixAqtXr0ZgYGBz5SRqEltOpaJKb0Q3bzV6+jiLHYfIrDnZ2iCwrQMS8koRnV6M4ewrRUTNpEJnwPenUvH54QSkFZYDAByVctw7wBcPDgqAm+rGM5vtFXLodDrEnD6GIUOGwF7BXlJERESW4paLUrt27cK0adOg11c3k3znnXfw5ZdfYsaMGejduzd27NiBsWPHNltQosbSG4zYcDQZADBnoH+d3mhEVFeolxoJeaWIYVGKiJpBcbkOG44lY81ficgrqQIAuDoo8MDgANw3wA9qu1svMGm12uaKSURERM3klotSr7/+OhYvXozXXnsNX331FZYsWYLHHnsMv/zyC/r27ducGYmaxN5LOcgoroCLgwITunmIHYfIIoR5qbHrfAZi0jX/fjER0S3K0VbgmyNJ2HgsGdrK6g88vZztsGBYIKb39oGdgsvviIiIWoNbLkpduXIFmzZtgqOjIx599FE89dRT+OCDD1iQIouxLioJADCrrw9s2WuC6JbUNDvnDnxE1BSS80vxxeEEfH86DVV6IwCgY3tHLBwehAndPGEj4255RERErcktF6W0Wi1UquqmtzKZDHZ2duwhRRbjarYWRxPyIZUA9w7wEzsOkcUI8ar+ez+9qByFpVVo46AQORERWaKLGRqsPnQNP1/IgFGoPtbL1xmLhgdjRGc3SKVcUk9ERNQaNajR+W+//Qa1uvpTc6PRiH379iEmJqbWNZMmTWq6dERNpGaW1B1d3eHlbCduGCILorK1gb+rPZLyyxCdXoyhHduJHYmILIQgCDiZVIhPD8bj4JVc0/Hhndph4bAg9AtwYX9HIiKiVq5BRanIyMhatxcsWFDrtkQigcFgaHwqoiZUXK7DD2fSAQBzwjlLiqihQr3ULEoR0S0zGgUcuJKDTw9ew+nkQgCAVALc2c0TDw8LRIinWuSEREREZC5uuShlNBqbMwdRs9l2Og3lOgM6tnfEwEBXseMQWZwwLzV+vpCJGPaVIqKb0BuM+OlCBlYfTMCV7Oqd8BQyKab18cb8IYHwb+sgckIiIiIyNw2aKUVkaYxGAeuPJgEA5gz05zIBotsQxmbnRHQTFToDtp5KxReHE5BWWA4AcFTKce8AXzw4KABuKluRExIREZG5YlGKrNqhuFwk5ZfByVaOyT29xI5DZJFC/i5KpRWy2TkR/b/ich02HEvGN0cSkV9aBQBwdVDggcEBuG+AH9R2NiInJCIiInPHohRZtW//bnA+vbcPHJT8die6HWo7G/i52iM5vwwxGcUY0oF9pYhasxxtBb4+koiNx1JQUqkHAHg522HBsEBM7+0DO4VM5IRERERkKfhbOlmtpLxSHLxavdvPnIFscE7UGKFe6uqiVLqGRSmiVio5vxSfH07AttNpqNJX9xrt2N4RC4cHYUI3T9jIpCInJCIiIkvDohRZrfXHkiEI1VtPs7kqUeOEeamxm83OiVql2IxirD6UgN0XMmAUqo/18nXGouHBGNHZDVIp+zUSERHR7bmtolRRURG2bduGa9eu4emnn4aLiwvOnDmD9u3bw8uLfXtIfKWVemw9lQoAiAz3FzcMkRVgs3Oi1kUQBJxILMBnh67h4JVc0/Hhndph4bAg9Atw4eYhRERE1GgNLkpduHABo0aNglqtRlJSEh566CG4uLjghx9+QEpKCr799tvmyEnUIDvPpUNboYe/qz2GcakRUaOFeKoAACkFZSgu00FtzwbGRNbIaBSw/3IOPjt0DaeTCwEAUglwZzdPPDwsECGeapETEhERkTVpcFFqyZIlmDt3Lt555x04OTmZjo8fPx6zZ89u0nBEt0MQBKz7u8H5/QP9uayAqAk42yvg42KH1IJyxGQUY1BwW7EjEdFt+uf7txo6gxE/X8jA6oMJuJKtBQAoZFJM6+ONBUMD4efKZfBERETU9BpclDp58iQ+//zzOse9vLyQlZXVJKGIGuNYQgGuZpfAzkaGab29xY5DZDXCvNRILShHdDqLUkSWqLxKD5lUhpBeAyBIZCir0kMmkWDLqVR8cTgBaYXlAABHpRz3DvDFg4MC4KayFTk1ERERWbMGF6WUSiU0Gk2d41evXkW7dlwmReKrmSU1pZcX1HZcYkTUVEK91PglOot9pYgsUKXOgNWHErAmKhGacj1UdnLMDffH3PAArItKRlphOVwdFHhgcADuG+DHfz+JiIioRTS4KDVp0iS8+uqr2Lp1KwBAIpEgJSUFzz77LKZOndrkAYkaIr2oHL9frJ6xN2egv7hhiKxMTbNz7sBHZFnKq/RYfSgBq/bFmY5pyvX4aF88BAF4eUIXJBeUYUYfH9jayERMSkRERK2NtKF3eO+991BSUgI3NzeUl5dj2LBhCA4OhpOTE1asWNEcGYlu2cZjyTAKwMBAV3Ryr9szg4huX+jfDY6T88tQXK4TOQ0R3SqZVIo1UYn1nlt3NAkDg9pizkB/FqSIiIioxTV4ppRarcYff/yBI0eO4MKFCygpKUGvXr0watSo5shHdMsqdAZsPpkKAIgM9xM5DZH1aeOggHcbO6QVliM2oxjhQewrRWQJist10JTr6z2nKddDW6GDq6OyhVMRERER3UZRqsbgwYMxePDgpsxC1Cg/X8hEQWkVPNW2GNWlvdhxiKxSmJcaaYXliElnUYrI3FXoDFhzJBGRg/yhspPXW5hS2cnhZMv+UURERCSOBhelPvroo3qPSyQS2NraIjg4GEOHDoVMxing1HIEQTA1OL93gB/ksgavTCWiWxDqpcavMVmITq+74QURmY8jcXl4cWc0kvLLENzeEXMH+uOj/fF1rpsXHgC90QhFwzs6EBERETVag4tSH3zwAXJzc1FWVoY2bdoAAAoLC2Fvbw9HR0fk5OQgMDAQBw4cgI+PT5MHJqrPudQiRKcXQyGXYlZfft8RNZdQNjsnMmt5JZV4/eeL2HkuAwDQXqWEUi7D4ohgSCSSWrvvzQsPwKLhQVCylxQRERGJpMEfi73xxhvo27cv4uLikJ+fj/z8fFy9ehX9+/fHqlWrkJKSAnd3dzz55JPNkZeoXjWzpCZ282RfDKJmVLMDX2JeKTQVbHZOZC6MRgGbT6Rg5HuHsPNcBiQSYG64P/YuGYahHdtBaSPDgmGBOPXCaJxYGoFTL4zGgmGBLEgRERGRqBo8U+rFF1/E9u3bERQUZDoWHByMlStXYurUqUhISMA777yDqVOnNmlQohvJ1VZid3QmADY4J2puLg4KeDnbIb2oHLHpGgwMchU7ElGrdzVbi+d/iMap5EIAQFcPFd6YEoYePs61rrNXyKHT6RBz+hiGDBkCewV7SREREZG4GlyUyszMhF5ft1GmXq9HVlYWAMDT0xNarbbx6YhuwXcnUqAzCOjp64xu3s5ixyGyeqFeKqQXVTc7Z1GKSDwVOgM+2heHLw4nQG8UYK+QYcnojpgb7n/T3op8j0ZERETmosHL9yIiIrBgwQKcPXvWdOzs2bNYuHAhRowYAQCIjo5GQEBA06UkugGdwYiNx5MBAJED/cUNQ9RK1Czhi2ZfKbqOk5OT2BFajUNXc3HHB4fx6cFr0BsFjOrSHn8sGYb/DAnkZh9ERERkMRo8U+rrr7/G/fffj969e8PGpnrat16vx8iRI/H1118DABwdHfHee+81bVKievwWm4VsTSXaOioxPsxD7DhErYKp2XkGi1JUrbxKD5lUhpBeAyBIZCir0sNe0eC3GHQLcrQVeO3nS/jpfHUjc3eVLZbfFYIxIe4iJyMiIiJquAa/Y3R3d8cff/yBy5cv4+rVqwCATp06oVOnTqZrIiIimi4h0U18G1U9S2p2Px8o5PxkmKgl/LPZeUmlHo5KFh9as0qdAasPJXBXt2ZmNArYdCIFb++5DG2FHlIJMDc8AEvu6MifQSIiIrJYt/0upnPnzujcuXNTZiFqkIsZGpxIKoBcKsG9A9jgnKiluDoq4am2RUZxBWLTi9E/kH2lWqvyKj1WH0rAqn1xpmOacr3p9oJhgZwx1QQuZ2nw/A/ROJNSBKC6MPzG5DCEeavFDUZERETUSLf1TjEtLQ27du1CSkoKqqqqap17//33myQY0b/59mgSAGBMqDvaq2zFDUPUyoR4qZFRXIFoFqVaNZlUijVRifWeWxOViMURwS2cyLqUVVUX+L76MxEGowAHhQxPjemEOQP9IZNKxI5HRERE1GgNLkrt27cPkyZNQmBgIC5fvozQ0FAkJSVBEAT06tWrOTIS1VFUVoWd59IBAHPD/cUNQ9QKhXmp8cfFbMSw2Xmrpq3QQVNed0deoHrGVFF5FdrYK2DDxtsNduByDl76MQZpheUAgDEh7bFsUgg81HYiJyMiIiJqOg1+l7h06VI89dRTiI6Ohq2tLbZv347U1FQMGzYM06dPb46MRHVsPZWKCp0RXTxU6OPXRuw4RK0Od+AjAHCytYHKrv7Pt1R2cjgq5Ri36k+89etlJOaVtnA6y5StqcDijWcwb+1JpBWWw8vZDl/N6YPP7+/DghQRERFZnQbPlLp06RK+++676jvL5SgvL4ejoyNeffVV3HXXXVi4cGGThyT6J4NRwLdHqxuczw33g0TCJQxELa1mB74ENjtvtU4mFUBbrkPkQH98vD++zvm54f44nlCA+JwSxOeUYPWha+gf4IJZ/XwwLtQDtmyCXovBKGDj8WS8u+cKtJV6yKQSPDDIH0+M6ggH/nwRERGRlWrwuxwHBwdTHykPDw9cu3YNISEhAIC8vLymTUdUjwOXc5BWWA61nQ0mdfcSOw5Rq9TOSQl3lS2yNBW4mKFBvwAXsSNRC9p/ORsLN5yBdxt7bF84EFKJpN7d96RSCVbf1xtbTqbg0NVcHE8swPHEArz8Yywm9/TCzL4+CPFks+7YjGI8vyMG51OLAADdfZzxxuRQfm2IiIjI6jW4KDVgwAAcOXIEXbp0wfjx4/Hf//4X0dHR+OGHHzBgwIDmyEhUy7q/G5zP6usDOwU/aScSS6iXGlma6mbnLEq1Hj+cScPT2y7AYBTg52oPW7kMC4YFYnFEMIpKK+DsYAu90Qjl3zOhxoa6Y2yoOzKLy7HtVBq2nEpFWmE5vj2ajG+PJiPMS42ZfX0wqYcnVLY2Io+uZZVW6vHh3qv45q8kGIwCHJVyPDO2E+7t78dG5kRERNQqNLgo9f7776OkpAQAsHz5cpSUlGDLli3o0KEDd96jZhefU4I/4/IgkQD3DfATOw5RqxbmpcbeS9mIZV+pVuOrPxPw+u5LAIApPb3w9rRupibmOp0OMaePYciQIbBX1C0ueajt8OjIDlgcEYyoa/nYfDIFv8dmIzq9GNHpxXh990WMD/PArL6+6OvfxuqXZu+9mI1XdsUivai6kfmdYR54eWJX7iZLRERErUqDilIGgwFpaWno1q0bgOqlfKtXr26WYET1Wf/3LKmRndvDx8Ve3DBErVyYtwoAm523BoIgYOXvV/DJgWsAgAcHB+CF8V0gvW42j1ar/dfHkkolGNyhLQZ3aIuC0irsOJuOzSdSEJdTgh/OpOOHM+kIbOuAmX19MKWXN9o5KZtlTGLJLC7H8l0XsSc2CwDg5WyH1+8ORURnN5GTEREREbW8BhWlZDIZ7rjjDly6dAnOzs7NFImoftoKHbadTgMARIZzlhSR2GqanV/LLUFZlR72CjZjtkYGo4AXd8bguxMpAICnx3TCouFBTTKTycVBgQcHB+CBQf44m1qELSdS8dOFDCTkleLNXy/j3d+uYFSX9pjZzwdDO7Sz6CVt1Zt0JGHlb1dQWmWATCrBf4YE4PGRHfizQ0RERK1Wg98FhYaGIiEhAQEBAc2Rh+iGfjiTjtIqAwLbOWBwcFux4xC1em5OtnBzUiJHW4mLGRr08WdfKWtTqTfgic3n8GtMFqQSYMXkMNzTz7fJn0cikaCXbxv08m2DlyZ2xc/nM7D5ZCrOpRZhT2wW9sRmwUNti+l9fDC9t7fFzZSNSS/G8zuicSGtelZhT19nvDE5DF08VCInIyIiIhJXg4tSr7/+Op566im89tpr6N27NxwcHGqdV6n4BouaniAIpgbnkQP9rb7XCJGlCPNSY9/lHESnF7MoZWVKKvWY/+0pRF3Lh0ImxUf39MDYUI9mf15HpRyz+vliVj9fXM7SYMvJVOw4m47M4gp8tC8OH++Pw+DgtpjV1xejurpBKTffDS9KKvV4//erWBuVCKMAONnK8ezYzpjdz7fO0kciIiKi1qjBRanx48cDACZNmlSrMCAIAiQSCQwGQ9OlI/rbkfg8JOSWwkEhw5ReXmLHIaK/hf6jKEXWI6+kEvPWnER0ejEcFDJ8OacPwkWYodrZXYVXJobg2bGd8cfFbGw+mYK/4vPxZ1we/ozLg4uDAlN6emFmXx90aO/U4vlu5rfYLCzbFYvM4goAwMTunnhpQhe4ObGROREREVGNBhelDhw40Bw5iG5qXVQyAGBab284tbItw4nMWdjffaViWJSyGmmFZZjz9Qkk5JXCxUGBdfP6IcxbLWomWxsZJnb3xMTunkjJL8P3p1Ox9VQqsjWV+OpIIr46kohevs6Y1dcXd3bzgINSvB5NGUXleGVXLP64mA0A8HGxw2t3hWJ4JzYyJyIiIrpeg9+1DRs2rDlyEN1QakEZ9l2ufnN//0B/ccMQUS01xYr4HDY7twZXs7WY8/UJZGkq4OVsh/UP9kNgO0exY9Xi62qP/97RCY+P7IDDcbnYfCIV+y7n4ExKEc6kFGH5T7GY1MMTM/v6oru3usWWe+sNRqyNSsL7f1xFWZUBcqkE84cG4tERHWCnMN8lhkRERERikt7Onf7880/cd999CA8PR3p6OgBg/fr1OHLkSIMe5/Dhw5g4cSI8PT0hkUiwc+fOWufnzp0LiURS68/YsWNvJzJZsA3HkiEIwJAObRHsZl6/HBG1du1VtmjnpIRRAC5lasWOQ41wJqUQ01cfRZamAh3cHLF9YbjZFaT+SS6TYkTn9vhiTh8cXToCz47tDH9Xe5RWGfDdiVTc/clfGLfqT6z5KxFFZVXNmuV8ahHu+uQvvL77EsqqDOjj1wa7HxuCZ8Z2ZkGKiIiI6CYaXJTavn07xowZAzs7O5w5cwaVlZUAgOLiYrzxxhsNeqzS0lJ0794dn3zyyQ2vGTt2LDIzM01/vvvuu4ZGJgtWXmXA5pOpAIA5nCVFZJa4hM/yHbySg3u/PI7ich16+jrj+4cHwl1tOb2P3JxssXB4EA48NRyb5w/A5J5eUMqluJylxfKfLqLfG/vw2HdnERWfB6NRaLLn1VbosGxXLO7+9C/EZmigspXjzSlh2LpgIDq5m1ePKyIiIiJzdFu7761evRpz5szB5s2bTccHDRqE119/vUGPNW7cOIwbN+6m1yiVSri7uzc0JlmJXefTUVyug3cbO4zozH4cROYo1EuN/Wx2brF+PJeO/249D71RwLCO7fDZfb0sdhmmRCLBgEBXDAh0xbKJIfjxfDq+O5GKS5ka7DqfgV3nM+DrYo+ZfX0wrbc32qtur/AmCAL2xGRh2U+xyNZUfzh3dw9PvHBnV7RzUjblkIiIiIisWoPfdV65cgVDhw6tc1ytVqOoqKgpMtVy8OBBuLm5oU2bNhgxYgRef/11uLq6NvnzkPkRBAFr/25wfv8AP8i4fTaRWeJMKcu1LioJy36KhSAAk7p7YuX07lDIb2tlv9lR29tgzkB/3D/ADzHpGmw+mYJd5zKQUlCGd3+7gvd+v4IRnd0wo48PIjq7wUZW/7idnGrPeEotKMMru2Kx/3IOAMDP1R6v3x2KIR3aNfuYiIiIiKxNg4tS7u7uiI+Ph7+/f63jR44cQWBgYFPlAlC9dG/KlCkICAjAtWvX8Pzzz2PcuHE4evQoZLL6ezRUVlaalhQCgEajAQDodDrodLomzUeNV/Oa1PfanEouxKVMDZRyKab08LCY1+9mY7JUHJNlEGtMndzsAQBxOSXQllXA1qZpe+jwtWp6giDgo/3X8L+DCQCA+/v74MXxnSERDNDpDLf1mGKP6WY6t7fHsgmd8ewdHbAnNhtbT6fhVHIR9l7Kwd5LOWjnqMCUnl6Y3tsLfq7V389VRsBGJkNIrwEQJDKUVOjw0/l0vPrzJZTrjLCRSfDQ4AAsHBYAWxuZWY67Pub8OjWGNY6LY7IMHJPlsMZxcUyWwZrH1BQkgiA0qLnCm2++iQ0bNuCbb77B6NGj8csvvyA5ORlPPvkkXnrpJTz66KO3F0QiwY4dO3D33Xff8JqEhAQEBQVh7969GDlyZL3XLFu2DMuXL69zfNOmTbC3t7+tbCSOtVelOJsvxQA3I+4JMoodh4huQBCAF0/LUKKT4MlQPfzZSsesGQVgW6IUf2VXzwwa523AGG8BLbRJndnILgeO5UhxIkeCEv3/D35EgD0+vD8cXx1JwtqjSdCU66GykyNyoD/mhvtjxufHgAotZgQa4M63FURERNQKlZWVYfbs2SguLoZKpWrUYzV4ptRzzz0Ho9GIkSNHoqysDEOHDoVSqcRTTz112wWpWxUYGIi2bdsiPj7+hkWppUuXYsmSJabbGo0GPj4+uOOOOxr9xaKmp9Pp8Mcff2D06NGwsbExHc/SVOC/x/8EIGDptHB09bCc1+5GY7JkHJNlEHNMO/LP4FBcHlT+oRjf37dJH5uvVdOp0hvxzPYY/JWdBYkEeGVCF9zbz6dJHtsSX6d5qP6aHLiSi+9Pp+NwfB7uGdIFXx5Jwsf7403Xacr1pttfzukNL5UCUgtdUm6Jr9OtsMZxcUyWgWOyHNY4Lo7JMljjmPLz85vssRpclJJIJHjhhRfw9NNPIz4+HiUlJejatSscHZt/2+i0tDTk5+fDw8PjhtcolUoolXWbjNrY2FjNN4A1uv71+f50AvRGAX3926C7r2X2ELPG7zmOyTKIMaZuPs44FJeHi5klzfbcfK0ap7RSj4c3ncOfcXmwkUnwwcwemNDNs8mfx9JeJxsbYEIPb0zo4Y3M4nK0sVfgv9+fr/fadUeT8OiIDlbRd8vSXqdbZY3j4pgsA8dkOaxxXByTZbCmMTXlOBpclNqwYQOmTJkCe3t7dO3atVFPXlJSgvj4//8kMjExEefOnYOLiwtcXFywfPlyTJ06Fe7u7rh27RqeeeYZBAcHY8yYMY16XjJvlXoDNp1IAQBEhvuLG4aIbkno383OuQOfeSoorcK8tSdxPrUI9goZPr+/Nxtz18NDbYf8kkpoyvX1nteU66Gt0MHVkTvsERERETWFBn/U9+STT8LNzQ2zZ8/GL7/8AoPh9hqiAsCpU6fQs2dP9OzZEwCwZMkS9OzZEy+//DJkMhkuXLiASZMmoWPHjnjwwQfRu3dv/Pnnn/XOhCLr8Wt0FvJKqtBepcSYEHex4xDRLajZgS8upwQVt9kom5pHRlE5pq+OwvnUIjjb22Djf/qzIHUTTrY2UNnV/5mdyk4OJ1vr+ISTiIiIyBw0eKZUZmYm9uzZg++++w4zZsyAvb09pk+fjnvvvRfh4eENeqzhw4fjZn3Wf/vtt4bGIyuw7mgSAODe/n433KKbiMyLh9oWrg4K5JdW4XKWFj18nMWORADic0ow5+vjyCiugIfaFusf7IdgN3aivxmD0Yh54QFYtS+uzrl54QHQG41QNPwzPSIiIiKqR4PfVcnlckyYMAEbN25ETk4OPvjgAyQlJSEiIgJBQUHNkZFakQtpRTibUgQbmQSzmqj5LhE1P4lEwiV8ZuZ8ahGmr45CRnEFAts5YNvCcBakboGdQo5Fw4Pw+MgOphlTKjs5Hh/ZAYuGB8Fe0eDP84iIiIjoBhr1zsre3h5jxoxBYWEhkpOTcenSpabKRa3UuqhkAMCdYR5wc7IVOQ0RNUSolwqHruYiJo1FKbEdicvD/PWnUFZlQHdvNdbM6wcXB4XYsSyG0kaGBcMCsTgiGEWlFXB2sIXeaITSRiZ2NCIiIiKrclvzz8vKyrBx40aMHz8eXl5e+PDDDzF58mTExsY2dT5qRfJLKvHThQwAwBw2OCeyOGGcKWUWdl/IxLy1J1BWZcDg4LbY+NAAFqRug71CDolgQMzpY5AIBs6QIiIiImoGDX6HNWvWLPz888+wt7fHjBkz8NJLL2HgwIHNkY1amc0nU1GlNyLMS42e7EdDZHFqlu9dzdaiQmeALWeVtLgNx5Lx0o8xEITqGafvz+wOpZyvQ2NotVqxIxARERFZrQYXpWQyGbZu3YoxY8ZAJqv9RjcmJgahoaFNFo5aD73BiI3HqpfuRYb7QyKRiJyIiBrKy9kObextUFimw5UsLbqzuNxiBEHAx/vj8f4fVwEA9/b3xat3hUIm5d+lRERERGS+Grx8r2bZXk1BSqvV4osvvkC/fv3QvXv3Jg9IrcO+y7nIKK6Ai4MCE7p5iB2HiG4Dm52Lw2gUsPyni6aC1GMjgvH63SxIEREREZH5u+09jQ8fPozIyEh4eHhg5cqVGDFiBI4dO9aU2agV2XA8BQAwq68Pl/wQWbCavlKxGSxKtQSdwYgnt57D2qgkAMArE7tiyR2dONuUiIiIiCxCg5bvZWVlYe3atfj666+h0WgwY8YMVFZWYufOnejatWtzZSQrl1EGHEsshFQC3DvAT+w4RNQIbHbecsqq9Fi08QwOXsmFXCrBezO6464eXmLHIiIiIiK6Zbc8U2rixIno1KkTLly4gA8//BAZGRn4+OOPmzMbtRLJOjVcHBS4o6s7vJztxI5DRI1Qs3zvSpYWlXqDyGmsV1FZFe776jgOXsmFrY0UX0b2YUGKiIiIiCzOLc+U+vXXX/HYY49h4cKF6NChQ3NmolaivEoPmVSGxRP64WVHBYrLdGJHIqJG8m5jB2d7GxSV6XA1qwRh3mqxI1mdrOIKzPnmOK5ml0BlK8eaeX3R289F7FhERERERA12yzOljhw5Aq1Wi969e6N///743//+h7y8vObMRlasUmfA6kMJ6LPiDwx55wAGvLkPm0+molLHmRVElkwikSDUk0v4mktC7v+1d+fhUdV3+8fvSWaykgQSEpIACYFAwhIoAg+CCwQQ4fEHolSpUoqiba3YglrqVkXriq1b1YoiRaug1haoy1MRIUSoiAJSFiFskSWsCSH7Mpk5vz8gaZFAQjKZkzPzfl0X12VmwuT+ZCJz5s75fk+pJr7yhXYeLVWHyGC9f9tQCikAAABYVqNLqYsvvljz5s3T4cOH9fOf/1zvvvuuEhMT5Xa7tXz5cpWUlLRkTviQiuoa/WnVHr2wYpeKK2okScUVNXphxS79adUelVfXmJwQQHNwBb6WseVgka6bu1Z5JyuU0j5cf7ttqNLiI8yOBQAAADTZBV99Lzw8XNOmTdOaNWu0ZcsW3X333XrqqacUFxen8ePHt0RG+JjAgAAt+CK33vsWfJEre0CTLwoJoBWo3ex8K6WUx3yxJ183zPtSBWXV6tMxUu/fNkSdo8PMjgUAAAA0S7Pe/aelpenpp5/WwYMH9c4773gqE3xcSaWz7gyp7yuuqFFJJXtLAVaW8V+bnVfXuE1OY32fbD2im/78tUqrajSka4ze+enFat8m2OxYAAAAQLN55JSUwMBATZgwQR988IEnHg4+LiLEocjQ+vfYjwy1KyLE4eVEADypc3SookIdqna5tfMoS7ub492v9uv2hRtU7XLryt4dtODmQfwbCQAAAJ/BOil4ncvt1s1DU+q97+ahKapxc2YFYGU2m019OkZKYglfUxmGoT+t2q17F2+R25AmDeysl2+8SCGOQLOjAQAAAB5DKQWvCw2y69bLUvTLEal1Z0xFhto1Y2R33T68m8KC6j+LCoB1sNl507ndhh7/eLue/iRHkvSL4d301MQM2QN5yQYAAIBv4d0/TPG7j7bpip7x+ur+USour1Lb8BDVuN0K5iwAwCew2XnTOF1u3fP3zVq8MU+S9NureurWy7qanAoAAABoGfzaFV5XWlWjpd8c0s/e2qC8E6XauuFL2QwXZ0gBPqS2lNp+pEROF0tyG6PS6dJtb23Q4o15Cgyw6Znr+lFIAQAAwKdRSsHr1uw6LqfLUJeYMCVFh6mkhI2QAV+TFB2miBC7qmvY7LwxiiqcmjJ/nVbsOKZge4Be/fEATRzQyexYAAAAQIuilILXrdxxTJKUmR5nchIALcVms6lPIkv4ziciIkKSdKy4UpNeXauvvytURIhdb90yWKN6dTA5HQAAANDyKKXgVYZhKCvnuCQpM41SCvBlGZ3Y7Lw+FdU1MmyB6n3RxTJsAdpxpEROl6HYiGC997Mh+p+UaLMjAgAAAF7BJj7wqm2HinW8pEphQYEa3DVaMthrBvBV/7kCX7HJSVqPKqdLc7P3asEXuSquqFFkqF1Th3TR324bogqnS4ltQ82OCAAAAHgNpRS8qnbp3iWp7RVsD5TTSSkF+Kq6zc4PF8vpcssR6N8n51ZU12hu9l69sGJX3W3FFTV6ceVuBdhs+vkwNjUHAACAf/HvdwjwutpSagT7SQE+Lzk6TBHBpzY7332s1Ow4pgsMCNCCL3LrvW/BF7myB/CSDAAAAP/CETC8pqC0Sv8+eFIS+0kB/iAgwKbeHSMlsa+UJJVUOlVcUVPvfcUVNSqpdHo5EQAAAGAuSil4TfbO4zIMqWdCpOKjQsyOA8ALapfwcQU+KSLEocjQ+lfNR4baFRHi8HIiAAAAwFyUUvCa/yzdizU5CQBv+c9m55RSZVU1mjqkS7333Tw0RTVu9tgDAACAf2Gjc3hFjcutz3cel8R+UoA/6fNfm53XuNyy++lm54Zh6OllO/Tr0WmySXpj7Xd1V9+7eWiKbh/eTcGOQLNjAgAAAF5FKQWv2LCvUMWVNWoX5tAPOrczOw4AL0mJCVebYLtKq2q0+3ip0uMjzY5kin9sOqR3vjqgTftP6q1bB+uOEd11sqxSbcNDVON2U0gBAADAL/nnr6zhdStzTi3dG9YjVoEBNpPTAPCWgACbeiWe3uz8oH8u4SsordIjH26TJP1vRoLatwmWzXBp64YvZTNcCgvi90MAAADwT5RS8IpVO04t3ctk6R7gd/x9s/NHP/pWheVOpXWI0M+Hdau7vaSkxMRUAAAAgPkopdDi8k5WKOdoiQJsp86UAuBf6kqpQ8UmJ/G+rJxjWrrpkGw26amJGQqy87ILAAAA1OLoGC2u9qp7FyW1U9uwIJPTAPC22s3Ovz1ULJfbMDmN95RV1ei3S7ZKOnV1vf5J7KcHAAAA/DdKKbS4rNOlFEv3AP/UtX24woMCVeF0ac/xUrPjeM3vl+Uo72SFOrYN1d2je5gdBwAAAGh1KKXQoiqdLn2xJ1+SNIJSCvBLAQE29U48dbaUv2x2vnF/od5c+50k6YlrMxQezGbmAAAAwPdRSqFFrd1boEqnWwlRIUqPjzA7DgCT9O54+gp8frDZeXWNW/f+fbMMQ7q2f0f20gMAAADOgVIKLap26d7wtDjZbDaT0wAwiz9dge+VVXu082iposOD9Nv/18vsOAAAAECrRSmFFmMYRt0m5yzdA/xbbSm1zcc3O991tEQvZe2SJM0e10vR4VzcAQAAADgXSim0mN3HSnWwsEJB9gBdkhpjdhwAJuoa20Zhpzc73+ujm5273YbuXbxFTpehzLRYje+XaHYkAAAAoFWjlEKLyco5dZbUxV1jFBbEJr+APwsMsKlXgm/vK/X2un3asK9Q4UGBeuyaDJYsAwAAAA2glEKLqV26l5nGJr8ApD51+0oVm5zE8w6drNCcf+6QJP1mTLo6tg01OREAAADQ+lFKoUUUVzq1/rtCSewnBeAUX93s3DAM/XbpVpVVu3RRUlv9+OJksyMBAAAAlkAphRaxeme+atyGusaGKzkm3Ow4AFqBjE61m50Xye1Dm51/uPmwVu44JkegTXMm9lVgAMv2AAAAgMaglEKLqLvqXhpnSQE4pVtsG4U4AlRW7dLe/DKz43hEYVm1HvlgmyRpemaquneIMDkRAAAAYB2UUvA4t9tQ9s7TpRRL9wCc9t+bnfvKEr5HP/5WBWXV6h7XRr8Y3s3sOAAAAIClUErB47bkFSm/tFptgu0a2CXa7DgAWpHafaV84Qp8n+88rsUb82SzSU9N7Ktge6DZkQAAAABLoZSCx9Uu3bs0tb2C7PyIAfiPPj5SSpVX1+j+JVskSVOHdNGA5HYmJwIAAACsh8YAHpeVw9I9APWr3ez820PFlt7s/JlPd+pgYYU6tg3Vr69MMzsOAAAAYEmUUvCoYyWV2nzw1BkQw9NjTU4DoLVJPb3ZeWlVjb4rsOZm55sOnNSCf+VKkh67po/aBNtNTgQAAABYE6UUPCo757ikU/vGxEWEmJwGQGtjDwxQz9ObnVtxCV91jVv3/n2z3IZ09Q8SlckVRgEAAIAmo5SCR9Uu3ctM4ywpAPWr3ezcilfge+3zPdpxpETtwhx66P/1MjsOAAAAYGmUUvAYp8ut1TvzJUmZ7CcF4Bysutn57mOl+uOK3ZKkh8b1UkybYJMTAQAAANZGKQWP+fq7EyqpqlFMeJD6dWprdhwArVTtmVLb8qyz2bnbbei+xZtV7XJrWI9YTfhBR7MjAQAAAJZHKQWPydpxaunesLRYBQTYTE4DoLVKjWujIHuASqpqtO9EudlxGmXRV/v19XeFCgsK1OPX9JHNxr9xAAAAQHNRSsFjsk5vcj6CpXsAzsNhsc3OjxRV6ql/7pAk/Xp0mjq1CzM5EQAAAOAbKKXgEQdOlGv3sVIFBth0WXc2OQdwfhkdT5VSrX2zc8Mw9NulW1VaVaMfdG6rqUO7mB0JAAAA8BmUUvCIlaeX7g1IbqeoUIfJaQC0drX7Sm052LpLqf/bckSfbT8qe4BNcyb2VSBLkwEAAACPoZSCR9SWUizdA9AYtVfg23qoSIbROjc7P1lerdkfbJUk3T68m9LiI0xOBAAAAPgWSik0W3l1jdbuLZBEKQWgcXp0iDi12Xlljfa30s3OH/94u/JLq9UtNlzTR6SaHQcAAADwOZRSaLa1ewpUXeNWx7ah6h7Xxuw4ACzAERignqfPPGqNm52v2ZWv9zcclM0mzZnYV8H2QLMjAQAAAD6HUgrNVrt0LzM9lsukA2i02iV8ra2Uqqh26f4lWyRJUy5O1sAu0SYnAgAAAHwTpRSaxTAMZbGfFIAmqN3svLVdge+5z3Zq/4lyJUSFaNaVaWbHAQAAAHwWpRSaJedoiQ4VVSrYHqAhXdubHQeAhdRtdp5X3Go2O99ysEivr94rSXpsQh9FhHA1UQAAAKClUEqhWWqX7g3tFqPQIPZcAdB4PTpEKCgwQEUVTh04UWF2HDldbv3m75vlNqRx/RI1smcHsyMBAAAAPo1SCs2yasdxSSzdA3DhguwBSmtFm53PW71X2w8Xq22YQ7PH9TI7DgAAAODzKKXQZEXlTm3YXyhJGp5GKQXgwrWWzc5z88v0/Ge7JEm/vaqX2rcJNjUPAAAA4A8opdBk2buOy+U21D2ujTpHh5kdB4AF1W52vu2QeaWU223o3r9vVnWNW5d1b6+JF3U0LQsAAADgTyil0GRcdQ9Ac2X815lSZm12/t76A1qXe0KhjkA9cU2GbDabKTkAAAAAf2NqKfX5559r3LhxSkxMlM1m09KlS8/5ubfddptsNpuef/55r+XDubnchlblnCqlMimlADRRj/g2cgTadLLcqYOF3t/s/GhxpZ74v+2SpLtH9+CsTwAAAMCLTC2lysrK1K9fP7388svn/bwlS5boyy+/VGJiopeSoSH/PnhSheVORYTYNSC5ndlxAFhUsD2wbrPzrSbsK/XQP7aqpLJG/TpF6eZLUrz+9QEAAAB/Zjfzi48dO1Zjx4497+fk5eXpl7/8pZYtW6arrrrKS8nQkNqle5d3j5UjkFWgAJouo2OUtuYVa0tekcZmJHjt636y9bCWbTsqe4BNT03sq8AAlu0BAAAA3mRqKdUQt9utKVOmaNasWerdu3ej/k5VVZWqqqrqPi4uLpYkOZ1OOZ3OFsnpj1ZsPypJurx7dLO+r7V/15eeG2ayBmZqPdI7tJEkbT54st7sLTFXUYVTDy7dKkn66WVdlNo+1KvfN6s+V+fDTNbgizNJvjkXM1kDM1mHL87FTNbgyzN5gs0wa2fZ77HZbFqyZIkmTJhQd9uTTz6prKwsLVu2TDabTV26dNHMmTM1c+bMcz7Oww8/rEceeeSs2xctWqSwMPYK8YSiaumhDXbZZOjRgS5FOMxOBMDK9pVKz26xK9xu6PGBLnljn/F39wRo7bEAxYUY+k0/lxyc8AkAAAA0Snl5uW688UYVFRUpMjKyWY/Vas+U2rBhg1544QVt3Ljxgq6EdN999+muu+6q+7i4uFidO3fW6NGjm/3NwinvbzgobfhWGZ2iNOnqi5v1WE6nU8uXL9cVV1whh8M32i1msgZmaj2qnC79cdtKldVIP7gkUx3bhp5xv6fn+nLvCa1du16S9Pzk/9GgLt7fF8+qz9X5MJM1+OJMkm/OxUzWwEzW4YtzMZM1+OJMBQUFHnusVltKrV69WseOHVNSUlLdbS6XS3fffbeef/55fffdd/X+veDgYAUHB591u8Ph8JkfALNl7zr1AzgyPd5j31NffH6YyRqYyXwOh0M9OkTo28PF2nG0XF1i6/8FgifmqnS69OAH30qSJg9O0tDu5l491GrPVWMwkzX44kySb87FTNbATNbhi3MxkzX40kyenKPVllJTpkzRqFGjzrjtyiuv1JQpU3TzzTeblApVNS6t2ZUvScpMjzU5DQBfkdExSt8eLtbWvCKN6RPfYl/n+c926buCcnWIDNY9Y9Nb7OsAAAAAaJippVRpaal2795d93Fubq42bdqk6OhoJSUlKSYm5ozPdzgcio+PV1pamrej4rSvcwtVVu1S+zbB6pMYZXYcAD6iT6covbf+gLbkFbXY19iaV6R5q/dKkh6bkKHIEN/4TRUAAABgVaaWUuvXr1dmZmbdx7V7QU2dOlVvvPGGSalwPit3HJMkZabFKoDLpwPwkIyOp0rurXlFMgzjgvYSbIwal1v3Lt4sl9vQVRkJuqJXB48+PgAAAIALZ2opNXz4cF3Ixf/OtY8UvGdVzqlSakS6ufuwAPAt6fERCgywqaCsWoeLKpX4vc3Om2v+mlxtzStWVKhDs8f38uhjAwAAAGgaLoKNRvsuv0x788tkD7Dpku7tzY4DwIeEOALVPa6NJHl8Cd93+WV6dvlOSdIDV/VUXESIRx8fAAAAQNNQSqHRapfuDeoSzV4sADzuv5fweYphGLpv8RZV1bh1SWqMrhvQyWOPDQAAAKB5KKXQaFks3QPQgjI6nSqlPHmm1PvrD2rt3gKFOAL0xDUZHt+rCgAAAEDTUUqhUcqqarRu7wlJUialFIAW0Od7m50317HiSj328beSpLuu6KHkmPBmPyYAAAAAz6GUQqP8a3e+ql1uJUWHqVssb+wAeF6vhEgFBtiUX1qto8VVzX68hz/cpuLKGmV0jNK0S1I8kBAAAACAJ1FKoVFql+5lpsWy/AVAi/DkZufLth3R/205osAAm56amCF7IC93AAAAQGvDUToaZBiGsnYcl8TSPQAtq3YJX3NKqeJKpx76x1ZJ0s8u76reiVEeyQYAAADAsyil0KBvDxfrSHGlQh2BurhrjNlxAPgwT1yB76l/7tDR4iqltA/XjJHdPRUNAAAAgIdRSqFBWTtOLd27JDVGIY5Ak9MA8GXNPVPqy70FWrRuvyTpyWsz+DcLAAAAaMUopdCgrByW7gHwjl4JkQqwScdLqnS0uPKC/m6l06X7Fm+RJN3wP505sxMAAABo5SilcF6FZdX6Zn+hJGl4GqUUgJYVGhSo1NrNzg9e2NlSL67cpdz8MsVFBOvesT1bIh4AAAAAD6KUwnll7zwutyGlx0eoY9tQs+MA8ANNWcL37aFivZq9V5L0u6v7KCrU0SLZAAAAAHgOpRTOa+Xp/aRYugfAW2o3O992qHGlVI3LrXsXb1aN29CY3vEa0ye+JeMBAAAA8BBKKZxTjcut7J2n9pMaQSkFwEsyLvBMqTe++E6bDxYpIsSu313duyWjAQAAAPAgSimc06YDJ1VU4VRUqEP9O7c1Ow4AP9Er8dRm50eLq3Ss5Pybne8vKNcfPs2RJD3wvz0VFxnijYgAAAAAPIBSCudUu3Tv8h6xsgfyowLAO8KC7OoWe2qz863nOVvKMAzdv2SLKp1uDekao0mDOnsrIgAAAAAPoGnAOdWWUiPSY01OAsDf1C3hO1h8zs/5+8Y8rdmdr2B7gJ64NkM2m81b8QAAAAB4AKUU6nXoZIV2HCmRzSYN68F+UgC8q6Er8B0vqdKjH30rSZo5qodS2od7LRsAAAAAz6CUQr2yck6dJdW/c1tFhweZnAaAv6ktpc61fO+RD7epqMKp3omR+ullKd6MBgAAAMBDKKVQr6wdXHUPgHl6J0bKZpOOFFcqv7TqjPs++/aoPtp8WIEBNs2Z2Jc97wAAAACL4kgeZ6l0uvSv3fmSpOFplFIAvC882K6up5fkbT30n32lSiqd+u3SrZKkWy9LqTujCgAAAID1UErhLOtyT6jC6VKHyGD1Tow0Ow4AP1W72fm2QyV1tz39SY6OFFcqOSZMM0f2MCsaAAAAAA+glMJZsk5fdS8zLY6rWQEwTZ+6UurUmVLr9xXqrS/3SZKevCZDoUGBpmUDAAAA0HyUUjiDYRhaWVtKsZ8UABPVnil1sLBCoW0i9PSyXZKkSQM7a2hqezOjAQAAAPAAu9kB0LrszS/T/hPlcgTadClv+gCYqE+nKM37yQBdktpehWXVWnhZkNbtPaGBye3MjgYAAADAAyilcIbapXuDU2IUHsyPBwDz2G02bT5YpLvf/7eKK2oUGWrXTUO7aGi3GLOjAQAAAPAAWgecgaV7AFqDiuoazc3eqxdX7q67rbiiRn9csVs22fTzYV0VFsRLGAAAAGBl7CmFOiWVTn2Ve0KSNIJSCoCJAgMCtOCL3HrvW/BFruwBvHwBAAAAVsdRPer8a3e+atyGUtqHK6V9uNlxAPixkkqniitq6r2vuKJGJZVOLycCAAAA4GmUUqhTt3QvjbOkAJgrIsShyND6l+dFhtoVEeLwciIAAAAAnkYpBUmS220oK+e4JCkzPdbkNAD8ncvt1s1DU+q97+ahKapxu72cCAAAAICnsUssJEnbDhXreEmVwoIC9T8p0WbHAeDnQoPsun14N0mn9pCqvfrezUNTdPvwbgp2BJqcEAAAAEBzUUpB0n+W7l2a2l7Bdt7sATBfsCNQPx/WVdMzU3WyrFJtw0NU43ZTSAEAAAA+guV7kCRl5ZwqpbjqHoDWJCzILpvh0tYNX8pmuBQWxO9SAAAAAF9BKQUVlFbp3wdPSpIyKaUAtEIlJSVmRwAAAADgYZRS0Kqc4zIMqVdCpDpEhpgdBwAAAAAA+AFKKWglS/cAAAAAAICXUUr5OafLrc93HpfE0j0AAAAAAOA9lFJ+buO+QpVU1ig6PEg/6NzW7DgAAAAAAMBPUEr5udqle8N6xCowwGZyGgAAAAAA4C8opfxc1o5TpdTwtFiTkwAAAAAAAH9CKeXHDhaWa+fRUgXYTp0pBQAAAAAA4C2UUn6s9iypAcnt1DYsyOQ0AAAAAADAn1BK+bGsHK66BwAAAAAAzEEp5acqnS59sSdfkjSCUgoAAAAAAHgZpZSfWrunQJVOtxKiQpTWIcLsOAAAAAAAwM9QSvmplaf3k8pMj5PNZjM5DQAAAAAA8DeUUn7IMIy6UmpEGkv3AAAAAACA91FK+aHdx0qVd7JCQfYADU2NMTsOAAAAAADwQ5RSfqj2LKkhXWMUFmQ3OQ0AAAAAAPBHlFJ+qG4/qbRYk5MAAAAAAAB/RSnlZ4oqnFq/r1CSNCK9g8lpAAAAAACAv6KU8jOrdx2Xy22oW2y4kmLCzI4DAAAAAAD8FKWUn8nacVySNCKdq+4BAAAAAADzUEr5EbfbUPbO0/tJUUoBAAAAAAATUUr5kc15RcovrVabYLsGJkebHQcAAAAAAPgxSik/UnvVvcu6t1eQnaceAAAAAACYh2bCj2TtYOkeAAAAAABoHSil/MSxkkptySuSJA1PizU5DQAAAAAA8HeUUn5iVc6pq+717RSluIgQk9MAAAAAAAB/RynlJ2qX7g1PY+keAAAAAAAwH6WUH6iucWv1rnxJ0gj2kwIAAAAAAK0ApZQfWP/dCZVW1ah9myD17RhldhwAAAAAAABKKX+QlXNq6d6wHnEKCLCZnAYAAAAAAIBSyi+sPL2fFEv3AAAAAABAa0Ep5eP2F5Rrz/EyBQbYdGn39mbHAQAAAAAAkEQp5fNW7jgqSRqY3E5RoQ6T0wAAAAAAAJxCKeXjsnKOS2LpHgAAAAAAaF1MLaU+//xzjRs3TomJibLZbFq6dOkZ9z/88MNKT09XeHi42rVrp1GjRmndunXmhLWg8uoard1bIIlSCgAAAAAAtC6mllJlZWXq16+fXn755Xrv79Gjh1566SVt2bJFa9asUZcuXTR69GgdP37cy0mt6YvdBaqucatTu1ClxrUxOw4AAAAAAEAdu5lffOzYsRo7duw577/xxhvP+PjZZ5/V/PnztXnzZo0cObKl41neypxTV93LTIuTzWYzOQ0AAAAAAMB/mFpKXYjq6mq99tprioqKUr9+/c75eVVVVaqqqqr7uLi4WJLkdDrldDpbPGdrYRiGVm4/tcn55d2jW+3stblaa76mYCZrYCbr8MW5mMkamMk6fHEuZrIGZrIOX5yLmazBl2fyBJthGIbHHq0ZbDablixZogkTJpxx+0cffaQf/ehHKi8vV0JCgpYuXapBgwad83EefvhhPfLII2fdvmjRIoWFhXk6dqt1qEyas9kuR4ChJwa6FBRodiIAAAAAAGB15eXluvHGG1VUVKTIyMhmPVarL6XKysp0+PBh5efna968eVq5cqXWrVunuLj6N+6u70ypzp07Kz8/v9nfLCt59fNc/WH5Lg3v0V7zplxkdpxzcjqdWr58ua644go5HA6z43gEM1kDM1mHL87FTNbATNbhi3MxkzUwk3X44lzMZA2+OFNBQYESEhI8Ukq1+uV74eHhSk1NVWpqqi6++GJ1795d8+fP13333Vfv5wcHBys4OPis2x0Oh8/8ADRG9q58SdLIXvGWmNsXnx9msgZmsg5fnIuZrIGZrMMX52Ima2Am6/DFuZjJGnxpJk/OYerV95rC7XafcSYUznayvFob9hVKkjLTYk1OAwAAAAAAcDZTz5QqLS3V7t276z7Ozc3Vpk2bFB0drZiYGD3++OMaP368EhISlJ+fr5dffll5eXm67rrrTEzd+mXvPC63IfXo0Ead2vnPPloAAAAAAMA6TC2l1q9fr8zMzLqP77rrLknS1KlTNXfuXO3YsUNvvvmm8vPzFRMTo0GDBmn16tXq3bu3WZEtYVXOcUlSZnr9+24BAAAAAACYzdRSavjw4TrfPuuLFy/2Yhrf4HIbWpVzTJI0Io1SCgAAAAAAtE6W21MK57fpwEkVljsVEWLXgOR2ZscBAAAAAACoF6WUj8naceosqct7xMoeyNMLAAAAAABaJ1oLH7NyB0v3AAAAAABA60cp5UOOFFXq28PFstmk4WmxZscBAAAAAAA4J0opH1K7wXm/Tm0V0ybY5DQAAAAAAADnRinlQ+qW7qWzdA8AAAAAALRulFI+oqrGpTW78yVJmewnBQAAAAAAWjlKKR/xVe4JlVe7FBsRrN6JkWbHAQAAAAAAOC9KKR+RteO4JCkzLVYBATaT0wAAAAAAAJwfpZSPyMphPykAAAAAAGAdlFI+IDe/TLn5ZXIE2nRJanuz4wAAAAAAADSIUsoH1F51b1CXaEWEOExOAwAAAAAA0DBKKR+QtYOlewAAAAAAwFoopSyurKpG63ILJEmZlFIAAAAAAMAiKKUsbs3ufDldhpJjwtS1fbjZcQAAAAAAABqFUsriapfuZabFyWazmZwGAAAAAACgcSilLMwwDGXlnC6lWLoHAAAAAAAshFLKwrYdKtbR4iqFOgI1OCXa7DgAAAAAAACNRillYatOnyV1SWp7hTgCTU4DAAAAAADQeJRSFrby9H5SI1i6BwAAAAAALIZSyqJOlFXrmwMnJUmZ6bHmhgEAAAAAALhAlFIWlb3zmAxDSo+PUEJUqNlxAAAAAAAALgillEVl7TguiaV7AAAAAADAmiilLKjG5Vb2TkopAAAAAABgXZRSFvTNgZMqqnCqbZhD/ZPamR0HAAAAAADgglFKWVDtVfcu7x6rwACbyWkAAAAAAAAuHKWUBWWdLqVYugcAAAAAAKyKUspiDp2s0I4jJQqwScN6xJodBwAAAAAAoEkopSwmK+fUWVL9k9qpXXiQyWkAAAAAAACahlLKYli6BwAAAAAAfAGllIVUOl361+4CSdLwNJbuAQAAAAAA67KbHQCNt2HfCSVFh8lmk3olRJodBwAAAAAAoMkopSyiorpGA5Kj9frUgYqNCFaF06WwIJ4+AAAAAABgTbQaFlDldGlu9l4t+CJXxRU1igy16+ahKbp9eDcFOwLNjgcAAAAAAHDBKKVauYrqGs3N3qsXVuyqu624oqbu458P68oZUwAAAAAAwHLY6LyVCwwI0IIvcuu9b8EXubIH8BQCAAAAAADrodFo5UoqnSquqKn3vuKKGpVUOr2cCAAAAAAAoPkopVq5iBCHIkPrX54XGWpXRIjDy4kAAAAAAACaj1KqlXO53bp5aEq99908NEU1breXEwEAAAAAADQfO2S3cqFBdt0+vJskcfU9AAAAAADgMyilLCDYEaifD+uq6ZmpKql0KiLEoRq3m0IKAAAAAABYFqWURYQFnXqqYtoES5KCWHkJAAAAAAAsjGYDAAAAAAAAXkcpBQAAAAAAAK+jlAIAAAAAAIDXUUoBAAAAAADA6yilAAAAAAAA4HWUUgAAAAAAAPA6SikAAAAAAAB4HaUUAAAAAAAAvI5SCgAAAAAAAF5HKQUAAAAAAACvo5QCAAAAAACA11FKAQAAAAAAwOsopQAAAAAAAOB1lFIAAAAAAADwOkopAAAAAAAAeB2lFAAAAAAAALzObnaAlmYYhiSpuLjY5CSoj9PpVHl5uYqLi+VwOMyO4xHMZA3MZB2+OBczWQMzWYcvzsVM1sBM1uGLczGTNfjiTCUlJZL+07c0h8+XUrXfrM6dO5ucBAAAAAAAwDcUFBQoKiqqWY9hMzxRbbVibrdbhw4dUkREhGw2m9lx8D3FxcXq3LmzDhw4oMjISLPjeAQzWQMzWYcvzsVM1sBM1uGLczGTNTCTdfjiXMxkDb44U1FRkZKSklRYWKi2bds267F8/kypgIAAderUyewYaEBkZKTP/A9ai5msgZmswxfnYiZrYCbr8MW5mMkamMk6fHEuZrIGX5wpIKD525Sz0TkAAAAAAAC8jlIKAAAAAAAAXkcpBVMFBwdr9uzZCg4ONjuKxzCTNTCTdfjiXMxkDcxkHb44FzNZAzNZhy/OxUzWwEzn5/MbnQMAAAAAAKD14UwpAAAAAAAAeB2lFAAAAAAAALyOUgoAAAAAAABeRykFU3z++ecaN26cEhMTZbPZtHTpUrMjNduTTz6pQYMGKSIiQnFxcZowYYJycnLMjtUsr7zyivr27avIyEhFRkZqyJAh+uc//2l2LI966qmnZLPZNHPmTLOjNNnDDz8sm812xp/09HSzYzVbXl6efvzjHysmJkahoaHKyMjQ+vXrzY7VLF26dDnrubLZbJo+fbrZ0ZrM5XLpwQcfVEpKikJDQ9WtWzc9+uijsvqWlSUlJZo5c6aSk5MVGhqqoUOH6uuvvzY7VqM19DprGIYeeughJSQkKDQ0VKNGjdKuXbvMCdtIDc20ePFijR49WjExMbLZbNq0aZMpOS/U+eZyOp265557lJGRofDwcCUmJuonP/mJDh06ZF7gRmjouXr44YeVnp6u8PBwtWvXTqNGjdK6devMCdtIF3Lsetttt8lms+n555/3Wr6maGimm2666azXqzFjxpgTtpEa8zxt375d48ePV1RUlMLDwzVo0CDt37/f+2EbqaGZ6juusNls+v3vf29O4EZqaK7S0lLdcccd6tSpk0JDQ9WrVy/NnTvXnLCN1NBMR48e1U033aTExESFhYVpzJgxrf61tzHvcSsrKzV9+nTFxMSoTZs2mjhxoo4ePdror0EpBVOUlZWpX79+evnll82O4jHZ2dmaPn26vvzySy1fvlxOp1OjR49WWVmZ2dGarFOnTnrqqae0YcMGrV+/XiNGjNDVV1+tbdu2mR3NI77++mu9+uqr6tu3r9lRmq137946fPhw3Z81a9aYHalZCgsLdckll8jhcOif//ynvv32Wz3zzDNq166d2dGa5euvvz7jeVq+fLkk6brrrjM5WdPNmTNHr7zyil566SVt375dc+bM0dNPP60XX3zR7GjNcuutt2r58uV66623tGXLFo0ePVqjRo1SXl6e2dEapaHX2aefflp//OMfNXfuXK1bt07h4eG68sorVVlZ6eWkjdfQTGVlZbr00ks1Z84cLydrnvPNVV5ero0bN+rBBx/Uxo0btXjxYuXk5Gj8+PEmJG28hp6rHj166KWXXtKWLVu0Zs0adenSRaNHj9bx48e9nLTxGnvsumTJEn355ZdKTEz0UrKma8xMY8aMOeN165133vFiwgvX0Ex79uzRpZdeqvT0dK1atUqbN2/Wgw8+qJCQEC8nbbyGZvrv5+fw4cP685//LJvNpokTJ3o56YVpaK677rpLn3zyid5++21t375dM2fO1B133KEPPvjAy0kb73wzGYahCRMmaO/evfrHP/6hb775RsnJyRo1alSrfr/YmPe4d955pz788EO9//77ys7O1qFDh3Tttdc2/osYgMkkGUuWLDE7hscdO3bMkGRkZ2ebHcWj2rVrZ7z++utmx2i2kpISo3v37sby5cuNYcOGGTNmzDA7UpPNnj3b6Nevn9kxPOqee+4xLr30UrNjtLgZM2YY3bp1M9xut9lRmuyqq64ypk2bdsZt1157rTF58mSTEjVfeXm5ERgYaHz00Udn3H7RRRcZDzzwgEmpmu77r7Nut9uIj483fv/739fddvLkSSM4ONh45513TEh44c537JCbm2tIMr755huvZvKExhwTffXVV4YkY9++fd4J1UyNmamoqMiQZHz22WfeCdVM55rp4MGDRseOHY2tW7caycnJxnPPPef1bE1V30xTp041rr76alPyeEJ9M02aNMn48Y9/bE4gD2jM/09XX321MWLECO8E8pD65urdu7fxu9/97ozbrPQ6/P2ZcnJyDEnG1q1b625zuVxGbGysMW/ePBMSNs333+OePHnScDgcxvvvv1/3Odu3bzckGWvXrm3UY3KmFNBCioqKJEnR0dEmJ/EMl8uld999V2VlZRoyZIjZcZpt+vTpuuqqqzRq1Cizo3jErl27lJiYqK5du2ry5Mmt+jT0xvjggw80cOBAXXfddYqLi1P//v01b948s2N5VHV1td5++21NmzZNNpvN7DhNNnToUK1YsUI7d+6UJP373//WmjVrNHbsWJOTNV1NTY1cLtdZvzkPDQ21/FmIkpSbm6sjR46c8e9fVFSUBg8erLVr15qYDI1RVFQkm82mtm3bmh3FI6qrq/Xaa68pKipK/fr1MztOk7ndbk2ZMkWzZs1S7969zY7jMatWrVJcXJzS0tL0i1/8QgUFBWZHajK3262PP/5YPXr00JVXXqm4uDgNHjzYJ7YRqXX06FF9/PHHuuWWW8yO0mxDhw7VBx98oLy8PBmGoaysLO3cuVOjR482O1qTVFVVSdIZxxYBAQEKDg621LHF99/jbtiwQU6n84xjivT0dCUlJTX6mIJSCmgBbrdbM2fO1CWXXKI+ffqYHadZtmzZojZt2ig4OFi33XablixZol69epkdq1neffddbdy4UU8++aTZUTxi8ODBeuONN/TJJ5/olVdeUW5uri677DKVlJSYHa3J9u7dq1deeUXdu3fXsmXL9Itf/EK/+tWv9Oabb5odzWOWLl2qkydP6qabbjI7SrPce++9+tGPfqT09HQ5HA71799fM2fO1OTJk82O1mQREREaMmSIHn30UR06dEgul0tvv/221q5dq8OHD5sdr9mOHDkiSerQocMZt3fo0KHuPrROlZWVuueee3TDDTcoMjLS7DjN8tFHH6lNmzYKCQnRc889p+XLl6t9+/Zmx2qyOXPmyG6361e/+pXZUTxmzJgx+stf/qIVK1Zozpw5ys7O1tixY+VyucyO1iTHjh1TaWmpnnrqKY0ZM0affvqprrnmGl177bXKzs42O55HvPnmm4qIiLiwpVOt1IsvvqhevXqpU6dOCgoK0pgxY/Tyyy/r8ssvNztak9QWNffdd58KCwtVXV2tOXPm6ODBg5Y5tqjvPe6RI0cUFBR01i9KLuSYwu7poABOnYWzdetWS7Xe55KWlqZNmzapqKhIf/vb3zR16lRlZ2dbtpg6cOCAZsyYoeXLl7fq/QMuxH+fkdK3b18NHjxYycnJ+utf/2rZ35S53W4NHDhQTzzxhCSpf//+2rp1q+bOnaupU6eanM4z5s+fr7Fjx1pi35Hz+etf/6qFCxdq0aJF6t27tzZt2qSZM2cqMTHR0s/VW2+9pWnTpqljx44KDAzURRddpBtuuEEbNmwwOxr8lNPp1PXXXy/DMPTKK6+YHafZMjMztWnTJuXn52vevHm6/vrrtW7dOsXFxZkd7YJt2LBBL7zwgjZu3GjpM1+/70c/+lHdf2dkZKhv377q1q2bVq1apZEjR5qYrGncbrck6eqrr9add94pSfrBD36gL774QnPnztWwYcPMjOcRf/7znzV58mSfOMZ98cUX9eWXX+qDDz5QcnKyPv/8c02fPl2JiYmWXOngcDi0ePFi3XLLLYqOjlZgYKBGjRqlsWPHWubiMC31HpczpQAPu+OOO/TRRx8pKytLnTp1MjtOswUFBSk1NVUDBgzQk08+qX79+umFF14wO1aTbdiwQceOHdNFF10ku90uu92u7Oxs/fGPf5Tdbrfsb//+W9u2bdWjRw/t3r3b7ChNlpCQcFbx2bNnT8svS6y1b98+ffbZZ7r11lvNjtJss2bNqjtbKiMjQ1OmTNGdd95p+TMRu3XrpuzsbJWWlurAgQP66quv5HQ61bVrV7OjNVt8fLwknXVlnKNHj9bdh9altpDat2+fli9fbvmzpCQpPDxcqampuvjiizV//nzZ7XbNnz/f7FhNsnr1ah07dkxJSUl1xxb79u3T3XffrS5dupgdz2O6du2q9u3bW/b4on379rLb7T57fLF69Wrl5OT4xLFFRUWF7r//fj377LMaN26c+vbtqzvuuEOTJk3SH/7wB7PjNdmAAQO0adMmnTx5UocPH9Ynn3yigoICSxxbnOs9bnx8vKqrq3Xy5MkzPv9CjikopQAPMQxDd9xxh5YsWaKVK1cqJSXF7Egtwu12162JtqKRI0dqy5Yt2rRpU92fgQMHavLkydq0aZMCAwPNjthspaWl2rNnjxISEsyO0mSXXHLJWZeb3blzp5KTk01K5FkLFixQXFycrrrqKrOjNFt5ebkCAs48nAgMDKz7jbTVhYeHKyEhQYWFhVq2bJmuvvpqsyM1W0pKiuLj47VixYq624qLi7Vu3Tqf2DPQ19QWUrt27dJnn32mmJgYsyO1CCsfX0yZMkWbN28+49giMTFRs2bN0rJly8yO5zEHDx5UQUGBZY8vgoKCNGjQIJ89vpg/f74GDBhg6b3ZajmdTjmdTp89voiKilJsbKx27dql9evXt+pji4be4w4YMEAOh+OMY4qcnBzt37+/0ccULN+DKUpLS8/4LUtubq42bdqk6OhoJSUlmZis6aZPn65FixbpH//4hyIiIurW0EZFRSk0NNTkdE1z3333aezYsUpKSlJJSYkWLVqkVatWWfoAKyIi4qx9vsLDwxUTE2PZ/b9+/etfa9y4cUpOTtahQ4c0e/ZsBQYG6oYbbjA7WpPdeeedGjp0qJ544gldf/31+uqrr/Taa6/ptddeMztas7ndbi1YsEBTp06V3W79l+Fx48bp8ccfV1JSknr37q1vvvlGzz77rKZNm2Z2tGZZtmyZDMNQWlqadu/erVmzZik9PV0333yz2dEapaHX2ZkzZ+qxxx5T9+7dlZKSogcffFCJiYmaMGGCeaEb0NBMJ06c0P79+3Xo0CFJqnvjGR8f36rPADvfXAkJCfrhD3+ojRs36qOPPpLL5ao7voiOjlZQUJBZsc/rfDPFxMTo8ccf1/jx45WQkKD8/Hy9/PLLysvL03XXXWdi6vNr6Ofv+2Whw+FQfHy80tLSvB210c43U3R0tB555BFNnDhR8fHx2rNnj37zm98oNTVVV155pYmpz6+h52nWrFmaNGmSLr/8cmVmZuqTTz7Rhx9+qFWrVpkXugGNed9UXFys999/X88884xZMS9YQ3MNGzZMs2bNUmhoqJKTk5Wdna2//OUvevbZZ01MfX4NzfT+++8rNjZWSUlJ2rJli2bMmKEJEya06s3bG3qPGxUVpVtuuUV33XWXoqOjFRkZqV/+8pcaMmSILr744sZ9EQ9fIRBolKysLEPSWX+mTp1qdrQmq28eScaCBQvMjtZk06ZNM5KTk42goCAjNjbWGDlypPHpp5+aHcvjhg0bZsyYMcPsGE02adIkIyEhwQgKCjI6duxoTJo0ydi9e7fZsZrtww8/NPr06WMEBwcb6enpxmuvvWZ2JI9YtmyZIcnIyckxO4pHFBcXGzNmzDCSkpKMkJAQo2vXrsYDDzxgVFVVmR2tWd577z2ja9euRlBQkBEfH29Mnz7dOHnypNmxGq2h11m32208+OCDRocOHYzg4GBj5MiRrf5nsqGZFixYUO/9s2fPNjV3Q843V25u7jmPL7KyssyOfk7nm6miosK45pprjMTERCMoKMhISEgwxo8fb3z11Vdmxz6vCz12TU5ONp577jmvZrxQ55upvLzcGD16tBEbG2s4HA4jOTnZ+OlPf2ocOXLE7Njn1Zjnaf78+UZqaqoREhJi9OvXz1i6dKl5gRuhMTO9+uqrRmhoqE+9Th0+fNi46aabjMTERCMkJMRIS0sznnnmGcPtdpsb/DwamumFF14wOnXqZDgcDiMpKcn47W9/2+qPlxrzHreiosK4/fbbjXbt2hlhYWHGNddcYxw+fLjRX8N2+gsBAAAAAAAAXsOeUgAAAAAAAPA6SikAAAAAAAB4HaUUAAAAAAAAvI5SCgAAAAAAAF5HKQUAAAAAAACvo5QCAAAAAACA11FKAQAAAAAAwOsopQAAAAAAAOB1lFIAAAAAAADwOkopAAAADztw4ICmTZumxMREBQUFKTk5WTNmzFBBQYHZ0QAAAFoNSikAAAAP2rt3rwYOHKhdu3bpnXfe0e7duzV37lytWLFCQ4YM0YkTJ1rsazudzhZ7bAAAAE+jlAIAAPCg6dOnKygoSJ9++qmGDRumpKQkjR07Vp999pny8vL0wAMP6P7779fgwYPP+rv9+vXT7373u7qPX3/9dfXs2VMhISFKT0/Xn/70p7r7vvvuO9lsNr333nsaNmyYQkJCtHDhQq/MCAAA4Al2swMAAAD4ihMnTmjZsmV6/PHHFRoaesZ98fHxmjx5st577z2tXr1aTz75pPbs2aNu3bpJkrZt26bNmzfr73//uyRp4cKFeuihh/TSSy+pf//++uabb/TTn/5U4eHhmjp1at3j3nvvvXrmmWfUv39/hYSEeG9YAACAZuJMKQAAAA/ZtWuXDMNQz549672/Z8+eKiwsVGxsrPr166dFixbV3bdw4UINHjxYqampkqTZs2frmWee0bXXXquUlBRde+21uvPOO/Xqq6+e8ZgzZ86s+5yEhISWGw4AAMDDKKUAAAA8zDCMBj9n8uTJdaWUYRh65513NHnyZElSWVmZ9uzZo1tuuUVt2rSp+/PYY49pz549ZzzOwIEDPT8AAACAF7B8DwAAwENSU1Nls9m0fft2XXPNNWfdv337drVr106xsbG64YYbdM8992jjxo2qqKjQgQMHNGnSJElSaWmpJGnevHln7T0VGBh4xsfh4eEtNA0AAEDLopQCAADwkJiYGF1xxRX605/+pDvvvPOMfaWOHDmihQsX6ic/+YlsNps6deqkYcOGaeHChaqoqNAVV1yhuLg4SVKHDh2UmJiovXv31p09BQAA4GsopQAAADzopZde0tChQ3XllVfqscceU0pKirZt26ZZs2apY8eOevzxx+s+d/LkyZo9e7aqq6v13HPPnfE4jzzyiH71q18pKipKY8aMUVVVldavX6/CwkLddddd3h4LAADA49hTCgAAwIO6d++u9evXq2vXrrr++uvVrVs3/exnP1NmZqbWrl2r6Ojous/94Q9/qIKCApWXl2vChAlnPM6tt96q119/XQsWLFBGRoaGDRumN954QykpKV6eCAAAoGXYjMbsxAkAAAAAAAB4EGdKAQAAAAAAwOsopQAAAAAAAOB1lFIAAAAAAADwOkopAAAAAAAAeB2lFAAAAAAAALyOUgoAAAAAAABeRykFAAAAAAAAr6OUAgAAAAAAgNdRSgEAAAAAAMDrKKUAAAAAAADgdZRSAAAAAAAA8DpKKQAAAAAAAHjd/wdMSvn6GHhaZgAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["\n","# Plot corrected average wickets per over\n","plt.figure(figsize=(12, 6))\n","sns.lineplot(data=avg_wickets_per_over, x='over', y='average_wickets', marker='o', color='darkred')\n","plt.title(\"💥 Corrected: Average Wickets per Over in IPL\")\n","plt.ylabel(\"Average Wickets\")\n","plt.xlabel(\"Over\")\n","plt.xticks(range(1, 21))\n","plt.grid(True)\n","plt.tight_layout()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":643},"id":"BVYjfZ6_hC5l","executionInfo":{"status":"ok","timestamp":1744090633643,"user_tz":-330,"elapsed":609,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"16f086f1-f58e-4c06-b5ea-5755c212b089"},"execution_count":11,"outputs":[{"output_type":"stream","name":"stderr","text":[":9: UserWarning: Glyph 128165 (\\N{COLLISION SYMBOL}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128165 (\\N{COLLISION SYMBOL}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAm8NJREFUeJzs3Xd4VGXCxuFnkkwKIYUSQif0qlTpvXcQEAELdlCBtSIsSxV1QV0FWVdRBEFBVAQUEaR3EaQjndBrAgkpJJlkzvcHZD5CQkggyclMfvd1cWFOmXnemSGGh/e8x2IYhiEAAAAAAAAgB7mZHQAAAAAAAAB5D6UUAAAAAAAAchylFAAAAAAAAHIcpRQAAAAAAAByHKUUAAAAAAAAchylFAAAAAAAAHIcpRQAAAAAAAByHKUUAAAAAAAAchylFAAAAAAAAHIcpRQAAEjXrFmzZLFYdOLECbOj4A5OnDghi8WiWbNmZeq8cePGyWKxKCwsLHuCwRT8mQUAOAtKKQBAnnTt2jWNHz9eNWvWVP78+eXj46MaNWrorbfe0rlz58yOl2mxsbEaN26c1q5da3aUdNWvX18Wi0X/+9//zI6Sa/z555+yWCz66KOPUu3r0aOHLBaLZs6cmWpf8+bNVaJEiZyImCHO8hm8V0uWLFHHjh1VqFAheXt7q1KlSnrjjTcUHh5udrQcYbFYNGTIEMfXyUVo8i93d3eVLl1aDz/8sHbt2pXuuQAAJKOUAgA4lf3798vT01P58+dP85enp6eOHTuW7mMcP35ctWrV0ttvv61q1app0qRJmjp1qlq1aqUZM2aoZcuWOTOYLBQbG6vx48fn6kLgyJEj2rZtm0JCQvTtt9+aHSfXqFOnjvLly6eNGzem2rd582Z5eHho06ZNKbYnJCRo27ZtatKkiSSpTJkyun79up544okcyZwWZ/gM3qs33nhD3bp104ULF/TWW29p2rRpatu2raZNm6aaNWvq0KFDZkdM4YknntD169dVpkyZbH+u/v37a86cOfrqq680YMAArV69Wg0bNkxVTAEAkBYPswMAAJAZhmGofv36af4FXpIaNmwowzDueH5iYqJ69eqlixcvau3atWratGmK/e+8844mTZqUJVljYmLk6+ubarvdbldCQoK8vb2z5HmcxTfffKMiRYroww8/VJ8+fXTixAmFhITkaIY7vSdm8vDwUIMGDVIVT4cOHVJYWJgGDBiQ6vP+119/KS4uzvH5tVgsee7zlFUMw1BcXJx8fHzS3D9v3jx9+OGHevTRR/Xtt9/K3d3dse+pp55Sq1at9Mgjj2jHjh3y8Mi5H63T+yy7u7unyJmd6tSpo8cff9zxdZMmTdS9e3f973//0+eff54jGQAAzouZUgCAPGXBggXavXu3Ro0alaqQkiR/f3+98847Kbb98MMPqlu3rnx8fFS4cGE9/vjjOnv2bIpjnnrqKeXPn1/Hjh1T586d5efnp8cee0zS/1+68u2336p69ery8vLSsmXLJElnz57VM888o+DgYHl5eal69er66quvUuWKi4vTuHHjVKlSJXl7e6tYsWLq1auXjh07phMnTigoKEiSNH78eMflNOPGjXOcf/DgQfXp00cFCxaUt7e36tWrp59//jnV8+zfv1+tW7eWj4+PSpYsqYkTJ8put6c6LjIyUgcPHlRkZORdXvH/N3fuXPXp00ddu3ZVQECA5s6d69j3448/ymKxaN26danO+/zzz2WxWLRv375MjSd5XZ1169bppZdeUpEiRVSyZElJ0smTJ/XSSy+pcuXK8vHxUaFChfTII4+kuQbPnj171KJFixSvycyZM9Ncs+e3335Ts2bN5OvrKz8/P3Xp0kX79++/62vTtGlTXbx4UUePHnVs27Rpk/z9/fXCCy84Cqpb9yWfJ915TamDBw+qb9++CgoKko+PjypXrqxRo0alm+XkyZOqUKGCatSooYsXL0qSIiIi9Morr6hUqVLy8vJShQoVNGnSJMdn426fwQsXLujpp59WyZIl5eXlpWLFiqlHjx53XfMo+c/V8ePH1aFDB/n6+qp48eKaMGFCqvLZbrfr448/VvXq1eXt7a3g4GANGjRIV69eTXFcSEiIunbtquXLl6tevXry8fFJtzwZP368ChQooOnTp6cqeurXr6+33npLe/fu1Y8//ihJGjJkiPLnz6/Y2NhUj9W/f38VLVpUSUlJjm0Z+cyk9/0lLWmtKZU87o0bN6p+/fry9vZWuXLlNHv27Ds+zr1o3bq1JCk0NDRLHxcA4JoopQAAeUpycZHRy5xmzZqlvn37yt3dXe+9956ef/55/fTTT2ratKkiIiJSHJuYmKgOHTqoSJEi+uCDD9S7d2/HvtWrV+vVV1/Vo48+qilTpigkJEQXL15Uw4YNtXLlSg0ZMkRTpkxRhQoV9Oyzz+rjjz92nJuUlKSuXbtq/Pjxqlu3rj788EP94x//UGRkpPbt26egoCDHGk0PP/yw5syZozlz5qhXr16SbhRNDRs21IEDBzRixAh9+OGH8vX1Vc+ePbVw4ULH81y4cEGtWrXSrl27NGLECL3yyiuaPXu2pkyZkup1WbhwoapWrZri/PRs3bpVR48eVf/+/eXp6alevXqluISvS5cuyp8/v77//vtU586fP1/Vq1dXjRo1MjWeZC+99JL+/vtvjRkzRiNGjJAkbdu2TZs3b1a/fv00depUDR48WKtWrVLLli1TlAlnz55Vq1attH//fo0cOVKvvvqqvv322zRfkzlz5jjGMWnSJI0ePVp///23mjZtetfyJblcunVG1KZNm9SwYUM1aNBAVqtVmzdvTrHPz89PNWvWvONj7tmzRw0aNNDq1av1/PPPa8qUKerZs6d++eWXO55z7NgxNW/eXH5+flq7dq2Cg4MVGxurFi1a6JtvvtGTTz6pqVOnqkmTJho5cqRee+01SbrrZ7B3795auHChnn76aX366acaNmyYoqKidOrUqXRfF+nG579jx44KDg7W5MmTVbduXY0dO1Zjx45NcdygQYP05ptvqkmTJpoyZYqefvppffvtt+rQoYNsNluKYw8dOqT+/furXbt2mjJlimrVqpXmcx85ckSHDh1Sjx495O/vn+YxTz75pKQba05J0qOPPqqYmBj9+uuvKY6LjY3VL7/8oj59+jjKrcx8ZtL7/pJRR48eVZ8+fdSuXTt9+OGHKlCggJ566qkMFacZlXz5dKFChbLsMQEALswAAMCJ7N2712jSpMkd9zdo0MA4cuTIHffXrl3bCAgIyNBzJSQkGEWKFDFq1KhhXL9+3bF9yZIlhiRjzJgxjm0DBw40JBkjRoxI9TiSDDc3N2P//v0ptj/77LNGsWLFjLCwsBTb+/XrZwQEBBixsbGGYRjGV199ZUgy/vOf/6R6bLvdbhiGYVy+fNmQZIwdOzbVMW3atDEeeOABIy4uLsV5jRs3NipWrOjY9sorrxiSjK1btzq2Xbp0yQgICDAkGaGhoY7tM2fONCQZM2fOTPV8aRkyZIhRqlQpR97ff//dkGTs3LnTcUz//v2NIkWKGImJiY5t58+fN9zc3IwJEyZkejzJGZs2bZriMQ3DcLy2t9qyZYshyZg9e7Zj29ChQw2LxZIiZ3h4uFGwYMEUr0lUVJQRGBhoPP/88yke88KFC0ZAQECq7be7du2a4e7ubjz77LOObZUrVzbGjx9vGIZh1K9f33jzzTcd+4KCgox27do5vg4NDU31fjRv3tzw8/MzTp48meK5kt8DwzCMsWPHGpKMy5cvGwcOHDCKFy9uPPTQQ8aVK1ccx7z99tuGr6+vcfjw4RSPM2LECMPd3d04deqUYRh3/gxevXrVkGS8//776b4GaUn+czV06NAU+bt06WJ4enoaly9fNgzDMDZs2GBIMr799tsU5y9btizV9jJlyhiSjGXLlt31+RctWmRIMj766KN0j/P39zfq1KnjyFeiRAmjd+/eKY75/vvvDUnG+vXrDcPI3Gcmve8vaUn+7N/6ZzZ53MnPbxg3/nx7eXkZr7/++l0fU5Lx8ssvO75O/syNHz/euHz5snHhwgVj7dq1Ru3atQ1JxoIFC+54LgAAyZgpBQDIU65duyY/P78MHbt9+3ZdunRJL730Uor1erp06aIqVaqkmgkhSS+++GKaj9WiRQtVq1bN8bVhGFqwYIG6desmwzAUFhbm+NWhQwdFRkZqx44dkm5ccli4cGENHTo01eNaLJZ0x3DlyhWtXr1affv2VVRUlOM5wsPD1aFDBx05csRxKeLSpUvVsGFD1a9f33F+UFBQmpcJPfXUUzIMQ0899VS6zy/dmOExf/58Pfroo468rVu3VpEiRVLMlnr00Ud16dKlFAtl//jjj7Lb7Xr00UczPZ5kzz//fKrLrm5dP8hmsyk8PFwVKlRQYGCg43WXpGXLlqlRo0YpZtIULFgw1WuyYsUKRUREqH///ineS3d3dzVo0EBr1qxJ9zXy8/PTgw8+6JgpFRYWpkOHDqlx48aSbqzTk3zJ3uHDh3X58uU0Lz9NdvnyZa1fv17PPPOMSpcunWJfWp+Zffv2qUWLFgoJCdHKlStVoEABx74ffvhBzZo1U4ECBVKMrW3btkpKStL69evTHZuPj488PT21du3aVJfSZdStd25Lvhw2ISFBK1eudGQMCAhQu3btUmSsW7eu8ufPn+r1L1u2rDp06HDX542KipKku37P8PPz07Vr1xz5HnnkES1dulTR0dGOY+bPn68SJUo43rd7+czc6ftLRlWrVk3NmjVzfB0UFKTKlSvr+PHj9/yYY8eOVVBQkIoWLaqWLVvq2LFjmjRpkmOWHAAA6WGhcwBAnuLv75/hv4CdPHlSklS5cuVU+6pUqZJq8WkPDw/HmkW3K1u2bIqvL1++rIiICE2fPl3Tp09P85xLly5JunE5TOXKle9pEeWjR4/KMAyNHj1ao0ePvuPzlChRQidPnlSDBg1S7U9r/Jnx+++/6/Lly6pfv36KNZNatWqlefPmadKkSXJzc1PHjh0VEBCg+fPnq02bNpJu/EW+Vq1aqlSpUqbHk+z2116Srl+/rvfee08zZ87U2bNnU6xPdOs6WSdPnlSjRo1SnV+hQoUUXx85ckTS/6+nc7s7Xfp1q6ZNm+qTTz5RWFiYNm/eLHd3dzVs2FCS1LhxY3366aeKj49PtZ5UWpI/48mXPN5Nt27dFBwcrOXLlyt//vwp9h05ckR79uxxrBl1u+TP6Z14eXlp0qRJev311xUcHKyGDRuqa9euevLJJ1W0aNG7ZnNzc1O5cuVSbEv+PCRf4nbkyBFFRkaqSJEiGcqY1mciLcllVHI5dSdRUVEpnvvRRx/Vxx9/rJ9//lkDBgxQdHS0li5dqkGDBjlKwcx+ZtL7/pJRtxeUklSgQIF7Lgsl6YUXXtAjjzwiNzc3BQYGOtbNAwAgIyilAAB5SpUqVbRz506dPn1apUqVytLH9vLykptb2pOQb7+zV/IC0Y8//rgGDhyY5jkPPvjgfWdKfp433njjjjNDbi9YslrybKi+ffumuX/dunVq1aqVvLy8HOtCffrpp7p48aI2bdqkd99913HsvYwnrbuqDR06VDNnztQrr7yiRo0aKSAgQBaLRf369UtzYfe7ST5nzpw5aRYtGSkUk0upTZs2afPmzXrggQccBVHjxo0VHx+vbdu2aePGjfLw8HAUVlmhd+/e+vrrr/Xtt99q0KBBKfbZ7Xa1a9dOw4cPT/Pc5IIoPa+88oq6deumRYsWafny5Ro9erTee+89rV69WrVr177v/Ha7PdXMu1vdXqjd6U57t6tataqkG+tz3cnJkyd17dq1FDMhGzZsqJCQEH3//fcaMGCAfvnlF12/ft0x4y85s5Txz0x6318y6k535DPSuWPp3VSsWFFt27a95/MBAHkbpRQAIE/p1q2b5s2bp2+++UYjR45M99gyZcpIurEo8u2zGQ4dOuTYfy+CgoLk5+enpKSku/6Frnz58tq6datsNpusVmuax9zpMr7kGSZWq/Wuz1OmTBnH7I1bHTp0KN3z0hMTE6PFixfr0UcfVZ8+fVLtHzZsmL799lu1atVK0o0ZJl9//bVWrVqlAwcOyDCMFH+Rz8x40vPjjz9q4MCB+vDDDx3b4uLiUi1eX6ZMmRSzu5Ldvq18+fKSpCJFitxzrlsXO9+yZYuaNGni2Fe8eHGVKVNGmzZt0qZNm1S7dm3ly5fvjo+V/DrdesfC9Lz//vvy8PDQSy+9JD8/Pw0YMMCxr3z58oqOjr7ruO52KWn58uX1+uuv6/XXX9eRI0dUq1Ytffjhh/rmm2/SPc9ut+v48eMpyq/Dhw9LunFHueTHXrlypZo0aZLhwikjKlWqpEqVKmnRokWaMmVKmpfxJd+9rmvXrim29+3bV1OmTNG1a9c0f/58hYSEpCgSs+IzAwCAs2NNKQBAntKnTx898MADeuedd7Rly5ZU+6OiojRq1ChJUr169VSkSBF99tlnio+Pdxzz22+/6cCBA+rSpcs953B3d1fv3r21YMGCNIuDy5cvO/67d+/eCgsL07Rp01IdlzzDIbmguL1UKVKkiFq2bKnPP/9c58+fT/d5OnfurD/++EN//vlniv1pzT6JjIzUwYMHU1zqlpaFCxcqJiZGL7/8svr06ZPqV9euXbVgwQLH69u2bVsVLFhQ8+fP1/z581W/fv0Ul1plZjzpcXd3TzU75JNPPlFSUlKKbR06dNCWLVu0a9cux7YrV66kek06dOggf39/vfvuu6nu9JbRXMWLF1fZsmW1atUqbd++3bGeVLLGjRtr0aJFOnToULqX7kk3Ss/mzZvrq6++SnWHu7RmxVgsFk2fPl19+vTRwIEDHXeplG6UK1u2bNHy5ctTnRcREaHExERJd/4MxsbGKi4uLsW28uXLy8/PL8Wfq/Tc+tk3DEPTpk2T1Wp1XObZt29fJSUl6e233051bmJiYqpMmTFmzBhdvXpVgwcPTvX5+OuvvzRp0iTVqFEj1d3wHn30UcXHx+vrr7/WsmXLUs0UzIrPDAAAzo6ZUgCAPMVqteqnn35S27Zt1bx5c/Xt21dNmjSR1WrV/v37NXfuXBUoUEDvvPOOrFarJk2apKefflotWrRQ//79dfHiRU2ZMkUhISF69dVX7yvLv//9b61Zs0YNGjTQ888/r2rVqunKlSvasWOHVq5cqStXrki6ccv52bNn67XXXtOff/6pZs2aKSYmRitXrtRLL72kHj16yMfHR9WqVdP8+fNVqVIlFSxYUDVq1FCNGjX03//+V02bNtUDDzyg559/XuXKldPFixe1ZcsWnTlzRrt375YkDR8+XHPmzFHHjh31j3/8Q76+vpo+fbrKlCmT6vKlhQsX6umnn9bMmTPTXez822+/VaFChVIVLMm6d++uL774Qr/++qt69eolq9WqXr166bvvvlNMTIw++OCDVOdkdDzp6dq1q+bMmaOAgABVq1ZNW7Zs0cqVK1Pdxn748OH65ptv1K5dOw0dOlS+vr768ssvVbp0aV25csUxO8jf31//+9//9MQTT6hOnTrq16+fgoKCdOrUKf36669q0qRJmqXi7Zo2bao5c+ZIUoqZUtKNUmrevHmO4+5m6tSpatq0qerUqaMXXnhBZcuW1YkTJ/Trr7+mKNmSubm56ZtvvlHPnj3Vt29fLV26VK1bt9abb76pn3/+WV27dtVTTz2lunXrKiYmRnv37tWPP/6oEydOqHDhwnf8DCYmJqpNmzbq27evqlWrJg8PDy1cuFAXL15Uv3797joOb29vLVu2TAMHDlSDBg3022+/6ddff9U///lPx2V5LVq00KBBg/Tee+9p165dat++vaxWq44cOaIffvhBU6ZMSXOmXkY89thj2rZtm6ZMmaK///5bjz32mAoUKKAdO3boq6++UqFChfTjjz+mmsVYp04dVahQQaNGjVJ8fHyKGX9S1n1mnMX27ds1ceLEVNtbtmyZoc8zAMBFmXPTPwAA7s3evXuNJk2a3HF/gwYNjCNHjtz1ca5evWqMGTPGeOCBB4x8+fIZ3t7eRo0aNYyRI0ca58+fT3Hs/Pnzjdq1axteXl5GwYIFjccee8w4c+ZMimMGDhxo+Pr6pvlcSud26BcvXjRefvllo1SpUobVajWKFi1qtGnTxpg+fXqK42JjY41Ro0YZZcuWdRzXp08f49ixY45jNm/ebNStW9fw9PQ0JBljx4517Dt27Jjx5JNPGkWLFjWsVqtRokQJo2vXrsaPP/6Y4nn27NljtGjRwvD29jZKlChhvP3228aMGTNS3V4++ZbzM2fOvNNLbFy8eNHw8PAwnnjiiTseExsba+TLl894+OGHHdtWrFhhSDIsFotx+vTpNM/LyHiSM27bti3V+VevXjWefvppo3Dhwkb+/PmNDh06GAcPHjTKlCljDBw4MMWxO3fuNJo1a2Z4eXkZJUuWNN577z1j6tSphiTjwoULKY5ds2aN0aFDByMgIMDw9vY2ypcvbzz11FPG9u3b7/ga3Orzzz83JBklSpRItW/Hjh2GJEOScfHixRT7QkND03w/9u3bZzz88MNGYGCg4e3tbVSuXNkYPXq0Y//YsWMNScbly5cd22JjY40WLVoY+fPnN/744w/DMAwjKirKGDlypFGhQgXD09PTKFy4sNG4cWPjgw8+MBISEhznpvUZDAsLM15++WWjSpUqhq+vrxEQEGA0aNDA+P777+/6eiT/uTp27JjRvn17I1++fEZwcLAxduxYIykpKdXx06dPN+rWrWv4+PgYfn5+xgMPPGAMHz7cOHfunOOYMmXKGF26dLnrc99u0aJFRrt27YwCBQoYXl5eRoUKFYzXX389xWt3u1GjRhmSjAoVKtzxmIx8ZtL7/pKW5M/+rX9m7zTuFi1aGC1atLjrY97+fSz5M/f+++9n6Nw7/Xr77bczNCYAgGuyGMZ9rGwIAEAO27dvnwYPHpzqznfJGjZsqG+++SbbF+9G3vbKK6/o888/V3R09B0Xj8b9e+qpp/Tjjz8qOjra7CgAACAbsKYUAABAOq5fv57i6/DwcM2ZM0dNmzalkAIAALgPrCkFAHA6f/zxhwIDA9Pcx4wKZLVGjRqpZcuWqlq1qi5evKgZM2bo2rVrGj16tNnRAAAAnBqlFADAqSQvnAzklM6dO+vHH3/U9OnTZbFYVKdOHc2YMUPNmzc3OxoAAIBTY00pAAAAAAAA5DjWlAIAAAAAAECOo5QCAAAAAABAjstza0rZ7XadO3dOfn5+slgsZscBAAAAAABwGoZhKCoqSsWLF5eb2/3NdcpzpdS5c+dUqlQps2MAAAAAAAA4rdOnT6tkyZL39Rh5rpTy8/OTdOPF8/f3NzkNbmez2fT777+rffv2slqtZsfJEozJOTAm58CYnANjyv1cbTwSY3IWjMk5MCbnwJicgyuO6cqVKypbtqyjX7kfea6USr5kz9/fn1IqF7LZbMqXL5/8/f1d5g8sY3IOjMk5MCbnwJhyP1cbj8SYnAVjcg6MyTkwJufgqmOSlCVLIrHQOQAAAAAAAHIcpRQAAAAAAAByHKUUAAAAAAAAchylFAAAAAAAAHIcpRQAAAAAAAByHKUUAAAAAAAAchylFAAAAAAAAHIcpRQAAAAAAAByHKUUAAAAAAAAchylFAAAAAAAAHIcpRQAAAAAAAByHKUUAAAAAAAAchylFAAAAAAAAHIcpRQAAAAAAAByHKUUAAAAAAAAchylFAAAAAAAQDbx8/MzO0KuRSkFAAAAAACQxWwxMXIzDNWrWlVuhiFbTIzZkXIdSikAAAAAAIAslBgXpz8nT9anwcGaXry4Pg0O1p+TJysxLs7saLmKh9kBAAAAAAAAXIUtJkZ/Tp6sLRMmOLbFR0Q4vq4/fLisvr5mxctVmCkFAAAAAACQRdysVu2YOjXNfTumTpWb1ZrDiXIvSikAAAAAAIAsEh8RofiIiDvvi4zM2UC5GKUUAAAAAABAFvEKDJRXYOCd9wUE5GygXIxSCgAAAAAAIIvYbTbVGTYszX11hg2T3WbL4US5FwudAwAAAAAAZBGrr68ajBwpwzC085NPFB8RIa/AQNUZNkwNRo6Uh7e32RFzDUopAAAAAACALGRPSlLRevU0+MwZXY+MlG/hwkqy2SikbsPlewAAAAAAAFno9OrVWtSjh+a1aKHtBw/KbrHI09fX7Fi5DqUUAAAAAABAFjr+22+SpKIPPaSoqCiT0+RelFIAAAAAAABZxDAMhd4spcp06GBymtyNUgoAAAAAACCLXDl0SNdOnJC7p6dKtWxpdpxcjVIKAAAAAAAgiyTPkirZvLmsrCOVLkopAAAAAACALHJi2TJJUtlOnUxOkvtRSgEAAAAAAGQBW2ysTq9bJ4lSKiMopQAAAAAAALLAqTVrlBQfL/8yZVSwShWz4+R6lFIAAAAAAABZIHk9qbKdOslisZicJvejlAIAAAAAALhPhmH8fynVsaPJaZwDpRQAAAAAAMB9ijh6VJHHj8vNalXp1q3NjuMUKKUAAAAAAADuU/IsqZLNmsnTz8/kNM6BUgoAAAAAAOA+Hb9lPSlkDKUUAAAAAADAfbBdv64za9dKopTKDEopAAAAAACA+3B67VolxsXJr2RJFapWzew4ToNSCgAAAAAA4D6E3nLpnsViMTmN86CUAgAAAAAAuA8nli2TxKV7mUUpBQAAAAAAcI8ijh3T1SNH5ObhodJt2pgdx6lQSgEAAAAAANyj5LvulWjaVF7+/iancS6UUgAAAAAAAPfo1vWkkDmUUgAAAAAAAPcgMS5Op9eskSSV7djR5DTOh1IKAAAAAADgHpxet06J168rf4kSKvzAA2bHcTqUUgAAAAAAAPfAcde9jh1lsVhMTuN8KKUAAAAAAADuAetJ3R9KKQAAAAAAgEyKCA3VlUOH5ObhoTJt25odxylRSgEAAAAAAGRS8iyp4o0byysgwOQ0zsnUUmr9+vXq1q2bihcvLovFokWLFqV7/FNPPSWLxZLqV/Xq1XMmMAAAAAAAgG65dI+77t0zU0upmJgY1axZU//9738zdPyUKVN0/vx5x6/Tp0+rYMGCeuSRR7I5KQAAAAAAwA2J8fE6tXq1JNaTuh8eZj55p06d1CkTb15AQIACbpkSt2jRIl29elVPP/10dsQDAAAAAABI5eyGDUqMjZVvsWIKqlnT7DhOy6nXlJoxY4batm2rMmXKmB0FAAAAAADkEcdvuXTPYrGYnMZ5mTpT6n6cO3dOv/32m+bOnZvucfHx8YqPj3d8fe3aNUmSzWaTzWbL1ozIvOT3xJXeG8bkHBiTc2BMzoEx5X6uNh6JMTkLxuQcGJNzYEzmCl26VJJUul27dPM605gyKivHYjEMw8iyR7sPFotFCxcuVM+ePTN0/HvvvacPP/xQ586dk6en5x2PGzdunMaPH59q+9y5c5UvX757jQsAAAAAAPIg26VLOvHCC5Kbm8rNni33/PnNjpSjYmNjNWDAAEVGRsrf3/++HsspZ0oZhqGvvvpKTzzxRLqFlCSNHDlSr732muPra9euqVSpUmrfvv19v3jIejabTStWrFC7du1ktVrNjpMlGJNzYEzOgTE5B8aU+7naeCTG5CwYk3NgTM6BMZlnz/TpOiGpWMOG6ta3b7rHOsuYMiM8PDzLHsspS6l169bp6NGjevbZZ+96rJeXl7y8vFJtt1qtLvOBcEWu+P4wJufAmJwDY3IOjCn3c7XxSIzJWTAm58CYnANjynmnV6yQJJXv3DnDOXP7mDIjK8dhaikVHR2to0ePOr4ODQ3Vrl27VLBgQZUuXVojR47U2bNnNXv27BTnzZgxQw0aNFCNGjVyOjIAAAAAAMijkhISdHLVKklS2U6dTE7j/EwtpbZv365WrVo5vk6+zG7gwIGaNWuWzp8/r1OnTqU4JzIyUgsWLNCUKVNyNCsAAAAAAMjbzm7cKFt0tPIFB6tIrVpmx3F6ppZSLVu2VHrrrM+aNSvVtoCAAMXGxmZjKgAAAAAAgNSO//abJKlsx46yuLmZnMb58QoCAAAAAABkQOgtpRTuH6UUAAAAAADAXVw7fVrh+/fL4uamMu3bmx3HJVBKAQAAAAAA3MWJZcskScUaNJBPwYImp3ENlFIAAAAAAAB34bh0j7vuZRlKKQAAAAAAgHQkJSTo5MqVkiilshKlFAAAAAAAQDrObt6shKgo+QQFKbhOHbPjuAxKKQAAAAAAgHQ4Lt3r0EEWN6qUrMIrCQAAAAAAkI7kRc65dC9rUUoBAAAAAADcQdTZs7q8Z49ksahM+/Zmx3EplFIAAAAAAAB3kDxLqlj9+spXuLDJaVwLpRQAAAAAAMAdHE9eT4pL97IcpRQAAAAAAEAakmw2nVyxQpJUtmNHk9O4HkopAAAAAACANJzbskUJ167Jp1AhBderZ3Ycl0MpBQAAAAAAkIbk9aRCOnSQm7u7yWlcD6UUAAAAAABAGkJZTypbUUoBAAAAAADcJvr8eV3atUuyWBTSoYPZcVwSpRQAAAAAAMBtQm9eule0Xj3lCwoyOY1ropQCAAAAAAC4TfKleyHcdS/bUEoBAAAAAADcwp6YqJMrVkiSyrGeVLahlAIAAAAAALjF+a1bFR8RIe+CBVW0fn2z47gsSikAAAAAAIBbOC7da99ebu7uJqdxXZRSAAAAAAAAt0gupcpy6V62opQCAAAAAAC4KebCBV3csUOSFNKhg8lpXBulFAAAAAAAwE2hy5dLkoLr1JFvcLDJaVwbpRQAAAAAAMBNJ5Ytk8SlezmBUgoAAAAAAECSPSlJJ37/XRKlVE6glAIAAAAAAJB04c8/FXflirwCA1WsQQOz47g8SikAAAAAAABJx2/edS+kfXu5eXiYnMb1UUoBAAAAAABICr1ZSnHpXs6glAIAAAAAAHlezKVLurh9uyQppEMHk9PkDZRSAAAAAAAgzzt5c4HzIrVqKX+xYianyRsopQAAAAAAQJ7HpXs5j1IKAAAAAADkafakJJ1YvlwSpVROopQCAAAAAAB52sXt23U9PFxeAQEq3qiR2XHyDEopAAAAAACQpx2/eele6bZt5ebhYXKavINSCgAAAAAA5Gknli2TJJXj0r0cRSkFAAAAAADyrNiwMJ3/809JUkjHjianyVsopQAAAAAAQJ518vffJcNQ0IMPyq9ECbPj5CmUUgAAAAAAIM8KvbmeFHfdy3mUUgAAAAAAIE8y7HaFLl8uiVLKDJRSAAAAAAAgT7rw11+6fvmyPP38VLxxY7Pj5DmUUgAAAAAAIE9KvutembZt5W61mpwm76GUAgAAAAAAeRLrSZmLUgoAAAAAAOQ5169c0fmtWyVRSpmFUgoAAAAAAOQ5J3//XYbdrsI1asivZEmz4+RJlFIAAAAAACDPOc6le6ajlAIAAAAAAHmKYbc7Fjkv27GjyWnyLkopAAAAAACQp1zatUuxly7Jmj+/SjRtanacPItSCgAAAAAA5CnJd90r06aN3D09TU6Td1FKAQAAAACAPCWU9aRyBUopAAAAAACQZ8RdvapzW7ZIkkJYT8pUlFIAAAAAACDPOLFihQy7XQWrVlVAmTJmx8nTKKUAAAAAAECe4bjrHpfumY5SCgAAAAAA5AmGYSj0ZilVjlLKdJRSAAAAAAAgT7i8e7dizp+X1ddXJZo1MztOnkcpBQAAAAAA8oTku+6Vbt1aHl5eJqcBpRQAAAAAAMgTkksp1pPKHSilAAAAAACAy4uLiNDZzZslSSEdO5qcBhKlFAAAAAAAyANOrVolIylJBStXVmDZsmbHgSilAAAAAABAHsCle7kPpRQAAAAAAHBphmEodNkySZRSuQmlFAAAAAAAcGlhe/cq+uxZeeTLp5LNm5sdBzdRSgEAAAAAAJd2/Oale6VbtZKHt7fJaZCMUgoAAAAAALi05PWkuOte7kIpBQAAAAAAXFb8tWs6t2mTJKkc60nlKpRSAAAAAADAZZ1atUr2xEQVqFhRgeXLmx0Ht6CUAgAAAAAALiv50j3uupf7UEoBAAAAAACXZBgGpVQuRikFAAAAAABcUtj+/Yo6c0Ye3t4q2aKF2XFwG0opAAAAAADgkk4sWyZJKtmypaw+Pianwe0opQAAAAAAgEtKvnSPu+7lTqaWUuvXr1e3bt1UvHhxWSwWLVq06K7nxMfHa9SoUSpTpoy8vLwUEhKir776KvvDAgAAAAAAp5EQFaUzGzZIYj2p3MrDzCePiYlRzZo19cwzz6hXr14ZOqdv3766ePGiZsyYoQoVKuj8+fOy2+3ZnBQAAAAAADiTU6tXy26zKbB8eRWoWNHsOEiDqaVUp06d1CkTbeWyZcu0bt06HT9+XAULFpQkhYSEZFM6AAAAAADgrLjrXu5naimVWT///LPq1aunyZMna86cOfL19VX37t319ttvy+cOC5bFx8crPj7e8fW1a9ckSTabTTabLUdyI+OS3xNXem8Yk3NgTM6BMTkHxpT7udp4JMbkLBiTc2BMzoExpc8wDB2/WUqVatvWtNfJld+nrGAxDMPIske7DxaLRQsXLlTPnj3veEzHjh21du1atW3bVmPGjFFYWJheeukltWrVSjNnzkzznHHjxmn8+PGpts+dO1f58uXLqvgAAAAAACCXSDh9WieHDpXFalW5b76Rm5eX2ZFcRmxsrAYMGKDIyEj5+/vf12M5VSnVvn17bdiwQRcuXFBAQIAk6aefflKfPn0UExOT5myptGZKlSpVSmFhYff94iHr2Ww2rVixQu3atZPVajU7TpZgTM6BMTkHxuQcGFPu52rjkRiTs2BMzoExOQfGlL4dH3+sDcOHq3S7dnr411+zKGHmueL7FB4ermLFimVJKeVUl+8VK1ZMJUqUcBRSklS1alUZhqEzZ86oYhoLl3l5eckrjUbUarW6zAfCFbni+8OYnANjcg6MyTkwptzP1cYjMSZnwZicA2NyDowpbad+/12SVL5z51zx+rjS+5SV43DLskfKAU2aNNG5c+cUHR3t2Hb48GG5ubmpZMmSJiYDAAAAAAC5QUJ0tM6sXy+JRc5zO1NLqejoaO3atUu7du2SJIWGhmrXrl06deqUJGnkyJF68sknHccPGDBAhQoV0tNPP62///5b69ev15tvvqlnnnnmjgudAwAAAACAvOP0mjVKSkhQQNmyKlCpktlxkA5TS6nt27erdu3aql27tiTptddeU+3atTVmzBhJ0vnz5x0FlSTlz59fK1asUEREhOrVq6fHHntM3bp109SpU03JDwAAAAAAcpfku+6FdOwoi8Vichqkx9Q1pVq2bKn01lmfNWtWqm1VqlTRihUrsjEVAAAAAABwRoZhKPRmKVWOS/dyPadaUwoAAAAAAOBOrh4+rGsnTsjd01OlWrc2Ow7uglIKAAAAAAC4hORZUiWbN5enr6/JaXA3lFIAAAAAAMAlJJdS3HXPOVBKAQAAAAAAp2eLjdXpdeskUUo5C0opAAAAAADg9E6vXauk+Hj5lS6tglWqmB0HGUApBQAAAAAAnN6td92zWCwmp0FGUEoBAAAAAACnx3pSzodSCgAAAAAAOLWrR44o4tgxuVmtKt26tdlxkEGUUgAAAAAAwKklz5Iq2ayZPP38TE6DjKKUAgAAAAAATu34zVIqpGNHk5MgMyilAAAAAACA07Jdv64za9dKYj0pZ0MpBQAAAAAAnNaZdeuUGBcnv5IlVbh6dbPjIBMopQAAAAAAgNO69a57FovF5DTIDEopAAAAAADgtG4tpeBcKKUAAAAAAIBTijh2TFePHJGbh4dKt2ljdhxkEqUUAAAAAABwSsl33SvepIm8/P1NToPMopQCAAAAAABO6cSyZZK4dM9ZUUoBAAAAAACnkxgXp1OrV0uSylFKOSVKKQAAAAAA4HTOrF+vxOvXlb9ECRV+4AGz4+AeUEoBAAAAAACn47jrXseOslgsJqfBvaCUAgAAAAAATsdRSnHpntOilAIAAAAAAE4lIjRUVw4dksXdXaXbtDE7Du4RpRQAAAAAAHAqyXfdK9G4sbwDA80Ng3tGKQUAAAAAAJwKl+65BkopAAAAAADgNBLj43Vq9WpJlFLOjlIKAAAAAAA4jbMbNsgWEyPfokUVVLOm2XFwHyilAAAAAACA0zh+89K9kI4dZbFYTE6D+0EpBQAAAAAAnEbyIudcuuf8KKUAAAAAAIBTuHbqlML//lsWNzeFtGtndhzcJ0opAAAAAADgFJLvule8USN5FyhgchrcL0opAAAAAADgFJJLKS7dcw2UUgAAAAAAINdLSkjQyVWrJFFKuQpKKQAAAAAAkOud3bRJtuho5StSREVq1TI7DrIApRQAAAAAAMj1ki/dC+nYURY36gxXwLsIAAAAAAByveRSqhyX7rkMSikAAAAAAJCrXTt9WmH79sni5qYy7dubHQdZhFIKAAAAAADkaieWLZMkFWvQQD4FC5qcBlmFUgoAAAAAAORqyZfucdc910IpBQAAAAAAcq0km00nV66UdGORc7gOSikAAAAAAJBrndu8WQlRUfIJClLRunXNjoMsRCkFAAAAAAByLcelex06yOJGjeFKeDcBAAAAAECuxXpSrotSCgAAAAAA5EpRZ8/q8p49ksWiMu3bmx0HWYxSCgAAAAAA5Eonli2TJBWrX1/5Chc2OQ2yGqUUAAAAAADIlUJvllLcdc81UUoBAAAAAIBcx56YqJMrVkiSyrGelEuilAIAAAAAALnOuS1bFB8ZKZ9ChRRcr57ZcZANKKUAAAAAAECuk3zXvZAOHeTm7m5yGmQHSikAAAAAAJDrJJdSZbl0z2VlupTasWOH9u7d6/h68eLF6tmzp/75z38qISEhS8MBAAAAAIC8J/r8eV3atUuSVKZ9e3PDINtkupQaNGiQDh8+LEk6fvy4+vXrp3z58umHH37Q8OHDszwgAAAAAADIW04sXy5JCq5XT75FipicBtkl06XU4cOHVatWLUnSDz/8oObNm2vu3LmaNWuWFixYkNX5AAAAAABAHsOle3lDpkspwzBkt9slSStXrlTnzp0lSaVKlVJYWFjWpgMAAAAAAHmKPTFRJ37/XZJUjlLKpWW6lKpXr54mTpyoOXPmaN26derSpYskKTQ0VMHBwVkeEAAAAAAA5B0X/vxT8RER8i5YUEXr1zc7DrJRpkupjz76SDt27NCQIUM0atQoVahQQZL0448/qnHjxlkeEAAAAAAA5B0nli2TJIW0by83d3eT0yA7eWT2hJo1a6a4+16y999/Xx4emX44AAAAAAAAh5M3L90L6djR5CTIbpmeKVWuXDmFh4en2h4XF6dKlSplSSgAAAAAAJD3JEZE6NKOHZKkspRSLi/TU5tOnDihpKSkVNvj4+N15syZLAkFAAAAAADyHs8LF+RTuLD8S5eWL+tWu7wMl1I///yz47+XL1+ugIAAx9dJSUlatWqVypYtm7XpAAAAAACAy7PFxMjNalXzfv2Ub8gQXT161OxIyAEZLqV69uwpSbJYLBo4cGCKfVarVSEhIfrwww+zNBwAAAAAAHBtiXFx+nPyZO2YOlXxERHyCgxUnWHDVLByZXl4e5sdD9kow6WU3W6XJJUtW1bbtm1T4cKFsy0UAAAAAABwfbaYGP05ebK2TJjg2BYfEeH4uv7w4bL6+poVD9ks0wudh4aGOgqpuLi4LA8EAAAAAADyBjerVTumTk1z346pU+VmteZwIuSkTJdSdrtdb7/9tkqUKKH8+fPr+PHjkqTRo0drxowZWR4QAAAAAAC4pviICMVHRNx5X2RkzgZCjsp0KTVx4kTNmjVLkydPlqenp2N7jRo19OWXX2ZpOAAAAAAA4Lq8AgPlFRh453233GQNrifTpdTs2bM1ffp0PfbYY3J3d3dsr1mzpg4ePJil4QAAAAAAgOtKio9X7aFD09xXZ9gw2W22HE6EnJThhc6TnT17VhUqVEi13W63y8aHBQAAAAAAZIBhGNr673+r7iuvSIahndOmpbj7XoORI7n7novLdClVrVo1bdiwQWXKlEmx/ccff1Tt2rWzLBgAAAAAAHBd295/X1vffVdHFy1S799+U6PRoxUbHq58hQopyWajkMoDMl1KjRkzRgMHDtTZs2dlt9v1008/6dChQ5o9e7aWLFmSHRkBAAAAAIALObJwodaPGCFJqvnii/IvXVo2m03bDhxQs2bN5Onra3JC5IRMrynVo0cP/fLLL1q5cqV8fX01ZswYHThwQL/88ovatWuXHRkBAAAAAICLuPDXX/r1scckw1DtIUNUZ8gQx76oqCgTkyGnZXqm1JkzZ9SsWTOtWLEi1b4//vhDDRs2zJJgAAAAAADAtUSdPatF3bsr8fp1hXTsqFYffWR2JJgo0zOl2rdvrytXrqTavmnTJnXs2DFTj7V+/Xp169ZNxYsXl8Vi0aJFi9I9fu3atbJYLKl+XbhwIVPPCwAAAAAAclZCdLQWduum6HPnVKh6dXX77ju5eWR6rgxcSKZLqYYNG6p9+/YpptStX79enTt31tixYzP1WDExMapZs6b++9//Zuq8Q4cO6fz5845fRYoUydT5AAAAAAAg5xh2u5Y+/rgu7dwpn6Ag9VqyRF4BAWbHgskyXUl++eWX6tOnj7p166bly5dr8+bN6t69uyZOnKh//OMfmXqsTp06qVOnTpmNoCJFiigwMDDT5wEAAAAAgJy3fsQIHV28WO5eXnp48WIFhISYHQm5QKZLKTc3N3333Xfq0qWLWrdurT179ui9997TkFsWJstutWrVUnx8vGrUqKFx48apSZMmdzw2Pj5e8fHxjq+vXbsmSbLZbLLZbNmeFZmT/J640nvDmJwDY3IOjMk5MKbcz9XGIzEmZ8GYnANjcg7ONKZ9M2dq2/vvS5LaffGFgurVSzO3M40po1x5TFnBYhiGcbeD9uzZk2pbVFSU+vfvry5duujFF190bH/wwQfvLYjFooULF6pnz553PObQoUNau3at6tWrp/j4eH355ZeaM2eOtm7dqjp16qR5zrhx4zR+/PhU2+fOnat8+fLdU1YAAAAAAHB3sXv36uy4cVJSkgr266dC/fqZHQn3KTY2VgMGDFBkZKT8/f3v67EyVEq5ubnJYrHo1kNv/Tr5vy0Wi5KSku4tSAZKqbS0aNFCpUuX1pw5c9Lcn9ZMqVKlSiksLOy+XzxkPZvNphUrVqhdu3ayWq1mx8kSjMk5MCbnwJicA2PK/VxtPBJjchaMyTkwJufgDGO6eviw5jdrpvirV1Xp0UfVcfZsWSyWOx7vDGPKLFccU3h4uIoVK5YlpVSGLt8LDQ29ryfJTvXr19fGjRvvuN/Ly0teXl6ptlutVpf5QLgiV3x/GJNzYEzOgTE5B8aU+7naeCTG5CwYk3NgTM4ht47peni4fu7ZU/FXr6p4o0bqPGuWPDw9M3Rubh3T/XClMWXlODJUSpUpUybLnjCr7dq1S8WKFTM7BgAAAAAAkJSUkKDFvXsr4uhR+Zcpox4LF8rD29vsWMiFMr3Q+Xvvvafg4GA988wzKbZ/9dVXunz5st56660MP1Z0dLSOHj3q+Do0NFS7du1SwYIFVbp0aY0cOVJnz57V7NmzJUkff/yxypYtq+rVqysuLk5ffvmlVq9erd9//z2zwwAAAAAAAFnMMAytGDxYZ9atk6efnx5eskS+wcFmx0Iu5ZbZEz7//HNVqVIl1fbq1avrs88+y9Rjbd++XbVr11bt2rUlSa+99ppq166tMWPGSJLOnz+vU6dOOY5PSEjQ66+/rgceeEAtWrTQ7t27tXLlSrVp0yazwwAAAAAAAFls2/vva9/MmbK4uanb998rqEYNsyMhF8v0TKkLFy6keblcUFCQzp8/n6nHatmypdJbZ33WrFkpvh4+fLiGDx+eqecAAAAAAADZ78jChVo/YoQkqdWUKSrbsaPJiZDbZXqmVKlSpbRp06ZU2zdt2qTixYtnSSgAAAAAAOA8Lvz1l3597DHJMFR7yBDVGTLE7EhwApmeKfX888/rlVdekc1mU+vWrSVJq1at0vDhw/X6669neUAAAAAAAJB7RZ09q0Xduyvx+nWFdOyoVh99ZHYkOIlMl1JvvvmmwsPD9dJLLykhIUGS5O3trbfeeksjR47M8oAAAAAAACB3SoiO1sJu3RR97pwKVa+ubt99JzePTFcNyKMy/UmxWCyaNGmSRo8erQMHDsjHx0cVK1aUl5dXduQDAAAAAAC5kGG3a+njj+vSzp3yCQpSryVL5BUQYHYsOJF7ri/z58+vhx56KCuzAAAAAAAAJ7F+xAgdXbxY7l5eenjxYgWEhJgdCU4mQ6VUr169NGvWLPn7+6tXr17pHvvTTz9lSTAAAAAAAJA77Z0xQ9vef1+S1HHmTBVv1MjkRHBGGSqlAgICZLFYHP8NAAAAAADyplNr1mjF4MGSpMbjxqlq//4mJ4KzylApNXPmzDT/GwAAAAAA5B1XDh/Wz717y56YqCr9+6vRmDFmR4ITc8vogS1atNCECRO0YcMG2Wy27MwEAAAAAABymevh4fqpSxfFXb2q4o0aqeNXXzmuqgLuRYZLqbJly2rmzJlq0aKFAgMD1bZtW73zzjvasmWLkpKSsjMjAAAAAAAwUVJCghb37q2Io0flX6aMeixcKA9vb7NjwclluJSaNWuWQkNDdfz4cX3yyScqUaKEpk+friZNmqhAgQLq1KmT3r+5yBkAAAAAAHANhmFoxeDBOrNunTz9/PTwkiXyDQ42OxZcQIZLqWQhISF65pln9PXXX+vkyZM6evSohg0bps2bN2vEiBHZkREAAAAAAJhk2/vva9/MmbK4uanb998rqEYNsyPBRWRoofPbnTx5UmvXrnX8unTpkho2bKgWLVpkdT4AAAAAAGCSIwsXav3NCSitpkxR2Y4dTU4EV5LhUmr27NmOEiosLEyNGzdWixYt9Pzzz+uhhx6S1WrNzpwAAAAAACAHXfjrL/362GOSYaj2kCGqM2SI2ZHgYjJcSj311FMqXbq0RowYoWeffZYSCgAAAAAAFxV19qwWde+uxOvXFdKxo1p99JHZkeCCMrym1KeffqqGDRtq/PjxKlKkiLp166YPP/xQ27dvl2EY2ZkRAAAAAADkkIToaC3s1k3R586pUPXq6vbdd3LzuKfVf4B0ZbiUGjx4sL777judP39emzZtUufOnfXnn3+qS5cuKlCggLp06aIPPvggO7MCAAAAAIBsZNjtWvr447q0c6d8goLUa8kSeQUEmB0LLirTd9+TpGrVqunFF1/U/PnztXPnTg0ZMkQbN27UW2+9ldX5AAAAAABADlk/YoSOLl4sdy8vPbx4sQJCQsyOBBeW6fl3ly5d0po1axyLnh8+fFhWq1UNGzZUq1atsiMjAAAAAADIZntnzNC299+XJHWcOVPFGzUyORFcXYZLqZdeeklr167VoUOH5OHhofr166tPnz5q1aqVGjduLG9v7+zMCQAAAAAAssmpNWu0YvBgSVKjsWNVtX9/kxMhL8hwKbVz50717NlTrVq1UpMmTZQvX77szAUAAAAAAHLAlcOH9XPv3rInJqpK//5qPHas2ZGQR2S4lNqyZUt25gAAAAAAADnseni4furSRXFXr6p4o0bq+NVXslgsZsdCHnFPC50DAAAAAADnlpSQoMW9eyvi6FH5lymjHgsXyoOleZCDKKUAAAAAAMhjDMPQisGDdWbdOnn6+enhJUvkGxxsdizkMZRSAAAAAADkMdvef1/7Zs6Uxc1N3b7/XkE1apgdCXkQpRQAAAAAAHnIkYULtX7ECElSqylTVLZjR5MTIa+6p1IqIiJCX375pUaOHKkrV65Iknbs2KGzZ89maTgAAAAAAJB1Lvz1l3597DHJMFR7yBDVGTLE7EjIwzJ8971ke/bsUdu2bRUQEKATJ07o+eefV8GCBfXTTz/p1KlTmj17dnbkBAAAAAAA9yHq7Fkt6t5didevK6RjR7X66COzIyGPy/RMqddee01PPfWUjhw5Iu9bVuXv3Lmz1q9fn6XhAAAAAADA/UuIjtbCbt0Ufe6cClWvrm7ffSc3j0zPUwGyVKZLqW3btmnQoEGptpcoUUIXLlzIklAAAAAAACBrGHa7lj7+uC7t3CmfoCD1WrJEXgEBZscCMl9KeXl56dq1a6m2Hz58WEFBQVkSCgAAAAAAZI31I0bo6OLFcvfy0sOLFysgJMTsSICkeyilunfvrgkTJshms0mSLBaLTp06pbfeeku9e/fO8oAAAAAAAODe7J0xQ9vef1+S1HHmTBVv1MjkRMD/y3Qp9eGHHyo6OlpFihTR9evX1aJFC1WoUEF+fn565513siMjAAAAAADIpFNr1mjF4MGSpEZjx6pq//4mJwJSyvSqZgEBAVqxYoU2btyoPXv2KDo6WnXq1FHbtm2zIx8AAAAAAMikK4cP6+fevWVPTFSV/v3VeOxYsyMBqdzzUvtNmzZV06ZNszILAAAAAAC4T9fDw/VTly6Ku3pVxRs1UsevvpLFYjE7FpBKpkupqVOnprndYrHI29tbFSpUUPPmzeXu7n7f4QAAAAAAQMYlJSRoce/eijh6VP5lyqjHwoXy8PY2OxaQpkyXUh999JEuX76s2NhYFShQQJJ09epV5cuXT/nz59elS5dUrlw5rVmzRqVKlcrywAAAAAAAIDXDMLRi8GCdWbdOnn5+enjJEvkGB5sdC7ijTC90/u677+qhhx7SkSNHFB4ervDwcB0+fFgNGjTQlClTdOrUKRUtWlSvvvpqduQFAAAAAABp2Pb++9o3c6Ysbm7q9v33CqpRw+xIQLoyPVPqX//6lxYsWKDy5cs7tlWoUEEffPCBevfurePHj2vy5Mnq3bt3lgYFAAAAAABpO7JwodaPGCFJajVlisp27GhyIuDuMj1T6vz580pMTEy1PTExURcuXJAkFS9eXFFRUfefDgAAAAAApMnPz0+SdOGvv/TrY49JhqHaQ4aozpAhJicDMibTpVSrVq00aNAg7dy507Ft586devHFF9W6dWtJ0t69e1W2bNmsSwkAAAAAACRJtpgYuRmG6lWtKje7XbGXLsm/TBmFdOyoVh99ZHY8IMMyffnejBkz9MQTT6hu3bqyWq2SbsySatOmjWbMmCFJyp8/vz788MOsTQoAAAAAQB6XGBenPydP1o6pUxUfESGvwEDVHjJE/TdulLunp9w8Mv3XfMA0mf60Fi1aVCtWrNDBgwd1+PBhSVLlypVVuXJlxzGtWrXKuoQAAAAAAEC2mBj9OXmytkyY4NgWHxGhPyZOlMXNTfWHDzcxHZB591yhVqlSRVWqVMnKLAAAAAAA4A7crFbtmDo1zX07pk5Vw1GjcjgRcH/uqZQ6c+aMfv75Z506dUoJCQkp9v3nP//JkmAAAAAAAOD/xUdEKD4i4s77IiOVLygoZ0MB9yHTpdSqVavUvXt3lStXTgcPHlSNGjV04sQJGYahOnXqZEdGAAAAAADyPK/AQHkFBqZZTHkFBsorICDnQwH3IdN33xs5cqTeeOMN7d27V97e3lqwYIFOnz6tFi1a6JFHHsmOjAAAAAAA5Hl2m011hg5Nc1+dYcNkt9lyOBFwfzJdSh04cEBPPvmkJMnDw0PXr19X/vz5NWHCBE2aNCnLAwIAAAAAACnm0iXVHjpUDf/1L3kFBkq6MUOq0ZgxajBypKy+vuYGBDIp05fv+fr6OtaRKlasmI4dO6bq1atLksLCwrI2HQAAAAAAkGG3a9nAgYq9fFntp09Xo9GjFRsernyFCinJZpOHt7fZEYFMy3Qp1bBhQ23cuFFVq1ZV586d9frrr2vv3r366aef1LBhw+zICAAAAABAnrZ7+nSd2bBBVl9f+ZUqJbvFom0HDqhZs2byZIYUnFSmS6n//Oc/io6OliSNHz9e0dHRmj9/vipWrMid9wAAAAAAyGJRZ85o/fDhkqSm77yjgJAQ2Ww2RUVFmZwMuD+ZKqWSkpJ05swZPfjgg5JuXMr32WefZUswAAAAAADyOsMwtOLFF5UQFaViDRqo9pAhZkcCskymFjp3d3dX+/btdfXq1ezKAwAAAAAAbjo0f76OL1kiN6tVHWbMkJu7u9mRgCyT6bvv1ahRQ8ePH8+OLAAAAAAA4Kbr4eFaNWyYJKnhqFEqfPMmY4CryHQpNXHiRL3xxhtasmSJzp8/r2vXrqX4BQAAAAAA7t+aV1/V9cuXVah6dTUYOdLsOECWy/RC5507d5Ykde/eXRaLxbHdMAxZLBYlJSVlXToAAAAAAPKg0GXL9PecOZLFog5ffil3T0+zIwFZLtOl1Jo1a7IjBwAAAAAAkJQQHa3fBw2SJNUZNkzFGzY0ORGQPTJdSrVo0SI7cgAAAAAAAEkbR41S1KlT8i9TRk0nTjQ7DpBtMr2mlCRt2LBBjz/+uBo3bqyzZ89KkubMmaONGzdmaTgAAAAAAPKSc1u2aMcnn0iS2k+fLs/8+U1OBGSfTJdSCxYsUIcOHeTj46MdO3YoPj5ekhQZGal33303ywMCAAAAAJAXJMbHa/lzz0mGoWpPPqmQ9u3NjgRkq3u6+95nn32mL774Qlar1bG9SZMm2rFjR5aGAwAAAAAgr9j63nsK//tv+QQFqdV//mN2HCDbZbqUOnTokJo3b55qe0BAgCIiIrIiEwAAAAAAeUrY/v3aevPqozaffCKfQoVMTgRkv0yXUkWLFtXRo0dTbd+4caPKlSuXJaEAAAAAAMgr7ElJWv7ss7LbbCrfrZsq9+1rdiQgR2S6lHr++ef1j3/8Q1u3bpXFYtG5c+f07bff6o033tCLL76YHRkBAAAAAHBZO6dN0/mtW+Xp56e2n34qi8VidiQgR3hk9oQRI0bIbrerTZs2io2NVfPmzeXl5aU33nhDQ4cOzY6MAAAAAAC4pMgTJ7Thn/+UJLV4/335lSxpciIg52S6lLJYLBo1apTefPNNHT16VNHR0apWrZryc5tKAAAAAAAyzDAM/f7CC0qMjVXJ5s314PPPmx0JyFGZvnzvm2++UWxsrDw9PVWtWjXVr1+fQgoAAAAAgEzaP3u2Tq5YIXcvL7X/4gtZ3DL9V3TAqWX6E//qq6+qSJEiGjBggJYuXaqkpKTsyAUAAAAAgMuKuXhRa199VZLUeNw4FaxUyeREQM7LdCl1/vx5fffdd7JYLOrbt6+KFSuml19+WZs3b86OfAAAAAAAuJzVw4Yp7upVFalVS/Vef93sOIApMl1KeXh4qGvXrvr222916dIlffTRRzpx4oRatWql8uXLZ0dGAAAAAABcxtGff9ah77+Xxd1dHWbMkLvVanYkwBT3dcFqvnz51KFDB3Xq1EkVK1bUiRMnMnX++vXr1a1bNxUvXlwWi0WLFi3K8LmbNm2Sh4eHatWqlannBAAAAADALPGRkVr54ouSpHqvv67gOnVMTgSY555KqdjYWH377bfq3LmzSpQooY8//lgPP/yw9u/fn6nHiYmJUc2aNfXf//43U+dFREToySefVJs2bTJ1HgAAAAAAZlr/1luKPndOgRUqqPG4cWbHAUzlkdkT+vXrpyVLlihfvnzq27evRo8erUaNGt3Tk3fq1EmdOnXK9HmDBw/WgAED5O7unqnZVQAAAAAAmOX0unXa/fnnkqT2X3whq4+PyYkAc2W6lHJ3d9f333+vDh06yN3dPcW+ffv2qUaNGlkWLi0zZ87U8ePH9c0332jixIl3PT4+Pl7x8fGOr69duyZJstlsstls2ZYT9yb5PXGl94YxOQfG5BwYk3NgTLmfq41HYkzOgjE5B8aUPRKvX9fy556TJNV49lkVa9LkvvLkhjFlNcbkHLJyLBbDMIz7eYCoqCjNmzdPX375pf766y8lJSXdWxCLRQsXLlTPnj3veMyRI0fUtGlTbdiwQZUqVdK4ceO0aNEi7dq1647njBs3TuPHj0+1fe7cucqXL989ZQUAAAAAIDPC5szR1QUL5F6ggMp88onc8+c3OxJwT2JjYzVgwABFRkbK39//vh4r0zOlkq1fv14zZszQggULVLx4cfXq1SvTa0NlRlJSkgYMGKDx48erUqVKGT5v5MiReu211xxfX7t2TaVKlVL79u3v+8VD1rPZbFqxYoXatWsnq4vcgYIxOQfG5BwYk3NgTLmfq41HYkzOgjE5B8aU9S7t3Knvbi4902n6dJXv0eO+H9PsMWUHxuQcwsPDs+yxMlVKXbhwQbNmzdKMGTN07do19e3bV/Hx8Vq0aJGqVauWZaHSEhUVpe3bt2vnzp0aMmSIJMlut8swDHl4eOj3339X69atU53n5eUlLy+vVNutVqvLfCBckSu+P4zJOTAm58CYnANjyv1cbTwSY3IWjMk5MKasYU9M1KrBg2UkJalSnz6q0qdPlj4+75NzcKUxZeU4MlxKdevWTevXr1eXLl308ccfq2PHjnJ3d9dnn32WZWHS4+/vr71796bY9umnn2r16tX68ccfVbZs2RzJAQAAAABARm378ENd2rlT3gUKqM0nn5gdB8hVMlxK/fbbbxo2bJhefPFFVaxYMUuePDo6WkePHnV8HRoaql27dqlgwYIqXbq0Ro4cqbNnz2r27Nlyc3NLtYh6kSJF5O3tne2LqwMAAAAAkFlXjxzRlnHjJEkt//Mf+RYtam4gIJdxy+iBGzduVFRUlOrWrasGDRpo2rRpCgsLu68n3759u2rXrq3atWtLkl577TXVrl1bY8aMkSSdP39ep06duq/nAAAAAAAgpxl2u5Y//7wS4+JUpl07VR840OxIQK6T4VKqYcOG+uKLL3T+/HkNGjRI3333nYoXLy673a4VK1YoKioq00/esmVLGYaR6tesWbMkSbNmzdLatWvveP64cePSvfMeAAAAAABm2PPllzqzbp088uVTu88/l8ViMTsSkOtkuJRK5uvrq2eeeUYbN27U3r179frrr+vf//63ihQpou7du2dHRgAAAAAAnEbU2bNa9+abkqSmEycqkDWQgTRlupS6VeXKlTV58mSdOXNG8+bNy6pMAAAAAAA4JcMwtOrll5Vw7ZqK1q+vOsOGmR0JyLXuq5RK5u7urp49e+rnn3/OiocDAAAAAMApHf7xRx1dvFhuHh7q8OWXcnN3NzsSkGtlSSkFAAAAAEBed/3KFa0aMkSSVH/kSAU98IDJiYDcjVIKAAAAAIAssPb11xV76ZIKVq2qhqNGmR0HyPUopQAAAAAAuE8nVqzQ/lmzJItFHb78Uh5eXmZHAnI9SikAAAAAAO5DQkyMfn/hBUlS7ZdfVonGjU1OBDgHSikAAAAAAO7DptGjde3ECfmVKqVm775rdhzAaVBKAQAAAABwj85v3aodU6ZIktp9/rk8/fxMTgQ4D0opAAAAAADuQVJCgpY/95wMu13VHn9c5Tp1MjsS4FQopQAAAAAAuAdb//1vhe3bJ5/ChdXyo4/MjgM4HUopAAAAAAAyKezvv/XHxImSpNZTpypf4cImJwKcD6UUAAAAAACZYE9K0u/PPSe7zaZyXbqoSr9+ZkcCnBKlFAAAAAAAmbDr0091bssWefr5qe3//ieLxWJ2JMApUUoBAAAAAJBBkSdPasPIkZKkZv/+t/xLlTI5EeC8KKUAAAAAAMgAwzC0YvBg2WJiVKJpU9UaPNjsSIBTo5QCAAAAACADDnz7rU4sWyZ3T0+1/+ILWdz4KzVwP/gTBAAAAADAXcRevqw1r7wiSWo0ZowKValibiDABVBKAQAAAABwF6v/8Q9dDw9X0IMP6qHhw82OA7gESikAAAAAANJx7NdfdXDePFnc3NRhxgy5W61mRwJcAqUUAAAAAAB3EH/tmlbeXNC87quvqmi9eiYnAlwHpRQAAAAAAHewfsQIRZ05o4By5dRkwgSz4wAuhVIKAAAAAIA0nNmwQbv/9z9JUocvvpA1Xz6TEwGuhVIKAAAAAIDbJMbFaflzz0mSHnj2WZVu3drkRIDroZQCAAAAAOA2W95+W1cPH5Zv0aJq8f77ZscBXBKlFAAAAAAAt7i0e7e2TZ4sSWrz3//Ku0ABkxMBrolSCgAAAACAm+yJiVr+7LOyJyaqYq9eqtSrl9mRAJdFKQUAAAAAwE1/ffyxLv71l7wCA9Vm2jSz4wAujVIKAAAAAABJEceOadOYMZKklh98oPzFipmcCHBtlFIAAAAAgDzPMAz9/sILSrx+XaVbt1aNZ54xOxLg8iilAAAAAAB53r6vvtKp1avl4eOj9tOny2KxmB0JcHmUUgAAAACAPC36/Hmtff11SVKTCRMUWL68yYmAvIFSCgAAAACQp60aMkTxkZEKrltXdV95xew4QJ5BKQUAAAAAyLMOL1igIz/9JDcPD3WYMUNuHh5mRwLyDEopAAAAAECeFHf1qlYNGSJJqv/WWypSs6bJiYC8hVIKAAAAAJAnrX3jDcVcuKCClSur4b/+ZXYcIM+hlAIAAAAA5DknV63Svq++kiS1//JLeXh7m5wIyHsopQAAAAAAeYotNla/v/CCJKnWSy+pZNOmJicC8iZKKQAAAABAnrJpzBhFHj8uv5Il1ey998yOA+RZlFIAAAAAgDzj/LZt+uujjyRJbT/7TF7+/iYnAvIuSikAAAAAgMvz8/NTks2m3597Tobdrir9+6t8ly5mxwLyNEopAAAAAIDLssXEyM0wVK9qVXlYLGo8fryKN2yo1lOmmB0NyPMopQAAAAAALikxLk5/Tp6sT4ODNb14cf2veHFd/Osv9fn9d+ULCjI7HpDneZgdAAAAAACArGaLidGfkydry4QJjm3xERH6Y+JEWdzcVH/4cFl9fU1MCICZUgAAAAAAl+NmtWrH1Klp7tsxdarcrNYcTgTgdpRSAAAAAACXExcRofiIiDT3xUdEKD4yMmcDAUiFUgoAAAAA4DIS4+K0+/PP5enrK6/AwDSP8QoMlFdAQM4GA5AKpRQAAAAAwOklJSRo1//+py8rVNCKwYN1cuVK1R4yJM1j6wwbJrvNlsMJAdyOhc4BAAAAAE7Lnpio/bNna8uECbp28qQkya9UKSXZbGr4z3/K4uamHVOnKj4iQl6BgaozbJgajBwpD29vk5MDoJQCAAAAADgde1KSDn73nbaMH6+rR45IknyLFVPDUaP0wHPPycPLS5JUf/hwNRw1SrHh4cpXqJCSbDYKKSCXoJQCAAAAADgNw27XkYULtWnMGIX//bckyadwYTUYOVI1X3xRVh+fFMdbfX1ls9m07cABNWvWTJ6+vmbEBpAGSikAAAAAQK5nGIaOL1miTWPG6NKuXZIk7wIF9NCbb6r20KHyzJ8/3fOjoqJyICWAzKCUAgAAAADkWoZh6OSKFdo4erQu/PmnJMnTz091X3tN9V59lbvoAU6MUgoAAAAAkCudXr9em/71L53ZsEGS5JEvn+oMG6aH3nhDPoUKmZwOwP2ilAIAAAAA5Crn/vhDm0aP1smVKyVJ7l5eqvXii6o/YoR8g4NNTgcgq1BKAQAAAAByhYs7dmjTmDE6/uuvkiQ3q1UPPPecGo4aJb8SJUxOByCrUUoBAAAAAEx1ed8+bR47Vkd++kmSZHF3V/WBA9Vo9GgFhISYGw5AtqGUAgAAAACY4srhw9o8bpwOfvedZBiSxaKqAwao8dixKlCxotnxAGQzSikAAAAAQI6KCA3VlgkT9Pfs2TLsdklSpT591HjcOBWuXt3kdAByCqUUAAAAACBHRJ05oz8mTtTeGTNkT0yUJJXv1k1NJkxQkVq1zA0HIMdRSgEAAAAAslXMhQva+t572v3550qKj5ckhbRvryYTJqhYgwYmpwNgFkopAAAAAEC2iA0L07b339fOTz5R4vXrkqSSzZur6cSJKtmsmcnpAJiNUgoAAAAAkKXiIiK0/T//0V8ffSRbdLQkqViDBmo6caJKt2kji8VickIAuQGlFAAAAAAgSyRERWnH1Kna9sEHio+IkCQVqV1bTd5+W+U6d6aMApACpRQAAAAA4L7YYmO169NP9ee//63r4eGSpELVq6vJhAmq+PDDlFEA0kQpBQAAAAC4J4nx8dozfbq2vvuuYi5ckCQVqFhRjcePV+W+feXm7m5yQgC5GaUUAAAAACBTkmw27Zs5U3+8/baizpyRJPmHhKjx2LGq9vjjcvPgr5oA7o7vFAAAAACAFPz8/NLcbk9M1N/ffqst48crMjRUkpS/RAk1/Ne/9MAzz8jd0zMnYwJwcpRSAAAAAHAf7lTgOCNbTIzcrFbVq1pVboYhW0yMrL6+Mux2Hfr+e20aO1ZXDx+WJOULDlaDkSNVc9AgeXh7m5wcgDOilAIAAACAe3CnAsdZJcbF6c/Jk7Vj6lTFR0TIKzBQdYYN00NvvqlfBwzQsV9+kST5FCqkh4YPV62XX5anE48XgPnczHzy9evXq1u3bipevLgsFosWLVqU7vEbN25UkyZNVKhQIfn4+KhKlSr66KOPciYsAAAAANyUXOB8Ghys6cWL69PgYP05ebIS4+LMjnZPbDEx2vree9oyYYLiIyIkSfEREdoyYYL+nDRJNZ55Rl4BAWoyYYKeO35c9YcPp5ACcN9MnSkVExOjmjVr6plnnlGvXr3ueryvr6+GDBmiBx98UL6+vtq4caMGDRokX19fvfDCCzmQGAAAAEBeZ4uJ0Z+TJ2vLhAmObckFjiTVHz78vmZMGYYhIylJ9sRE2W022RMTlWSzybjt91v3p/n7Hfbd/lgWq1V1Xn5ZO6ZOTTPPzmnT9OK5c3r+xAl5Bwbe87gA4HamllKdOnVSp06dMnx87dq1Vbt2bcfXISEh+umnn7RhwwZKKQAAAAA5ws1qvWOBs2PqVNV/6y0t7tNH18PCMl8k3fw9JxWuUUOVe/d2zJC6XXxEhBKio5UvKChHcwFwfU69ptTOnTu1efNmTZw40ewoAAAAAPKI+IiIdAuc2EuXdPXQIYXt25elz2txd5e71SqLh0eav7t5eMjt1t/T2pbG794FCsi3aFF5BQamOS6vwEB5BQRk6VgAQHLSUqpkyZK6fPmyEhMTNW7cOD333HN3PDY+Pl7x8fGOr69duyZJstlssuXwv0Dg7pLfE1d6bxiTc2BMzoExOQfGlPu52ngkxuQsXGVMXoGB6RY4vkWLqv6oUTKSklIUQKlKJKs1zaLpTuWRxWLJtjElxcerzrBhKS5JTFZn2DAlJiTIno3Pn91c5bN3K8bkHFx5TFnBYhiGkWWPdh8sFosWLlyonj173vXY0NBQRUdH648//tCIESM0bdo09e/fP81jx40bp/Hjx6faPnfuXOXLl+9+YwMAAADIQwy7XbWCg3Xmt9/0RxpXbDQcM0Zln35a23fvNiHdvcufP7+aNGig7e+/r5233H2v9rBhqvfmm9q0dauio6PNjgkgF4iNjdWAAQMUGRkpf3//+3ospyylbjVx4kTNmTNHhw4dSnN/WjOlSpUqpbCwsPt+8ZD1bDabVqxYoXbt2slqtZodJ0swJufAmJwDY3IOjCn3c7XxSIzJWTj7mBLj47XiuecUtnu3+q1fr52ffKIdn3ziKHDqDBumBiNGyPBwygtSJEn2+Hh5eHoqNjxc+QoVUmJCgty8vMyOdd+c/bOXFsbkHFxxTOHh4SpWrFiWlFLO+93yJrvdnqJ0up2Xl5e80vgmarVaXeYD4Ypc8f1hTM6BMTkHxuQcGFPu52rjkRiTs3DGMcVHRurnhx/W6TVr5ObhobObN6v+W2+p4b/+5Shwkmw2efj4mB31/litstls2nbggJo1ayav/PnNTpSlnPGzdzeMyTm40piychymllLR0dE6evSo4+vQ0FDt2rVLBQsWVOnSpTVy5EidPXtWs2fPliT997//VenSpVWlShVJ0vr16/XBBx9o2LBhpuQHAAAA4PqizpzRgs6dFbZ3r6z586vHggUKad9eklIUOJ6+viYnzTpRUVFmRwCQB5haSm3fvl2tWrVyfP3aa69JkgYOHKhZs2bp/PnzOnXqlGO/3W7XyJEjFRoaKg8PD5UvX16TJk3SoEGDcjw7AAAAANcXtn+/FnTsqKgzZ+RbtKh6LV2q4Nq1UxxDgQMA98bUUqply5ZKb0mrWbNmpfh66NChGjp0aDanAgAAAADp9Lp1WtSjh+IjI1WwShX1/u03BYSEmB0LAFyGm9kBAAAAACC3OTh/vn5s317xkZEq0aSJ+m/aRCEFAFmMUgoAAAAAbrH9P//Rkn79lJSQoIq9eqnPihXyKVjQ7FgA4HIopQAAAABAkmG3a82rr2rt669LkmoPHapu338vq7PfUQ8AcilT15QCAAAAgNwgMS5OS598Uod/+EGS1HzyZD30xhuyWCwmJwMA10UpBQAAACBPi7t6VYt69tSZ9evlZrWq06xZqjpggNmxAMDlUUoBAAAAyLOunTqlBZ06Kfzvv+Xp76+eCxeqdOvWZscCgDyBUgoAAABAnnRp92791Lmzos+dU/4SJdR76VIFPfig2bEAIM+glAIAAACQ55xctUqLH35YCVFRKlS9unr/9pv8S5UyOxYA5CncfQ8AAABAnnJg7lwt6NRJCVFRKtmihfpv2EAhBQAmoJQCAAAAkCcYhqGtkybp18cek91mU+W+fdVn+XJ5FyhgdjQAyJO4fA8AAACAy7MnJWnNK69o57RpkqS6r72mlu+/L4sb/04PAGahlAIAAADg0mzXr2vpY4/pyMKFksWilh9+qHqvvmp2LADI8yilAAAAALis6+HhWti9u85t3ix3T091/uYbVX7kEbNjAQBEKQUAAADARUWeOKEFHTvqyqFD8goMVM9Fi1SqRQuzYwEAbqKUAgAAAOByLu7cqZ86d1bMhQvyK1VKvX/7TYWrVzc7FgDgFpRSAAAAAFxK6PLl+rlPH9mioxX04IPqtXSp/EqUMDsWAOA23GoCAAAAgMvY9/XXWti1q2zR0SrdurX6rV9PIQUAuRSlFAAAAACnZxiG/njnHS176inZExNVdcAA9f7tN3kFBJgdDQBwB1y+BwAAAMCp2RMTtWrIEO3+/HNJUv233lKzd9+VxY1/gweA3IxSCgAAAIDTssXGakm/fjr2yy+SxaLWU6eqzpAhZscCAGQApRQAAAAApxR7+bIWduum81u3ysPbW52//VaVevUyOxYAIIMopQAAAAA4nYhjx/Rjx46KOHpU3gUL6uGff1aJJk3MjgUAyARKKQAAAABO5fy2bVrYtatiL12Sf0iIev/2mwpVqWJ2LABAJlFKAQAAAHAax5cu1c+PPKLE2FgVqV1bvZculW/RombHAgDcA25HAQAAAMAp7J0xQwu7d1dibKxC2rdXv3XrKKQAwIlRSgEAAADI1QzD0KZx47T8uedkJCWp+sCBenjJEnn6+ZkdDQBwH7h8DwAAAECulWSzaeWLL2rvjBmSpIb/+peaTJggi8VicjIAwP2ilAIAAACQKyVER+uXvn0V+ttvsri5qe2nn6rmoEFmxwIAZBFKKQAAAAC5TszFi/qpa1dd3L5dHj4+6jZ/vsp362Z2LABAFqKUAgAAAJCrXDl8WAs6dVLk8ePyKVxYvZYsUbEGDcyOBQDIYpRSAAAAAHKNc3/8oYVdu+p6eLgCypVTn2XLVKBiRbNjAQCyAXffAwAAAJArHP35Z33furWuh4cruF49Ddi8mUIKAFwYpRQAAAAA0+367DMtfvhhJV6/rrKdO+vRNWvkGxxsdiwAQDailAIAAABgGsMwtPFf/9LKF1+UYbfrgWef1cOLF8szf36zowEAshlrSgEAAADIMX5+fo7/TrLZ9Pvzz2v/119LkhqPG6dGY8bIYrGYFQ8AkIMopQAAAOASbi07kPvYYmLkZrWqXtWqcjMMxUdGas1rr2n/11/L4u6u9p9/rgeefdbsmACAHEQpBQAAAKd2e9lhi4mR1dfX7Fi4RWJcnP6cPFk7pk5VfESEvAIDVXvIEDX/9791cedONZs4UeU6dzY7JgAgh1FKAQAAwGmlVXbUGTZMDUaOlIe3t9nxoBul4Z+TJ2vLhAmObfEREfpj4kRJUu9ff1X+YsXMigcAMBELnQMAAMAp2WJitPW997RlwgTFR0RIulF2bJkwQVvfe0+2mBhzA0KS5Ga1asfUqWnu2zltmnwKFcrhRACA3IKZUgAAAMj1DLtdkaGhurx3r8L27dO1kyfV+uOP71h27Jg6VfXfekurX31VgeXKKejBBxX04IPyLlAgh5PnLQkxMQrbu1eXd+/Wpd27lRAVpaa3lIa3i4+IUHxkpPIFBeVsUABArkApBQAAgFzDMAzFXLigsH37FHazgArbt09h+/crMTbWcVzhGjUUe+lSumVH7KVLOrVypXbs2+fY7leqlIJq1rxRUt38vUDFinJzd8/uobkUwzAUffasLu3a5SigLu/eratHjkiG4TjOp3Bhtf/sM3kFBqb5XnkFBsorICAHkwMAchNKKQAAAJgiLiJC4fv3K2zfPscMqPB9+3Q9PDzN4929vFSoWjUVrlFDRR96SL7FiqVbdvgWLaoq/fvr/B9/6NLu3Yo6dUpRp08r6vRpHV+yxHGsh7e3CtWooaAHH1SRmjVV+OasKp+CBbNr6E4lMT5eVw4cSFVAxV25kubxvkWL3ij8atZUkZo1lRATozrDhqVYUypZnWHDZLfZ5O7pmd3DAADkQpRSAAAAyFaJcXEKP3Dg/2c93Sygok6fTvN4i5ubAitUUOEHHlDhGjVUuEYNBT3wgALLl5ebx///+Gq7S9lhJCWp4T//6dgWFxGhy3v26PKePQrbs0eXdu9W2N69Srx+XRe3b9fF7dtTPIZfyZJpz6rycN0foWMvX75RPN1SQF05cED2xMRUx1rc3VWoatUUBVRQzZryDQ5OdWyDkSMliQXpAQApuO7/UQEAAJCj7ElJijh2zFE6Xd67V+H79unqkSMy7PY0z/ErWfLGLKVbCqiCVavK6uNz1+ez+vpmquzwDgxUqebNVap581SZL+/Zo8u7dzt+v3bypKLOnFHUmTM6/uuvjuM9vL1VqHr1FEVV0IMPOt1i3fbERF09csRRQCXPfoo5fz7N470LFHCUT8kFVKFq1TJcKHl4e6v+8OFqOGqUYsPDla9QISXZbBRSAJDHUUoBAADkQX5+fvd8bvJ6QpdvXfNp715dOXBAiXFxaZ7jXaDA/898uqWA8g4MvOcc0v2XHW7u7ipYqZIKVqqkyn36OLbHR0Y6ZlU5Cqu9e5UYG6uLf/2li3/9leJx8pco4Sipki8BLFip0n3Pqrqf9ylZ8lhunf0Uvm9f2u+VxaICFSqkmv3kV6qULBbLfeWw+vrKZrNp24EDatasmTx9fe/r8QAAzo9SyknZYmLkZrU6/kXQbrPJyv/YAQDAXST/DFGvalW5GYZsMTHp/gxx/cqVlIuO3/w9PjIyzeM9fHxUqHr1FJfdFa5RQ77Fit13qXEn2VF2eAUEqGSzZirZrJljm2G3O2ZVXdq923EJ4LUTJxR99qyiz55V6NKljuPdvbxUuHp1Fb5ZVCXPrsrIrKrMvk/J+SJPnEh1+d21EyfSPN7q6/v/M75uFlCFH3hAnvnzZ+xFukdRUVHZ+vgAAOdBKeWEEuPi9OfkyVyTDwAAMiW9nyEMw1D4/v0pFhy/vHfvHS/nsri7q0ClSv9/2d3N3wPKljXtTnbZXXZY3NxUoGJFFahYUZV693Zsj4+MVNi+fSmKqrC9e2WLidHFHTt0cccO7b/lcfIXL556rapKleRutUrK2M96ttjYG5dI3lJAXd6zRwl3eA38SpVSkVq1UhRQgeXLy+Lmlm2vFwAAd0Mp5WRsMTH6c/LkFAt6xkdEOL6uP3w4M6YAAEAq6f0MYdjtCq5bV4sffjjNc/3LlEm16HiBypXl4eWVU/FzNa+AAJVo0kQlmjRxbDPsdkWGht5Yq+mW9aoijx9X9Llzij53TqG//eY43t3TU4WqV1e7zz7TsSVL9Mfbbzv2OX7WMwyV7dRJy55++o7rdCU/zq0FFHcSBADkVpRSTsbNatWOqVPT3Ldj6lQ1HDUqhxMBAIDcJDEuTpEnTigyNFSRx48rMjRU18PD1fa//73jzxA7p03T4DNnVKBy5RuzeG4poApVry4vf/8cHoXzs7i5KbB8eQWWL69KvXo5tsdfu+aY4XTrmlW26GhFnT6twtWr68cOHdJ8zB2ffKL6b72l6+HhMux25StS5Masp1sKqIKVKztmXAEAkNtRSjmZ+IgIxUdE3HFfzIULOjBvnvxKlFDRhx5SgYoVmZYNAIALMex2RZ09e6N0uqV4Sv49+ty5VOcUrlFDsRcvpvszhC0mRs8ePJjN6eHl768SjRurROPGjm3Ja0FFhoYq7urVdN+n+MhI9Vi0SAXKl5dv0aI5lBoAgOxBKeVkvAID5RUYmOYPK16BgfIpVEjbP/hA18PCbmwLCFBw3boq+tBDCq5XT0Ufekj+pUtn20KjAADg/sVdvaqI5LLptuLp2smTSkpISPd8a/78CihbVoHlyimgbFkVqlZNvsWKpfszhNd93gUP987i5qbAcuUUWK6ckhIS0v9Zr3Bh5S9ePOdDAgCQDSilnIzdZlOdYcNSrAeRrM6wYYo+f15VBwzQhW3bdGnnTsVHRurU6tU6tXq14zifoCAVfeihG79uFlW+wcE5OQwAAJyOn59flj1WYlycrp08+f/F020F1J3ubJfMzcNDfqVLpyieApJ/L1tWPoULp/oHKFtMTLo/Q9htNrl7embZGHFv7vazHu8TAMCVUEo5GauvrxqMHClJd7wjS+spUyRJ9sREhe3frwvbtjl+he3dq+uXLyt06dIUtyz2K1UqRUkVXK+evPkXUwAAZIuJkZvVqnpVq8rNMGSLibnrTUUMu13R587dcbZTWpfY3S5fcHDK0umW4smvZEm5eWTux7iM/AwB8/E+AQDyEkopJ+Th7a36w4er4ahRio+MlFdAgJJstlQ/pLh5eKjIzVv+Pvjcc5Ju/Mvs5d27df6WourKwYOKOn1aUadP68hPPznOL1CxYorL/orUri1P7uyHm7JyxgAA5FaJcXH6c/LkNMuBpPh4RRw7luZsp2snTmT4Eru0Zjv5h4Rky/9zb/0ZIjY8XPkKFUrzZwiYi/cJAJBXUEo5qeR/oc0XFCRJGZ7G7eHtrWINGqhYgwaObQlRUbq4Y0eKGVWRoaG6euSIrh45ogNz50q6sd5BoerVU1z6F/Tgg0whz2PuZcYAADgjW0yM/pw8OcVlVPEREdoyYYIMu13Bdetq8cMP3/F8i7u7/MuUueNsp7QuscsJVl9f2Ww2bTtwQM2aNeMfnHIp3icAQF5AKQV5+vmpVIsWKtWihWPb9fBwXdi+PUVRFXP+vML27lXY3r3a99VXkm6UYUE1azqKquB69VSoalW5ubvfcx5m4ORe6c0YcIV/veWzB+BWblardkydmua+ndOmafCZMypYrZq8/P3TnO10L5fY5aSoqCizIyADeJ8AAK4s9/6kBFP5FCqksh06qGyHDo5tUWfP6uJtRVXc1auO/05m9fVVcJ06Cn7oIRW7WVQFli9/138NZgZO7pbejAFJqj98uNO+X3z2ANzu4s6d8i5YMM07oEk3vv/ZYmL0zP79ORsMAADAhVBKIcP8SpSQX4kSqtCjhyTJMAxFHj+eYkbVxb/+ki0mRmc2bNCZDRsc53oXKOBYmyp5MfX8JUo4iipXn4HjCtKbMbBj6lTVf+st/T5okAy7XVZfX1nz5bvxu6+vPG757/T2uVutOTwqPnsAUoo6e1br33pLJ5Yv1wsnTsgrMDDNYsorMFBe3BAEAADgvlBK4Z5ZLBYFli+vwPLlVeXRRyVJ9qQkXTl48EZJdbOsurxrl+KuXtXJFSt0csUKx/m+RYuq6EMPqem77+rw999ry9tvO/a5ygwcVxB+4IBOrlql8l27pjtjIPbSJZ3bvFlh+/bd83O5eXikKK9SlFm3FVt32pdeAXb7ZTSuPPsLQOYkxsXpr48+0h/vvCNbTIxksSj8wAHVGTYsxfeIZHWGDZPdZmNdRQAAgPtAKYUs5ebursLVq6tw9eqq8dRTkqSkhARd3rv3xkyqm0VV2P79irlwQee2bFFg2bLa8cknaT7ejqlT1XDUqBwcASTp2qlTOvjddzo4b54u7doln8KF9cDTT6c7Y8C3aFHVevllxYWHyxYT8/+/YmMd/514y3/fut1ISpIk2RMTFR8ZqfjIyGwZl5vV6iio/EqUUN81a9Kd/cVnD3B9hmHo2C+/aO1rryni2DFJUvFGjdT6k09UtG5dFa5RQ5KYTQkAAJANKKWQ7dw9PVW0bl0VrVvXsc0WG6tLO3cq4vhxXb9yJd0ZONfDw+Xh4yNvLpPIVrGXL+vQDz/o4Ny5Ortpk2O7m4eHijVooOgLF9KdMWAkJanW4MGZfl7DMJSUkHDHwirF9gyWXLfvM+x2SZLdZlN8RITiIyLkXaCAYi9eTPezFx8Z6bjDJQDXE37woNa88opOLF8uSfItVkwtJk9W1ccec1xe7uHtrfrDh6vhqFGKDQ9XvkKFlGSzUUgBAABkAUopmMKaL59KNGmiEk2aKCkhIf01O/z99UW5cipYpYoq9OihCj16KLB8+ZwP7YLir13TkYULdXDePJ1cudIxY0kWi0o2b66q/furUp8+8ilUSJLUYORISVk7Y8BiscjDy0seXl7yLlAgS8Z1q+TS6/bCKikhQb7FiqX/2QsIyPI8AMwXHxmpzRMmaOfUqbInJsrd01N1X3tNDf/5T3mmcRdOq6+vbDabth04oGbNmsmTy3oBAACyBKUUTGe32e48A2foUJ3bskWxly4p9tIlnVm/Xmtff12Fa9RQhR49VL5HDxWtW1cWNzcTkjsn2/XrCl26VAfmztXxX39VUny8Y19wvXqq2r+/Kj/6qPxKlEh1rjPOGLi19PIpWDDFPltMzB0/e7WHDNHJlSt1PTxc1R5//K53jwSQ+xl2u/Z9/bU2jBih2EuXJEnlunZVq//8RwUqVrzr+VFRUdkdEQAAIE+hlILprL6+d52B83xoqI79/LOOLl6s0+vWKWzfPoXt26c/3nlH+YsXV/nu3VWhRw+VatVKHl5eJo8o90my2XRq1SodmDdPRxcuVMItf7EqWKWKqvTvr6r9+2foL2WuNGMgvc9enWHDNK9pU105eFB7Pv9cbaZNU5FatcwNDOCend+6VauGDtWFbdskSQUqVVKrjz9WuU6dTE4GAACQd1FKIVe42wycgJAQR1EQd/Wqji9dqqOLFyv0t98Ufe6cdn/2mXZ/9pk8/fwU0rGjKvTooXKdO2fL5WDOwrDbdXbzZh2cN0+Hvv9e18PCHPv8SpdWlX79VLV/fwXVrHlPs4BcZcbAnT57blarqj/1lP54+22d3bRJc+rWVc3Bg9Xk7bdTzbgCkHtFnz+vDSNHav/XX0uSPP381GjsWNUZOpQ75wEAAJiMUgq5RkZn4HgXKKBqjz2mao89psT4eJ1avVrHFi/W0Z9/Vsz58zr8ww86/MMPcvPwUMnmzVWhZ0+V795dAWXK5PCIcp5hGLq0a5cOzpung999p6jTpx37fIKCVPmRR1R1wAAVb9SISx5vcafPXoO33lK1xx7Tujff1MHvvtOuTz/Vofnz1fTdd/XAs8/Kzd3d5OQA7iQpIUF/TZmiLRMmyBYdLUmq/tRTav7ee/ItWtTkdAAAAJAopZALZWYGjoeXl8p16qRynTqp7aef6sL27Tq6eLGOLl6s8P37dWr1ap1avVqrhw1TkVq1VP7mQulFatVyqTWCrh45ogPz5ungvHm6cvCgY7unn58q9uqlKv37q0ybNnLz4I98etL67PmVLKmu8+bpwUGDtHroUIXt26cVgwZpz/TpajNtmoo3bGhCUgDpOb50qda8+qquHj4sSSpav77aTJ2qYg0amJwMAAAAt+JvqHAZFjc3FatfX8Xq11ezd95RxLFjjoLq7MaNurRrly7t2qUt48fLr3RpVbi5DlXJFi3kbrWaHT/Tos6c0cH583Vw3jxd/Osvx3Z3Ly+V69pVVQcMULnOnXP1IuTOpHTLlnpixw7t+vRTbRozRhf/+ktzGzVSjaefVrN//1u+RYqYHRHI864eOaI1r76q47/+KknKFxys5v/+t6o/+SSzQwEAAHIhSim4rMDy5VXvtddU77XXFBsWpuO//qpjixcrdPlyRZ06pZ3TpmnntGnyCghQ2c6dVaFHD5Xt1Ele/v5mR7+j6+HhOvzjjzowb57OrF8vGYYkyeLurjLt2qlq//6q0LNnrh6DM3O3WlX3H/9QlX79tGHkSO2bOVP7Zs7UkZ9+UpMJE1TrpZeYjQaYICEqSlsmTtRfH30ku80mNw8P1XnlFTUaPZrvhwAAALkYf3tCnpCvcGHVGDhQNQYOlO36dZ1auVJHFy/WsV9+UeylSzfWYJo3T25Wq0q3bq0KPXqofPfu8itRwuzoSoiK0tHFi3Vg3jyd/P132RMTHftKNG2qqgMGqFKfPsoXFGRiyrzFNzhYHb/6Sg++8IJWvfyyLu7YodX/+If2fPGFWn/yiUq3bGl2RCBPMOx2/f3NN1r/1luKuXBBkhTSsaNaffSRClWpYnI6AAAA3I2pc9nXr1+vbt26qXjx4rJYLFq0aFG6x//0009q166dgoKC5O/vr0aNGmn58uU5ExYuw+rjo/LduqnDl19q8Llz6r9pkx4aPlwFK1eW3WbTieXLtfKll/R5yZKa89BD2jJxoi7v3Svj5qyknJAYH68jixbpl0cf1afBwVr6xBMKXbpU9sREFaldW80nT9YLJ0+q/4YNqvXiixRSJinesKEe+/NPtfv8c3kXLKiwffv0fatWWtK/v6LOnDE7HuDSzm/bprlNmui3gQMVc+GCAsuX18O//KLeS5dSSAEAADgJU2dKxcTEqGbNmnrmmWfUq1evux6/fv16tWvXTu+++64CAwM1c+ZMdevWTVu3blXt2rVzIDFcjZu7u0o0bqwSjRurxaRJunLokGMdqnNbtuji9u26uH27No0erYCyZW/MoOrRQyWbNs3yy7TsSUk6vWaNDsydqyM//aT4yEjHvgIVK6rKgAGq0q8ff9nKZdzc3VXzhRdUqXdvbRw9Wrs/+0wHv/tOx375RQ1Hj1bdV16Rh5eX2TEBlxFz6ZI2/vOf2vvVV5JhyOrrq4b/+pfqvvoqf9YAAACcjKmlVKdOndSpU6cMH//xxx+n+Prdd9/V4sWL9csvv1BKIUsUrFxZ9YcPV/3hwxVz8aKOL1miI4sW6dTKlYoMDdVfH3+svz7+WN4FC6pcly6q0LOnQtq3l2f+/Ok+rp+fX5rbDcPQ+T/+0IF583To++8Ve/GiY1/+EiVUpV8/VenfX8F16rjU3QJdkU+hQmr36ad68LnntGroUJ3bvFkbRozQvq++UuupU1W2QwezIwJOLclm085p07R53DglXLsmSar2+ONqPmmS8hcvbnI6AAAA3AunXlPKbrcrKipKBQsWNDsKXJBvcLAeePZZPfDss0qIidHJ33/X0cWLdXzJEl0PD9ffc+bo7zlz5O7lpTJt296YRdWtm3yLFnU8hi0mRm5Wq+pVrSo3w5AtJkZWX19d3rtXB+bO1cHvvtO1Eyccx/sUKqRKjzyiKv37q2TTptwtygkF16mj/hs36u9vvtG6N9/U1cOHtaBjR1Xo2VMt//MfBZYta3ZEwOmc+P13rX7lFV05cECSFFy3rlpPnaoSjRubnAwAAAD3w6lLqQ8++EDR0dHq27fvHY+Jj49XfHy84+trN/911WazyWazZXtGZE7ye5Lb3huLp6dCunZVSNeusicm6vyWLTr2yy86/ssvijx2TMd//fXGLcgtFhWtX1/Vn3pKNZ54Qn9OnqwdU6cqPiJCXoGBqjN0qOr84x/6pW9fXTl4UJJkzZ9f5bt3V6VHH1Xptm3lbrVKkhKTkqSkJDOHfUe59X26H1k9pkr9+qlM587aOnGidn3yiY4uWqTQZctU7403VO/NN+Xh45Mlz5Me3ifnwJjuLPL4ca1/800d/+UXSZJPUJAav/22qg0cKDd39xx9zVztfXK18UiMyVkwJufAmJwDY/q/9u48Lqpy/wP4Z4BhcUQQBAGRCUVBTbkohprGVcnlelXUlLzkcjG7FV5Au2qmRpobFZpLaahpuefNvVcqepWy3BDJJX6IS2ososgiizAwz++PrtxQhGEY5nCmz/v1mhfDmcPM5+tR5zlfnvOMPJhyTYagEMZcvbkGCoUCu3fvRnBwsE77b926FZMnT8bevXsRFBT01P3ee+89zJs3r9qfb9Kkib5xiQD8dvld2e3bKDp9GoVnzqA0LQ0AELxnD7ISE3FqwYInfqbHnDlo6e+PI0uWwLZPH6j8/WHGdVBMWumtW7i7di1KLl4EAFg4O8MpLAyqgABelklUDW1JCe5//TXy9u6F0GgAMzPYDxkCh5AQmNdyuTQRERERNazi4mL87W9/Q35+Ppo1a1av55JlU2r79u0ICwvDzp07MWTIkBr3rW6mVOvWrXHv3r16/+GR4Wk0GsTHx+PFF1+E8r8zhuSkMCMDt44cQcexY7GmVSuU5uU9sY+VvT3ezMqCVsaX5sn9OFWnoWsSQuDqrl34bsYMFN6+DQBQDxiAwNhYNPf2NvjrATxOcsGa/kcIgdTt2/HDO++gMD0dANC6f38ExsbCsWPHhoqrE1M7TqZWD8Ca5II1yQNrkgfWJA+mWFNOTg5cXV0N0pSS3eV727ZtQ1hYGLZv315rQwoArKysYFXNLBSlUmkyfyFMkVyPT3O1Gs0nTUJxdna1DSkAKM3LQ2lBAZo4ORk3XAOQ63GqSUPW1PHll+E1dCjOLF6Msx9+iJuHD2Nz167wnzYNPebMqXXBfH3xOMnDH72mO+fP4z8REUg/cQIAYOfpiT8vXQqv4cMb1YxCUztOplYPwJrkgjXJA2uSB9YkD6ZUkyHrkHSqRmFhIZKTk5GcnAwAuHHjBpKTk3Hr1i0AwKxZszB+/PjK/bdu3Yrx48cjNjYWAQEByMrKQlZWFvLz86WIT/RUVvb2sLK3f/pjdnbGDUSNhqVKhd4LFmDi5cvw/MtfoNVocCYmBp97e+P/tm9HI5m8SmQ0xXfv4vA//oFN3boh/cQJWDRpgt4LFuDvP/+MdsHBjaohRURERESGJWlTKjExEX5+fvDz8wMATJs2DX5+fnj33XcBAJmZmZUNKgCIi4tDeXk5wsPD4erqWnmLjIyUJD/R02g1GnSNiKj2sa4REdCa0CJ3pJ/mXl4Y9c03GLF/P+zatEFhRgYOjB2LHX374u5/154iMmXa8nIkrVyJ9e3b40JcHCAEfMaOxaTUVPSYPRsW1tZSRyQiIiKiBibp5Xt//vOfa5wVsHHjxirfHz9+vGEDERmIUqVCwKxZAFD10/ciIhAwaxZPtqhS27/+FeqgIJz96COcXrQIvyYk4Es/P/iFh6PXvHmwfsqMOyI5u3n0KP4TGYmcy5cBAE6+vui/ciXc+/SROBkRERERGZN8V1omauQsrK3x3IwZePPOHfwjIwNv3rmD7jNmsCFFT7CwtkbPOXPw95QUtBs1CqKiAkkrVmB9+/a4uGEDhFYrdUQig8j/5Rfsfekl7AwKQs7ly7BxdMSLa9Zg3LlzbEgRERER/QGxKUXUgJQqFbQKBc6mpECrUMBSpZI6EjVidmo1hv/73xgdHw8HHx+U3L2LQ2Fh2NqrF7ISE6WOR1Qntra2lfc1xcX4IToaGzp0QNrXX0NhZga/KVMQduUKfP/xD5iZm0uYlIiIiIikwqYUkRE8ePBA6ggkI+qgIEz46ScEfvQRlE2bIvP0aWx+7jkcfu01FN+7J3U8ohppiopgJgT8O3SAmRDIu34du/76V5ycPx/lDx+idd++GJ+cjP4rV8LGwUHquEREREQkITaliIgaIXNLS3R/6y1MunIFHV95BRACF9auxeft2+P8p59CW1EhdUSiJ5Q/fIgzH3yAT1u2RJybGz5t2RKXNmzA0B070LpfPwzduRNjjh6FU+fOUkclIiIiokaATSkiokasqasr/rJpE17+7js4+friYW4ujoaHY7O/P9J/+EHqeJL4/WVhJL2KsjI8SE9HUVYWTi9ahJPz56M0Lw8AUJqXh1MLFuD8ypUI3r0b3i+9BIVCIW1gIiIiImo0JP30PSIi0o17nz4Yl5iIn+LicGL2bGQnJ2Nb797oOG4cXoiJQVNXV6kjNjhNURHMlMrKy8I0RUVQmsg6bY2p0VZRVobiu3dRnJ2Nkrt3UXz37m9fs7OrvV+anw+bFi3w2i+/IGnlymqfM2nlSvSYM8fIlRARERFRY8emFBGRTJhZWMDvzTfhPXo0TsyejQvr1uHnTZtwdc8e9IyORteICJgrlVV+pjE1O+rj0WVhSStWoDQvD1b29ugaEYGAWbNk/YmWxmi0lZeWPr259FjzqTg7G2UFBXV+jaatWqH47t3KGVKPK83LQ2l+Ppo4OdWzGiIiIiIyJWxKERHJTBMnJwyIi0PnyZNxdMoUZJ05g4R//QsX169H/xUroA4KMqlZRZqiIpz54AOcnD+/cltpXl7l98/NmCHL2vRttP2+yfR4Q6m6+/o0mRTm5mji5AQbJyc0cXb+3/3/fv/4fWt7e2jLy2Flb19tY8rK3h5WdnZ1zkFEREREpo1NKSIimXLt3h2hJ0/i0saN+O7tt3E/JQVH//lP/O3HH3Hu44+NOqtICIGKsjJUlJZWuZU//v3Dh3Xax0ypRJ9Fi5C0YkW1r5u0YgWemzkT8a+/Dk1xMcwsLKAwN4eZuTkUFha/fTU31397Nduetr0uz22mVOLcsmVPbbR5h4Tg502bqr1srkyPT/M0s7CATYsWTzaZnnLf2t4eCrO6LTup1WjQNSKiSk2PdI2IgFajgbmlZZ2zExEREZHpYlOKiEjGFGZm6BwWhnYjR+LH6Gh49OuHxKVLcWrBgsp9ft/s6BAaiptHjjzZGHqsWfR4o0iXfRpCi2efRfGdOzVeFlacnY30H37AvUuXGiSDoVWuv1RTo23GDFxctw4l9+5Vu8+jJlN1s5aqu29lb9/gC4wrVSoEzJpVWYMpXWZJRERERA2DTSkiIhNgbW+PfsuXo7y0FN9OnFjtPo+aHT9GRz+12WEoZhYWMLeyqrxZWFtX/f5392vaz7p5c6hcXGq8LEzl4oI/vfkmygoLISoqoC0v/+1rRQVEeflvXxtiezXbdNmucnFBcXZ2jY22h7m58H/rLWjLy6u9fM4YTSZ9WFhb47kZM9Bj9mwU5+SgiaMjKjQaNqSIiIiIqFpsShERmZCy/Pwamx0l9++jw7hxKLlzp/qm0KP71tbVNo4e3/Z4E+nRPnW99KsmmqKiGi8LExUV+NMbbxjs9Rqa0GprXX+pibMzAt5+2/jhDECpUkGj0eBsSgr69OkDSxmu90VERERExsGmFBGRCbGyt695VlHLlui3dKnxg9WDqV0WpjAz+0Osv/RAj7WviIiIiOiPhU0pIiITYqrNDlO7LMzUGm1ERERERPpgU4qIyISYcrPD1C4LM7VGGxERERFRXbEpRURkYky92WFKl4WZWqONiIiIiKguDLcSLRERNRpKlQpahQJnU1KgVSjY7GjkTKnRRkRERESkKzaliIhMGJsdRERERETUWLEpRURERERERERERsemFBERERERERERGR2bUkREREREREREZHRsShERERERERERkdGxKUVEREREREREREbHphQRERERERERERkdm1JERERERERERGR0bEoREREREREREZHRsSlFRERERERERERGx6YUEREREREREREZHZtSRERERERERERkdGxKERERERERERGR0bEpRURERERERERERsemFBERERERERERGR2bUkREREREREREZHQWUgcwNiEEAKCgoEDiJFQdjUaD4uJiFBQUQKlUSh3HIFiTPLAmeWBN8sCaGj9TqwdgTXLBmuSBNckDa5IHU6zpwYMHAP7XX6mPP1xT6tEfXuvWrSVOQkREREREREQkTzk5ObCzs6vXcyiEIVpbMqLVapGRkQFbW1soFAqp49BjCgoK0Lp1a9y+fRvNmjWTOo5BsCZ5YE3ywJrkgTU1fqZWD8Ca5II1yQNrkgfWJA+mWFN+fj48PDyQm5sLe3v7ej3XH26mlJmZGdzd3aWOQbVo1qyZyfyDfYQ1yQNrkgfWJA+sqfEztXoA1iQXrEkeWJM8sCZ5MMWazMzqv0w5FzonIiIiIiIiIiKjY1OKiIiIiIiIiIiMjk0palSsrKwQHR0NKysrqaMYDGuSB9YkD6xJHlhT42dq9QCsSS5YkzywJnlgTfLAmmr2h1vonIiIiIiIiIiIpMeZUkREREREREREZHRsShERERERERERkdGxKUVEREREREREREbHphQ1Ct999x2GDh0KNzc3KBQK7NmzR+pI9bJ48WJ0794dtra2cHZ2RnBwMFJTU6WOVS+rV69Gly5d0KxZMzRr1gw9e/bEt99+K3Usg1qyZAkUCgWioqKkjqK39957DwqFosrNx8dH6lj1lp6ejldeeQWOjo6wsbFB586dkZiYKHUsvT3zzDNPHCeFQoHw8HCpo+mtoqICc+fOhaenJ2xsbNC2bVu8//77kPvSlQ8ePEBUVBTUajVsbGzQq1cvnD17VupYOqvt/VUIgXfffReurq6wsbFBUFAQ0tLSpAmro9pq2rVrFwYMGABHR0coFAokJydLkrMuaqpJo9Fg5syZ6Ny5M1QqFdzc3DB+/HhkZGRIF1gHtR2n9957Dz4+PlCpVGjevDmCgoJw+vRpacLqqC7j1ddffx0KhQIff/yx0fLpo7aaJk6c+MR71aBBg6QJqyNdjlNKSgqGDRsGOzs7qFQqdO/eHbdu3TJ+WB3VVlN1YwqFQoEPP/xQmsA6qK2mwsJCTJkyBe7u7rCxsUHHjh2xZs0aacLqqLaa7ty5g4kTJ8LNzQ1NmjTBoEGDGv17ri7ntQ8fPkR4eDgcHR3RtGlTjBo1Cnfu3NH5NdiUokahqKgIvr6++OSTT6SOYhAJCQkIDw/HqVOnEB8fD41GgwEDBqCoqEjqaHpzd3fHkiVLcO7cOSQmJqJfv34YPnw4Ll++LHU0gzh79iw+++wzdOnSReoo9dapUydkZmZW3k6cOCF1pHrJzc3F888/D6VSiW+//RY///wzYmNj0bx5c6mj6e3s2bNVjlF8fDwAYPTo0RIn019MTAxWr16NVatWISUlBTExMfjggw+wcuVKqaPVy6uvvor4+Hhs2rQJFy9exIABAxAUFIT09HSpo+mktvfXDz74ACtWrMCaNWtw+vRpqFQqDBw4EA8fPjRyUt3VVlNRURF69+6NmJgYIyfTX001FRcXIykpCXPnzkVSUhJ27dqF1NRUDBs2TIKkuqvtOLVv3x6rVq3CxYsXceLECTzzzDMYMGAA7t69a+SkutN1vLp7926cOnUKbm5uRkqmP11qGjRoUJX3rG3bthkxYd3VVtO1a9fQu3dv+Pj44Pjx47hw4QLmzp0La2trIyfVXW01/f74ZGZm4vPPP4dCocCoUaOMnFR3tdU0bdo0HDx4EJs3b0ZKSgqioqIwZcoU7Nu3z8hJdVdTTUIIBAcH4/r169i7dy/Onz8PtVqNoKCgRn2OqMt57dSpU7F//37s3LkTCQkJyMjIwMiRI3V/EUHUyAAQu3fvljqGQWVnZwsAIiEhQeooBtW8eXOxbt06qWPU24MHD0S7du1EfHy8CAwMFJGRkVJH0lt0dLTw9fWVOoZBzZw5U/Tu3VvqGA0qMjJStG3bVmi1Wqmj6G3IkCEiLCysyraRI0eK0NBQiRLVX3FxsTA3NxcHDhyosr1r165i9uzZEqXS3+Pvr1qtVri4uIgPP/ywclteXp6wsrIS27ZtkyBh3dU0Zrhx44YAIM6fP2/UTPWlyzjozJkzAoC4efOmcULVky415efnCwDiyJEjxglVT0+r6ddffxWtWrUSly5dEmq1Wixbtszo2fRVXU0TJkwQw4cPlySPIVRXU0hIiHjllVekCWQAuvx7Gj58uOjXr59xAhlAdTV16tRJzJ8/v8o2Ob3/Pl5TamqqACAuXbpUua2iokI4OTmJtWvXSpBQP4+f1+bl5QmlUil27txZuU9KSooAIE6ePKnTc3KmFJER5OfnAwAcHBwkTmIYFRUV2L59O4qKitCzZ0+p49RbeHg4hgwZgqCgIKmjGERaWhrc3NzQpk0bhIaGNurp6LrYt28f/P39MXr0aDg7O8PPzw9r166VOpbBlJWVYfPmzQgLC4NCoZA6jt569eqFo0eP4sqVKwCAn376CSdOnMDgwYMlTqa/8vJyVFRUPPHbcxsbG9nPQASAGzduICsrq8r/fXZ2dggICMDJkyclTEa1yc/Ph0KhgL29vdRRDKKsrAxxcXGws7ODr6+v1HH0ptVqMW7cOEyfPh2dOnWSOo7BHD9+HM7OzvD29sYbb7yBnJwcqSPpTavV4ptvvkH79u0xcOBAODs7IyAgQPZLh/zenTt38M0332DSpElSR6mXXr16Yd++fUhPT4cQAseOHcOVK1cwYMAAqaPppbS0FACqjCnMzMxgZWUlqzHF4+e1586dg0ajqTKW8PHxgYeHh85jCTaliBqYVqtFVFQUnn/+eTz77LNSx6mXixcvomnTprCyssLrr7+O3bt3o2PHjlLHqpft27cjKSkJixcvljqKQQQEBGDjxo04ePAgVq9ejRs3bqBPnz548OCB1NH0dv36daxevRrt2rXDoUOH8MYbbyAiIgJffPGF1NEMYs+ePcjLy8PEiROljlIvb7/9Nl5++WX4+PhAqVTCz88PUVFRCA0NlTqa3mxtbdGzZ0+8//77yMjIQEVFBTZv3oyTJ08iMzNT6nj1lpWVBQBo2bJlle0tW7asfIwan4cPH2LmzJkYO3YsmjVrJnWcejlw4ACaNm0Ka2trLFu2DPHx8WjRooXUsfQWExMDCwsLRERESB3FYAYNGoQvv/wSR48eRUxMDBISEjB48GBUVFRIHU0v2dnZKCwsxJIlSzBo0CAcPnwYI0aMwMiRI5GQkCB1PIP44osvYGtrW7fLpxqhlStXomPHjnB3d4elpSUGDRqETz75BC+88ILU0fTyqFEza9Ys5ObmoqysDDExMfj1119lM6ao7rw2KysLlpaWT/ySpC5jCQtDByWiqsLDw3Hp0iVZdcCfxtvbG8nJycjPz8e///1vTJgwAQkJCbJtTN2+fRuRkZGIj49v1OsI1MXvZ6V06dIFAQEBUKvV+Oqrr2T7GzOtVgt/f38sWrQIAODn54dLly5hzZo1mDBhgsTp6m/9+vUYPHiwLNYeqclXX32FLVu2YOvWrejUqROSk5MRFRUFNzc3WR+nTZs2ISwsDK1atYK5uTm6du2KsWPH4ty5c1JHoz8gjUaDMWPGQAiB1atXSx2n3vr27Yvk5GTcu3cPa9euxZgxY3D69Gk4OztLHa3Ozp07h+XLlyMpKUnWs14f9/LLL1fe79y5M7p06YK2bdvi+PHj6N+/v4TJ9KPVagEAw4cPx9SpUwEAf/rTn/Djjz9izZo1CAwMlDKeQXz++ecIDQ2V/dh25cqVOHXqFPbt2we1Wo3vvvsO4eHhcHNzk+XVDUqlErt27cKkSZPg4OAAc3NzBAUFYfDgwbL5UJiGOq/lTCmiBjRlyhQcOHAAx44dg7u7u9Rx6s3S0hJeXl7o1q0bFi9eDF9fXyxfvlzqWHo7d+4csrOz0bVrV1hYWMDCwgIJCQlYsWIFLCwsZPtbwN+zt7dH+/btcfXqVamj6M3V1fWJxmeHDh1kf1kiANy8eRNHjhzBq6++KnWUeps+fXrlbKnOnTtj3LhxmDp1quxnIbZt2xYJCQkoLCzE7du3cebMGWg0GrRp00bqaPXm4uICAE98Qs6dO3cqH6PG41FD6ubNm4iPj5f9LCkAUKlU8PLyQo8ePbB+/XpYWFhg/fr1UsfSy/fff4/s7Gx4eHhUjilu3ryJt956C88884zU8QymTZs2aNGihWzHFS1atICFhYXJjiu+//57pKamyn5cUVJSgnfeeQdLly7F0KFD0aVLF0yZMgUhISH46KOPpI6nt27duiE5ORl5eXnIzMzEwYMHkZOTI4sxxdPOa11cXFBWVoa8vLwq+9dlLMGmFFEDEEJgypQp2L17N/7zn//A09NT6kgNQqvVVl4fLUf9+/fHxYsXkZycXHnz9/dHaGgokpOTYW5uLnXEeissLMS1a9fg6uoqdRS9Pf/880989OyVK1egVqslSmQ4GzZsgLOzM4YMGSJ1lHorLi6GmVnVYYW5uXnlb6XlTqVSwdXVFbm5uTh06BCGDx8udaR68/T0hIuLC44ePVq5raCgAKdPnzaJ9QJNyaOGVFpaGo4cOQJHR0epIzUIOY8rxo0bhwsXLlQZU7i5uWH69Ok4dOiQ1PEM5tdff0VOTo5sxxWWlpbo3r27yY4r1q9fj27dusl6bTbgt//zNBqNyY4r7Ozs4OTkhLS0NCQmJjbqMUVt57XdunWDUqmsMpZITU3FrVu3dB5L8PI9ahQKCwur/Mblxo0bSE5OhoODAzw8PCRMpp/w8HBs3boVe/fuha2tbeX1tHZ2drCxsZE4nX5mzZqFwYMHw8PDAw8ePMDWrVtx/PhxWQ+0bG1tn1jnS6VSwdHRUbbrf/3rX//C0KFDoVarkZGRgejoaJibm2Ps2LFSR9Pb1KlT0atXLyxatAhjxozBmTNnEBcXh7i4OKmj1YtWq8WGDRswYcIEWFjI/+146NChWLhwITw8PNCpUyecP38eS5cuRVhYmNTR6uXQoUMQQsDb2xtXr17F9OnT4ePjg7///e9SR9NJbe+vUVFRWLBgAdq1awdPT0/MnTsXbm5uCA4Oli50LWqr6f79+7h16xYyMjIAoPLk08XFpdHOAKupJldXV7z00ktISkrCgQMHUFFRUTmucHBwgKWlpVSxa1RTTY6Ojli4cCGGDRsGV1dX3Lt3D5988gnS09MxevRoCVPXrLa/e483C5VKJVxcXODt7W3sqDqrqSYHBwfMmzcPo0aNgouLC65du4YZM2bAy8sLAwcOlDB1zWo7TtOnT0dISAheeOEF9O3bFwcPHsT+/ftx/Phx6ULXQpdzpYKCAuzcuROxsbFSxayT2moKDAzE9OnTYWNjA7VajYSEBHz55ZdYunSphKlrVltNO3fuhJOTEzw8PHDx4kVERkYiODi4US/eXtt5rZ2dHSZNmoRp06bBwcEBzZo1wz//+U/07NkTPXr00O1FDPwJgUR6OXbsmADwxG3ChAlSR9NLdbUAEBs2bJA6mt7CwsKEWq0WlpaWwsnJSfTv318cPnxY6lgGFxgYKCIjI6WOobeQkBDh6uoqLC0tRatWrURISIi4evWq1LHqbf/+/eLZZ58VVlZWwsfHR8TFxUkdqd4OHTokAIjU1FSpoxhEQUGBiIyMFB4eHsLa2lq0adNGzJ49W5SWlkodrV527Ngh2rRpIywtLYWLi4sIDw8XeXl5UsfSWW3vr1qtVsydO1e0bNlSWFlZif79+zf6v5O11bRhw4ZqH4+OjpY0d01qqunGjRtPHVccO3ZM6uhPVVNNJSUlYsSIEcLNzU1YWloKV1dXMWzYMHHmzBmpY9eoruNVtVotli1bZtSMdVVTTcXFxWLAgAHCyclJKJVKoVarxeTJk0VWVpbUsWuky3Fav3698PLyEtbW1sLX11fs2bNHusA60KWmzz77TNjY2MjmPaq2mjIzM8XEiROFm5ubsLa2Ft7e3iI2NlZotVppg9egtpqWL18u3N3dhVKpFB4eHmLOnDmNfpyky3ltSUmJePPNN0Xz5s1FkyZNxIgRI0RmZqbOr6H47wsREREREREREREZDdeUIiIiIiIiIiIio2NTioiIiIiIiIiIjI5NKSIiIiIiIiIiMjo2pYiIiIiIiIiIyOjYlCIiIiIiIiIiIqNjU4qIiIiIiIiIiIyOTSkiIiIiIiIiIjI6NqWIiIiIiIiIiMjo2JQiIiIiIiIiIiKjY1OKiIiIqIHcvn0bYWFhcHNzg6WlJdRqNSIjI5GTkyN1NCIiIiLJsSlFRERE1ACuX78Of39/pKWlYdu2bbh69SrWrFmDo0ePomfPnrh//36DvbZGo2mw5yYiIiIyFDaliIiIiBpAeHg4LC0tcfjwYQQGBsLDwwODBw/GkSNHkJ6ejtmzZ+Odd95BQEDAEz/r6+uL+fPnV36/bt06dOjQAdbW1vDx8cGnn35a+dgvv/wChUKBHTt2IDAwENbW1tiyZYtRaiQiIiKqDwupAxARERGZmvv37+PQoUNYuHAhbGxsqjzm4uKC0NBQ7NixA99//z0WL16Ma9euoW3btgCAy5cv48KFC/j6668BAFu2bMG7776LVatWwc/PD+fPn8fkyZOhUqkwYcKEyud9++23ERsbCz8/P1hbWxuvWCIiIiI9caYUERERkYGlpaVBCIEOHTpU+3iHDh2Qm5sLJycn+Pr6YuvWrZWPbdmyBQEBAfDy8gIAREdHIzY2FiNHjoSnpydGjhyJqVOn4rPPPqvynFFRUZX7uLq6NlxxRERERAbCphQRERFRAxFC1LpPaGhoZVNKCIFt27YhNDQUAFBUVIRr165h0qRJaNq0aeVtwYIFuHbtWpXn8ff3N3wBRERERA2Il+8RERERGZiXlxcUCgVSUlIwYsSIJx5PSUlB8+bN4eTkhLFjx2LmzJlISkpCSUkJbt++jZCQEABAYWEhAGDt2rVPrD1lbm5e5XuVStVA1RARERE1DDaliIiIiAzM0dERL774Ij799FNMnTq1yrpSWVlZ2LJlC8aPHw+FQgF3d3cEBgZiy5YtKCkpwYsvvghnZ2cAQMuWLeHm5obr169Xzp4iIiIiMhVsShERERE1gFWrVqFXr14YOHAgFixYAE9PT1y+fBnTp09Hq1atsHDhwsp9Q0NDER0djbKyMixbtqzK88ybNw8RERGws7PDoEGDUFpaisTEROTm5mLatGnGLouIiIjIYLimFBEREVEDaNeuHRITE9GmTRuMGTMGbdu2xWuvvYa+ffvi5MmTcHBwqNz3pZdeQk5ODoqLixEcHFzleV599VWsW7cOGzZsQOfOnREYGIiNGzfC09PTyBURERERGZZC6LICJxERERERERERkQFxphQRERERERERERkdm1JERERERERERGR0bEoREREREREREZHRsSlFRERERERERERGx6YUEREREREREREZHZtSRERERERERERkdGxKERERERERERGR0bEpRURERERERERERsemFBERERERERERGR2bUkREREREREREZHRsShERERERERERkdGxKUVEREREREREREb3/9by/t4XYiocAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["from sklearn.model_selection import train_test_split\n","from sklearn.preprocessing import LabelEncoder\n","from sklearn.ensemble import RandomForestClassifier\n","from sklearn.linear_model import LogisticRegression\n","from sklearn.metrics import accuracy_score, confusion_matrix, classification_report\n","import xgboost as xgb\n","from sklearn.preprocessing import StandardScaler\n","\n","\n","# Prepare match data for ML\n","ml_df = matches_df.copy()\n","\n","# Drop rows with missing 'winner'\n","ml_df = ml_df.dropna(subset=['winner'])\n","\n","# Select features and target\n","features = ['team1', 'team2', 'toss_winner', 'toss_decision', 'venue']\n","target = 'winner'\n","\n","# Encode categorical variables\n","encoder = LabelEncoder()\n","for col in features + [target]:\n"," ml_df[col] = encoder.fit_transform(ml_df[col])\n","\n","X = ml_df[features]\n","y = ml_df[target]\n","\n","# Then re-split X_scaled into train/test and retrain logistic regression\n","scaler = StandardScaler()\n","X_scaled = scaler.fit_transform(X)\n","X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n","\n","# Train models\n","log_model = LogisticRegression(max_iter=1000)\n","rf_model = RandomForestClassifier(n_estimators=100, random_state=42)\n","xgb_model = xgb.XGBClassifier(eval_metric='mlogloss')\n","\n","log_model.fit(X_train, y_train)\n","rf_model.fit(X_train, y_train)\n","xgb_model.fit(X_train, y_train)\n","\n","# Predict\n","log_preds = log_model.predict(X_test)\n","rf_preds = rf_model.predict(X_test)\n","xgb_preds = xgb_model.predict(X_test)\n","\n","# Evaluate\n","log_acc = accuracy_score(y_test, log_preds)\n","rf_acc = accuracy_score(y_test, rf_preds)\n","xgb_acc = accuracy_score(y_test, xgb_preds)\n","\n","(log_acc, rf_acc, xgb_acc)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"jNfx_bGdhC3C","executionInfo":{"status":"ok","timestamp":1744090642574,"user_tz":-330,"elapsed":8915,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"a37a0dca-7ee0-4987-bc7a-67300413a640"},"execution_count":12,"outputs":[{"output_type":"execute_result","data":{"text/plain":["(0.24311926605504589, 0.47706422018348627, 0.5137614678899083)"]},"metadata":{},"execution_count":12}]},{"cell_type":"code","source":["import matplotlib.pyplot as plt\n","\n","# Model names and accuracies\n","models = ['Logistic Regression', 'Random Forest', 'XGBoost']\n","accuracies = [24.31, 47.71, 51.38]\n","\n","# Plotting\n","plt.figure(figsize=(10, 6))\n","sns.barplot(x=models, y=accuracies)\n","plt.title(\"📊 Model Accuracy Comparison\")\n","plt.ylabel(\"Accuracy (%)\")\n","plt.ylim(0, 60)\n","for i, acc in enumerate(accuracies):\n"," plt.text(i, acc + 1, f\"{acc:.2f}%\", ha='center', fontsize=12, fontweight='bold')\n","plt.tight_layout()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":700},"id":"xr3_ZU16hCwu","executionInfo":{"status":"ok","timestamp":1744090643417,"user_tz":-330,"elapsed":821,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"9dd19fe9-bb3f-4d0f-c45c-727b1abcea07"},"execution_count":13,"outputs":[{"output_type":"stream","name":"stderr","text":[":15: UserWarning: Glyph 128202 (\\N{BAR CHART}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128202 (\\N{BAR CHART}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYipJREFUeJzt3Xd8T3f///FnEllkIEbQSGJHa7RmitpCF+XSUi1t1a5RitKBdOhFUVoUNdrLbCi99KqZ2kXtLWpTq0YSgiB5//7wy/n6NAmJ5vigj/vt9rnVeZ/3eZ/XOZUjz89ZLsYYIwAAAAAAkOVcnV0AAAAAAAAPK0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcA4KFUq1Yt1apV666WDQkJ0WuvvZal9QDpGThwoFxcXJxdBgDAJoRuAIBtDh8+LBcXF7m4uOjjjz9Os0+rVq3k4uIiHx+fe1xd1omNjZWXl5dcXFy0Z88eZ5fzwElKStLkyZNVq1Yt5c6dW56engoJCdHrr7+ujRs3Ors8AAD+FkI3ACBdu3btkoeHh3x8fNL8eHh46MCBA3ccx8vLSzNmzEjVnpCQoB9//FFeXl52lH/PREVFycXFRYGBgZo2bZqzy3mgXLlyRc8++6zeeOMNGWPUv39/jR07Vq1bt9batWtVuXJlHT9+3Nll2ur999/XlStXnF0GAMAmhG4AQLqMMapcubIuXbqU5ueJJ56QMeaO4zz99NPavXu3tm3b5tD+448/6tq1a6pfv75dm3BPTJ06VU8//bRatmyp6dOnO7ucdF29elXJycnOLsNB7969tXDhQo0YMUIrVqzQO++8ozfeeEORkZHatWuXhgwZ4uwSbZOQkCBJypYt2wP/xRMAIH2EbgCA7cLDwxUaGpoqkE6bNk0NGzZU7ty501xuzJgxevTRR+Xp6amCBQuqS5cuio2NTdVv/PjxKlq0qLy9vVW5cmWtWrUqzfESExM1YMAAFStWTJ6engoKClKfPn2UmJh419t29OhRrVq1Si1atFCLFi106NAh/frrr2n2nTp1qipXrqzs2bMrV65ceuqpp7R48WKHPgsWLFDNmjXl6+srPz8/VapUyWG/pXe/+V/vYV++fLlcXFw0c+ZMvf/++ypUqJCyZ8+u+Ph4nT9/Xu+8847KlCkjHx8f+fn5qVGjRqm+FJFuBvWBAweqRIkS8vLyUoECBdS0aVMdOHBAxhiFhISocePGaS7n7++vDh06pLvvjh8/rnHjxql+/frq0aNHqvlubm5655139Mgjj1htW7ZsUaNGjeTn5ycfHx/VrVtX69atc1huypQpcnFx0erVq9WtWzflzZtXOXPmVIcOHXTt2jXFxsaqdevWypUrl3LlyqU+ffo4fHmUclvE559/rhEjRig4OFje3t6qWbOmdu7c6bCu7du367XXXlORIkXk5eWlwMBAvfHGGzp37pxDv5T7tnfv3q2XX35ZuXLlUvXq1R3m3WrJkiWqXr26cubMKR8fH5UsWVL9+/d36HPmzBm1bdtW+fPnl5eXl8qVK6dvv/3Woc+t25Lyc+Lp6alKlSppw4YN6f6/AQBknWzOLgAA8M/QsmVLTZ06VZ999plcXFx09uxZLV68WP/5z3+0cOHCVP0HDhyoQYMGqV69eurUqZNiYmI0duxYbdiwQWvWrJG7u7skaeLEierQoYOefPJJ9ejRQwcPHtTzzz+v3LlzKygoyBovOTlZzz//vFavXq327dsrLCxMO3bs0IgRI7Rv3z7NmzfvrrZrxowZypEjh5599ll5e3uraNGimjZtmp588kmHfoMGDdLAgQP15JNPKjIyUh4eHlq/fr1++eUXNWjQQNLNsPjGG2/o0UcfVb9+/ZQzZ05t2bJFCxcu1Msvv3xX9X300Ufy8PDQO++8o8TERHl4eGj37t2aN2+emjdvrtDQUJ0+fVrjxo1TzZo1tXv3bhUsWFDSzXutn332WUVHR6tFixbq3r27Ll68qCVLlmjnzp0qWrSoXnnlFQ0ZMkTnz593+PJk/vz5io+P1yuvvJJubQsWLNCNGzf06quvZmhbdu3apRo1asjPz099+vSRu7u7xo0bp1q1amnFihWqUqWKQ/+uXbsqMDBQgwYN0rp16zR+/HjlzJlTv/76qwoXLqxPP/1UP//8s4YOHarHHntMrVu3dlj+u+++08WLF9WlSxddvXpVI0eOVJ06dbRjxw7lz59f0s1wfPDgQb3++usKDAzUrl27NH78eO3atUvr1q1LFaabN2+u4sWL69NPP033KpFdu3bp2WefVdmyZRUZGSlPT0/t379fa9assfpcuXJFtWrV0v79+/XWW28pNDRUUVFReu211xQbG6vu3bs7jDl9+nRdvHhRHTp0kIuLi4YMGaKmTZvq4MGD1s8SAMAmBgCAdOzYscNUq1Yt3flVqlQxv//+e7rzDx06ZCSZoUOHmp07dxpJZtWqVcYYY0aPHm18fHxMQkKCadOmjcmRI4e13JkzZ4yHh4dp0KCBSUpKstq/+uorI8lMmjTJGGPMtWvXTL58+Uz58uVNYmKi1W/8+PFGkqlZs6bV9p///Me4urpa60/x9ddfG0lmzZo1VltwcLBp06bN7XfO/1emTBnTqlUra7p///4mT5485vr161bb77//blxdXc0LL7zgsD3GGJOcnGyMMSY2Ntb4+vqaKlWqmCtXrqTZ53a11axZ02F7ly1bZiSZIkWKmMuXLzv0vXr1aqo6Dh06ZDw9PU1kZKTVNmnSJCPJDB8+PNX6UmqKiYkxkszYsWMd5j///PMmJCTEofa/evvtt40ks2XLlnT73KpJkybGw8PDHDhwwGo7ceKE8fX1NU899ZTVNnnyZCPJREREOKw/PDzcuLi4mI4dO1ptN27cMI888ojDvkv5e+vt7W2OHz9uta9fv95IMm+//bbV9td9a4wxM2bMMJLMypUrrbYBAwYYSaZly5ap+qfMSzFixAgjyfz555/p7osvvvjCSDJTp0612q5du2bCw8ONj4+PiY+Pd9iWgIAAc/78eavvjz/+aCSZ+fPnp7sOAEDW4PJyAMA98eijj6ps2bLWA9WmT5+uxo0bK3v27Kn6Ll26VNeuXVOPHj3k6vp//1S1a9dOfn5++t///idJ2rhxo86cOaOOHTvKw8PD6vfaa6/J39/fYcyoqCiFhYWpVKlSOnv2rPWpU6eOJGnZsmWZ3qbt27drx44datmypdXWsmVLnT17VosWLbLa5s2bp+TkZH344YcO2yPJOhO6ZMkSXbx4Ue+++26q+3v/zuuk2rRpI29vb4c2T09Pq46kpCSdO3fOuoR58+bNVr85c+YoT5486tq1a6pxU2oqUaKEqlSp4vAAufPnz2vBggXWk+nTEx8fL0ny9fW943YkJSVp8eLFatKkiYoUKWK1FyhQQC+//LJWr15tjZeibdu2DuuvUqWKjDFq27at1ebm5qaKFSvq4MGDqdbZpEkTFSpUyJquXLmyqlSpop9//tlqu3XfXr16VWfPnlXVqlUlyWFfpujYseMdtzVnzpySbj7zIL178H/++WcFBgY6/N1zd3dXt27ddOnSJa1YscKh/0svvaRcuXJZ0zVq1JCkNLcbAJC1CN0AgHvm5ZdfVlRUlPbv369ff/013Uumjxw5IkkqWbKkQ7uHh4eKFClizU/5b/HixR36ubu7OwQzSfr999+1a9cu5c2b1+FTokQJSTfvj82sqVOnKkeOHCpSpIj279+v/fv3y8vLSyEhIQ4h9MCBA3J1dVXp0qXTHSvlKfCPPfZYpuu4ndDQ0FRtycnJGjFihIoXLy5PT0/lyZNHefPm1fbt2xUXF+dQU8mSJZUt2+3vRmvdurXWrFlj/f+IiorS9evX73jZuJ+fnyTp4sWLd9yOP//8U5cvX071d0KSwsLClJycrGPHjjm0Fy5c2GE65YuYW287SGm/cOFCqnH/+vdKuvklw+HDh63p8+fPq3v37sqfP7+8vb2VN29ea5/fui9TpPX/469eeuklVatWTW+++aby58+vFi1a6Pvvv3cI4EeOHFHx4sVTfYkTFhZmzb/VX/dFSgBPa7sBAFmLe7oBAPdMy5Yt1a9fP7Vr104BAQHWvcz3QnJyssqUKaPhw4enOf+vQexOjDGaMWOGEhIS0gzTZ86c0aVLl7L8/ePpnTlOSkqSm5tbqva/nuWWpE8//VQffPCB3njjDX300UfKnTu3XF1d1aNHj7t6unmLFi309ttva9q0aerfv7+mTp2qihUrphmQb1WqVClJ0o4dO1S+fPlMr/dO0tof6bWbDDyFPy0vvviifv31V/Xu3Vvly5eXj4+PkpOT1bBhwzT3ZVr/P9Lqs3LlSi1btkz/+9//tHDhQs2aNUt16tTR4sWL092u20lvmbvdbgBAxhG6AQD3TOHChVWtWjUtX75cnTp1SvcManBwsCQpJibG4Yz1tWvXdOjQIdWrV8+h3++//25dJi5J169f16FDh1SuXDmrrWjRotq2bZvq1q37ty7XTrFixQodP35ckZGR1tnFFBcuXFD79u01b948vfLKKypatKiSk5O1e/fudMNl0aJFJUk7d+5UsWLF0l1vrly50nyC+5EjR1Kd3U/P7NmzVbt2bU2cONGhPTY2Vnny5HGoaf369bp+/fptH7aVO3duPfPMM5o2bZpatWqlNWvW6IsvvrhjHY0aNZKbm5umTp16x7PiefPmVfbs2RUTE5Nq3t69e+Xq6prpL07u5Pfff0/Vtm/fPoWEhEi6+f85OjpagwYN0ocffnjb5TLL1dVVdevWVd26dTV8+HB9+umneu+997Rs2TLVq1dPwcHB2r59u5KTkx3Odu/du1fS//1sAACcj8vLAQD31Mcff6wBAwakeZ9winr16snDw0OjRo1yOBM3ceJExcXF6ZlnnpEkVaxYUXnz5tXXX3+ta9euWf2mTJmSKpi++OKL+uOPPzRhwoRU67ty5Yr1zuSMSrm0vHfv3vrXv/7l8GnXrp2KFy9uXWLepEkTubq6KjIyMtXZz5Tta9CggXx9fTV48GBdvXo1zT7SzSC8bt06h+396aefUl1afTtubm6pznBGRUXpjz/+cGhr1qyZzp49q6+++irVGH9d/tVXX9Xu3bvVu3dvubm5qUWLFnesIygoSO3atdPixYv15ZdfppqfnJysYcOG6fjx43Jzc1ODBg30448/Olzeffr0aU2fPl3Vq1e3LlfPKvPmzXPYJ7/99pvWr1+vRo0aSfq/s8d/3RcZ+cLhds6fP5+qLeXLmpTX2z399NM6deqUZs2aZfW5ceOGvvzyS/n4+KhmzZp/qwYAQNbhTDcA4J6qWbPmHQNB3rx51a9fPw0aNEgNGzbU888/r5iYGI0ZM0aVKlWyXkPl7u6ujz/+WB06dFCdOnX00ksv6dChQ5o8eXKqs76vvvqqvv/+e3Xs2FHLli1TtWrVlJSUpL179+r777/XokWLVLFixQxtQ2JioubMmaP69euneuhZiueff14jR47UmTNnVKxYMb333nv66KOPVKNGDTVt2lSenp7asGGDChYsqMGDB8vPz08jRozQm2++qUqVKlnvct62bZsuX75svX/5zTff1OzZs9WwYUO9+OKLOnDggKZOnWqdKc+IZ599VpGRkXr99df15JNPaseOHZo2bVqqfda6dWt999136tmzp3777TfVqFFDCQkJWrp0qTp37uzwfu5nnnlGAQEBioqKUqNGjZQvX74M1TJs2DAdOHBA3bp10w8//KBnn31WuXLl0tGjRxUVFaW9e/daAf7jjz+23l/duXNnZcuWTePGjVNiYqKGDBmS4e3PqGLFiql69erq1KmTEhMT9cUXXyggIEB9+vSRdPOe9KeeekpDhgzR9evXVahQIS1evFiHDh36W+uNjIzUypUr9cwzzyg4OFhnzpzRmDFj9Mgjj1jv9m7fvr3GjRun1157TZs2bVJISIhmz55tXWWQkYfTAQDuEWc9Nh0AcP/LyleG3c5fXxmW4quvvjKlSpUy7u7uJn/+/KZTp07mwoULqfqNGTPGhIaGGk9PT1OxYkWzcuXKVK/QMubmK5X+/e9/m0cffdR4enqaXLlymQoVKphBgwaZuLg4q9+dXhk2Z84cI8lMnDgx3T7Lly83kszIkSOttkmTJpnHH3/cWnfNmjXNkiVLHJb773//a5588knj7e1t/Pz8TOXKlc2MGTMc+gwbNswUKlTIeHp6mmrVqpmNGzem+8qwqKioVLVdvXrV9OrVyxQoUMB4e3ubatWqmbVr16a5zy5fvmzee+89Exoaatzd3U1gYKD517/+5fDarhSdO3c2ksz06dPT3S9puXHjhvnmm29MjRo1jL+/v3F3dzfBwcHm9ddfT/U6sc2bN5uIiAjj4+NjsmfPbmrXrm1+/fVXhz4prwzbsGGDQ3vKq7n++iquv/79u/Xv7bBhw0xQUJDx9PQ0NWrUMNu2bXNY9vjx4+aFF14wOXPmNP7+/qZ58+bmxIkTRpIZMGDAHdd967wU0dHRpnHjxqZgwYLGw8PDFCxY0LRs2dLs27fPYbnTp0+b119/3eTJk8d4eHiYMmXKmMmTJzv0ud3P4F9rBADYw8UYnqABAEjbzp071bFjR61evTrN+VWrVtXUqVNvew8y/jnefvttTZw4UadOnUrzVXAPisOHDys0NFRDhw7VO++84+xyAAAPOO7pBgAAf9vVq1c1depUNWvW7IEO3AAAZDXu6QYA3Na6deuUM2fONOddunTp3haD+86ZM2e0dOlSzZ49W+fOnVP37t2dXRIAAPcVQjcAIF2PPfaYbty44ewycB/bvXu3WrVqpXz58mnUqFG2vG8bAIAHmdMvL//jjz/0yiuvKCAgQN7e3ipTpow2btxozTfG6MMPP1SBAgXk7e2tevXqZcn7LwEAwN9Xq1YtGWN0+vRpvfXWW84uJ0uEhITIGMP93ACALOHU0H3hwgVVq1ZN7u7uWrBggXbv3q1hw4YpV65cVp8hQ4Zo1KhR+vrrr7V+/XrlyJFDERERqd5hCgAAAADA/capTy9/9913tWbNGq1atSrN+cYYFSxYUL169bK+bY6Li1P+/Pk1ZcoU672dAAAAAADcj5waukuXLq2IiAgdP35cK1asUKFChdS5c2e1a9dOknTw4EEVLVpUW7ZscbhHrGbNmipfvrxGjhyZaszExEQlJiZa08nJyTp//rwCAgLk4uJi+zYBAAAAAB5+xhhdvHhRBQsWlKtr+heRO/VBagcPHtTYsWPVs2dP9e/fXxs2bFC3bt3k4eGhNm3a6NSpU5Kk/PnzOyyXP39+a95fDR48WIMGDbK9dgAAAAAAjh07pkceeSTd+U4N3cnJyapYsaI+/fRTSdLjjz+unTt36uuvv1abNm3uasx+/fqpZ8+e1nRcXJwKFy6sY8eOyc/PL0vqBgAAAAD8s8XHxysoKEi+vr637efU0F2gQAGVLl3aoS0sLExz5syRJAUGBkqSTp8+rQIFClh9Tp8+ne4rSTw9PeXp6Zmq3c/Pj9ANAAAAAMhSd7qN2alPL69WrZpiYmIc2vbt26fg4GBJUmhoqAIDAxUdHW3Nj4+P1/r16xUeHn5PawUAAAAAILOceqb77bff1pNPPqlPP/1UL774on777TeNHz9e48ePl3TzG4MePXro448/VvHixRUaGqoPPvhABQsWVJMmTZxZOgAAAAAAd+TU0F2pUiXNnTtX/fr1U2RkpEJDQ/XFF1+oVatWVp8+ffooISFB7du3V2xsrKpXr66FCxfKy8vLiZUDAAAAAHBnTn1l2L0QHx8vf39/xcXFcU83AAAAACBLZDRrOvWebgAAAAAAHmaEbgAAAAAAbELoBgAAAADAJoRuAAAAAABsQugGAAAAAMAmhG4AAAAAAGxC6AYAAAAAwCaEbgAAAAAAbELoBgAAAADAJoRuAAAAAABsQugGAAAAAMAmhG4AAAAAAGxC6AYAAAAAwCaEbgAAAAAAbELoBgAAAADAJoRuAAAAAABsQugGAAAAAMAmhG4AAAAAAGxC6AYAAAAAwCaEbgAAAAAAbELoBgAAAADAJoRuAAAAAABsQugGAAAAAMAmhG4AAAAAAGxC6AYAAAAAwCaEbgAAAAAAbELoBgAAAADAJoRuAAAAAABsQugGAAAAAMAmhG4AAAAAAGxC6AYAAAAAwCaEbgAAAAAAbELoBgAAAADAJoRuAAAAAABsQugGAAAAAMAmhG4AAAAAAGxC6AYAAAAAwCaEbgAAAAAAbELoBgAAAADAJoRuAAAAAABsQugGAAAAAMAmhG4AAAAAAGxC6AYAAAAAwCaEbgAAAAAAbELoBgAAAADAJoRuAAAAAABsQugGAAAAAMAmhG4AAAAAWWr58uVycXFJ9zNw4ECr748//qhXXnlFRYoUcehz+PDhTK2zV69eCg8PV2BgoDw8POTj46MyZcqoX79+unDhQqr+69atU9OmTVWwYEG5u7sre/bsKlOmjD744ANdvHjR6nf58mX16tVLhQsXlq+vr6pVq6bVq1enGq99+/ZycXHRr7/+mqm68fDL5uwCAAAAAPxzTZ48WT/++OPfHmfkyJFKSkqypq9fv66dO3dq586d+umnn7Rp0yZ5eHhIkpYtW6YGDRroxo0bVv8bN25Y/ZcuXapff/1VLi4uevfdd/Xll1/q7bffVuPGjdWiRQs9/fTT2rVrl4KCgiRJW7Zs0cSJE9WqVSs9+eSTf3tb8HDhTDcAAAAA24waNUqrVq1y+LzxxhvW/MKFC6tVq1YaPXq0cubMedfradSokUaNGqX58+dr0aJF6tWrlzVv586dWrZsmTX95ZdfWoG7Tp06WrhwocaMGSN3d3dJN8+Cb968WZIUFRUlSfrggw9Us2ZNNW/eXBcvXtTChQut8bp16yZvb2/9+9//vuv68fDiTDcAAAAA25QpU0bVq1dPd/6oUaOsP0dGRt71eubPn+8w3aBBAy1dulTbtm2TJIdLxuPi4qw/9+zZUxEREZKkSZMmaePGjZJkhfLExERJss6Se3p6SpKuXr0qSZoxY4ZWr16tTz75RIUKFbrr+vHw4kw3AAAAANu0atVKnp6eypUrlxWE7Xbp0iXNnTtXMTExkm4G5fDwcGt+rVq1rD8PHz5cixcv1tixY62AXrp0aT3xxBOSpLp160qSvvvuO507d07z58+Xm5ubatWqpcuXL6tPnz4qUqSIw5l14FaEbgAAAAC2OXHihK5du6bY2FgtWbJEDRo00JQpU2xZ19dffy0XFxf5+vqqadOmunr1qooUKaI5c+Y4nIXu06eP2rZtKzc3N/3yyy+KiIhQ586ddf36dbVu3VrLli2zLjUfNWqU6tatq86dOytPnjw6deqUxo8frzJlymjw4ME6fvy4hg0bJk9PT924cUOnT5+2Zdvw4CJ0AwAAAMhSbm5uql27tr788kstWLBAM2bMUMWKFSVJxhj16NFDCQkJ96QWDw8PhwespbSVLFkyzXvIFy9erPXr11vTBQoU0NKlSxUbG6tDhw7p3LlzeuONN3T48GF9/vnnqlevnp5//nm9++678vHxUWBgoPLmzauZM2favWl4QLgYY4yzi7BTfHy8/P39FRcXJz8/P2eXAwAAAPwjxcbGKiQkxLqfevHixapfv75Dn8DAQOtM8aFDhxQSEpKpdZw6dUr79+/XhQsXFB0drVGjRskYI1dXV23evFnlypWTJA0cOFCDBg2SdPMhaB9//LEOHjyoiIgInT59Wh4eHoqJibnt+ps1a6b//ve/2rp1q9asWaMOHTqoQoUKevPNN/X+++8rLi5O27ZtU+nSpTO1DXhwZDRrcqYbAAAAgO1y5syp4sWLW9N//vlnlq8jMDBQ1atX13PPPacvvvhCr776qiQpOTlZs2bNsvpNmDDB+vN7770nX19flStXTk2bNpUkXbt2TT///HO66/nll1/0ww8/qHPnznr00Uets9qfffaZOnbsqA4dOujGjRuaM2dOlm8jHjyEbgAAAABZatOmTanaYmNjtW/fPms6f/78Wba+K1eupNnu4uLisP4UZ8+etf586dIl68+3PuH81vZbJSUlqXv37sqTJ491tvzUqVOSpODgYEmyzpCntOOfjVeGAQAAAMhSvXr1UmxsrFq3bq2yZcvq7NmzGjZsmOLj4yVJefLk0ZNPPilJ2rhxow4fPizp/17PJUkLFixQ3rx5lSNHDjVq1EiStHz5ctWuXVuS1KZNG+uBbEOGDNHSpUvVrFkzFS9eXC4uLoqOjtZ//vMfa7yUp5FL0qOPPqotW7ZIktq3b69evXrp4MGD1ju5Jal8+fJpbtvYsWO1c+dOff3119Y94SEhIdqzZ4/+/PNPFS9e3DqLnxLC8c9G6AYAAACQ5bZt25bma7Tc3d01YcIEeXt7S5K++uorffvtt6n6de7cWdLN4JoSytNjjNHq1au1evXqNOdXr15dbdq0saYjIyPVpEkTJSUlKTo6WtHR0Q7969atm+p+c0k6d+6cPvzwQ5UvX17t2rWz2tu3b68FCxZo6NCheueddzR58mTlyJFDr7zyym3rxj8Dl5cDAAAAyFJDhw5Vjx49VLZsWQUEBChbtmwqWLCgWrRoofXr16tJkyZZur6GDRuqdevWKlmypPz8/OTm5qaAgADVrFlTX331laKjo61XgEnSs88+qxUrVqhJkyYKDAxUtmzZlD17dpUrV06ffPKJfvrpJ4dL01N88MEHunDhgkaOHClX1/+LUk2aNNH48eO1Z88eRUREKCAgQIsWLVLBggWzdDvxYOLp5QAAAAAAZBJPLwcAAAAAwMkI3QAAAAAA2ITQDQAAAACATQjdAAAAAADYhNANAAAAAIBNCN0AAAAAANiE0A0AAAAAgE0I3QAAAAAA2CSbswsAAAAA7pUKvb9zdgkAstimoa2dXcJtcaYbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwiVND98CBA+Xi4uLwKVWqlDX/6tWr6tKliwICAuTj46NmzZrp9OnTTqwYAAAAAICMc/qZ7kcffVQnT560PqtXr7bmvf3225o/f76ioqK0YsUKnThxQk2bNnVitQAAAAAAZFw2pxeQLZsCAwNTtcfFxWnixImaPn266tSpI0maPHmywsLCtG7dOlWtWvVelwoAAAAAQKY4/Uz377//roIFC6pIkSJq1aqVjh49KknatGmTrl+/rnr16ll9S5UqpcKFC2vt2rXOKhcAgHvqmWeecbgNa+/evZKk5cuXp7pF66+fkJCQO45/N+MMGzZMzz33nPLkyXPHdY0fP15hYWHKnj27wsLC9M0336TqM336dLm4uGjw4MGZ3T0AANz3nBq6q1SpoilTpmjhwoUaO3asDh06pBo1aujixYs6deqUPDw8lDNnTodl8ufPr1OnTqU7ZmJiouLj4x0+AAA8iKZNm6aff/75rpd3d3fPkjr+Os5HH32kn376SefOnbvtcj/88IM6dOigwMBALVu2TIGBgWrXrp3mzZtn9UlISFCfPn1UpEgR9ezZM0vqBQDgfuLUy8sbNWpk/bls2bKqUqWKgoOD9f3338vb2/uuxhw8eLAGDRqUVSUCAOAUZ8+eVY8ePeTi4iJ3d3ddu3bNYf7jjz+uVatWpVpu+PDhmjt3riSpSZMmd1zP3YxTvnx5lS5dWkFBQerfv3+6Y0dFRUmSunXrpipVqqhr165avny5oqKirDEHDx6sP/74Q/PmzZOnp+cd6wUA4EHj9Hu6b5UzZ06VKFFC+/fvV/369XXt2jXFxsY6nO0+ffp0mveAp+jXr5/DN+Xx8fEKCgqys2wAALJcjx49dPbsWbVv316LFi3SkSNHHOb7+/urevXqDm2JiYlWgHZ1dVWnTp3uuJ67GWf58uWSpL179942dCcmJkqSPDw8JMkK1VevXpUkHTp0SMOGDVP9+vXVuHHjO9YKAMCDyOn3dN/q0qVLOnDggAoUKKAKFSrI3d1d0dHR1vyYmBgdPXpU4eHh6Y7h6ekpPz8/hw8AAA+ShQsXatq0aSpYsKCGDBmS4eW+//57nT17VpLUsGFDFSlS5K7Wn1Xj1K1bV9LNe7YTEhI0Y8YMSbKe19KrVy/duHFDX3zxxV2NDwDAg8CpZ7rfeecdPffccwoODtaJEyc0YMAAubm5qWXLlvL391fbtm3Vs2dP5c6dW35+furatavCw8N5cjkA4KF16dIldezYUZI0ZswY+fv7Z3jZMWPGWH/u0qXLXdeQVeN07NhRu3fv1rhx4zR9+nS5ubnprbfeUocOHRQdHa25c+eqe/fuKl26tKSbV7MFBAQoW7b76kI8AAD+Fqee6T5+/LhatmypkiVL6sUXX1RAQIDWrVunvHnzSpJGjBihZ599Vs2aNdNTTz2lwMBA/fDDD84sGQAAW7333ns6cuSImjdvnqlLrrds2aJ169ZJkooUKaKGDRve1fqzahxJcnNz0+jRo60r2S5duqQvv/xSycnJ6t69u/LkyaOBAwdq5syZyps3rwIDA+Xj46O+ffsqOTn5rtcLAMD9xKlfJc+cOfO28728vDR69GiNHj36HlUEAIDz7N27V1999ZVy5cqlL7/8MlPL3vpvZadOneTqenffq2fVOLfy8vJyuER97Nix2rVrl8aNG6cTJ07o1VdflZ+fn8aOHauJEydqyJAhKlq0qNq3b/+31w0AgLPdV/d0AwDwT3bq1CklJyfrwoULCgwMtN6BfetD1MLCwlS+fHmH5WJjY637pb29vfXGG2/c1fqzapzbOXfunAYMGKDy5cvrzTff1OzZs3Xjxg116tRJHTt21KeffipJmjVrVpavGwAAZ+CmKQAAHnBTpkzR5cuXJUktWrRQ7ty5nTrO7bz//vu6cOGCfvzxR7m6uurUqVOSpODgYElSSEiIJFntAAA86AjdAADcJ4oVK6YRI0akao+MjNSFCxck3Xw15qOPPmrNM8Zo7Nix1vTtHnzm4uIi6WbAPXz4sMO8zIyzYMECJSQk6MSJE1bb5cuXNXv2bEk3g3PFihVTLbdt2zZNmDBBLVq0UI0aNay+kvTnn386/DclhAMA8KBzMcYYZxdhp/j4ePn7+ysuLo7XhwEAHkghISHWJeZ79uxRqVKlrHlLlixRgwYNJElVqlSxHoKWltuF7syMc2s9aWnTpo2mTJmSqr1WrVrasGGD9u7dq6CgIEnSH3/8oZIlSyowMFDffvutPv/8c82bN0/z5s3j3d2wRYXe3zm7BABZbNPQ1k5Zb0azJvd0AwDwALvfXhOWnu+//14rVqxQ3759rcAtSYUKFdKiRYuUN29eRUREaM+ePRo/fjyBGwDw0OBMNwAAAP4xONMNPHw40w0AAAAAwD8UoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJtkc3YBAID7X4Xe3zm7BAA22DS0tbNLAICHHme6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwyX0Tuj/77DO5uLioR48eVtvVq1fVpUsXBQQEyMfHR82aNdPp06edVyQAAAAAAJlwX4TuDRs2aNy4cSpbtqxD+9tvv6358+crKipKK1as0IkTJ9S0aVMnVQkAAAAAQOY4PXRfunRJrVq10oQJE5QrVy6rPS4uThMnTtTw4cNVp04dVahQQZMnT9avv/6qdevWObFiAAAAAAAyxumhu0uXLnrmmWdUr149h/ZNmzbp+vXrDu2lSpVS4cKFtXbt2ntdJgAAAAAAmZbNmSufOXOmNm/erA0bNqSad+rUKXl4eChnzpwO7fnz59epU6fSHTMxMVGJiYnWdHx8fJbVCwAAAABAZjjtTPexY8fUvXt3TZs2TV5eXlk27uDBg+Xv7299goKCsmxsAAAAAAAyw2mhe9OmTTpz5oyeeOIJZcuWTdmyZdOKFSs0atQoZcuWTfnz59e1a9cUGxvrsNzp06cVGBiY7rj9+vVTXFyc9Tl27JjNWwIAAAAAQNqcdnl53bp1tWPHDoe2119/XaVKlVLfvn0VFBQkd3d3RUdHq1mzZpKkmJgYHT16VOHh4emO6+npKU9PT1trBwAAAAAgI5wWun19ffXYY485tOXIkUMBAQFWe9u2bdWzZ0/lzp1bfn5+6tq1q8LDw1W1alVnlAwAAAAAQKY49UFqdzJixAi5urqqWbNmSkxMVEREhMaMGePssgAAAAAAyJD7KnQvX77cYdrLy0ujR4/W6NGjnVMQAAAAAAB/g9Pf0w0AAAAAwMOK0A0AAAAAgE0I3QAAAAAA2ITQDQAAAACATQjdAAAAAADYhNANAAAAAIBNCN0AAAAAANiE0A0AAAAAgE0I3QAAAAAA2ITQDQAAAACATQjdAAAAAADYhNANAAAAAIBNCN0AAAAAANiE0A0AAAAAgE0I3QAAAAAA2ITQDQAAAACATQjdAAAAAADYhNANAAAAAIBNCN0AAAAAANiE0A0AAAAAgE0I3QAAAAAA2ITQDQAAAACATQjdAAAAAADYhNANAAAAAIBNCN0AAAAAANiE0A0AAAAAgE0I3QAAAAAA2ITQDQAAAACATQjdAAAAAADYhNANAAAAAIBNCN0AAAAAANiE0A0AAAAAgE0I3QAAAAAA2ITQDQAAAACATQjdAAAAAADYhNANAAAAAIBNCN0AAAAAANgkW2Y6Jycna8WKFVq1apWOHDmiy5cvK2/evHr88cdVr149BQUF2VUnAAAAAAAPnAyd6b5y5Yo+/vhjBQUF6emnn9aCBQsUGxsrNzc37d+/XwMGDFBoaKiefvpprVu3zu6aAQAAAAB4IGToTHeJEiUUHh6uCRMmqH79+nJ3d0/V58iRI5o+fbpatGih9957T+3atcvyYgEAAAAAeJBkKHQvXrxYYWFht+0THBysfv366Z133tHRo0ezpDgAAAAAAB5kGbq8/E6B+1bu7u4qWrToXRcEAAAAAMDDIlMPUrvVjRs3NG7cOC1fvlxJSUmqVq2aunTpIi8vr6ysDwAAAACAB9Zdh+5u3bpp3759atq0qa5fv67vvvtOGzdu1IwZM7KyPgAAAAAAHlgZDt1z587VCy+8YE0vXrxYMTExcnNzkyRFRESoatWqWV8hAAAAAAAPqAzd0y1JkyZNUpMmTXTixAlJ0hNPPKGOHTtq4cKFmj9/vvr06aNKlSrZVigAAAAAAA+aDIfu+fPnq2XLlqpVq5a+/PJLjR8/Xn5+fnrvvff0wQcfKCgoSNOnT7ezVgAAAAAAHiiZuqf7pZdeUkREhPr06aOIiAh9/fXXGjZsmF21AQAAAADwQMvwme4UOXPm1Pjx4zV06FC1bt1avXv31tWrV+2oDQAAAACAB1qGQ/fRo0f14osvqkyZMmrVqpWKFy+uTZs2KXv27CpXrpwWLFhgZ50AAAAAADxwMhy6W7duLVdXVw0dOlT58uVThw4d5OHhoUGDBmnevHkaPHiwXnzxRTtrBQAAAADggZLhe7o3btyobdu2qWjRooqIiFBoaKg1LywsTCtXrtT48eNtKRIAAAAAgAdRhkN3hQoV9OGHH6pNmzZaunSpypQpk6pP+/bts7Q4AAAAAAAeZBm+vPy7775TYmKi3n77bf3xxx8aN26cnXUBAAAAAPDAy/CZ7uDgYM2ePdvOWgAAAAAAeKhk6Ex3QkJCpgbNbH8AAAAAAB5GGQrdxYoV02effaaTJ0+m28cYoyVLlqhRo0YaNWpUlhUIAAAAAMCDKkOXly9fvlz9+/fXwIEDVa5cOVWsWFEFCxaUl5eXLly4oN27d2vt2rXKli2b+vXrpw4dOthdNwAAAAAA970Mhe6SJUtqzpw5Onr0qKKiorRq1Sr9+uuvunLlivLkyaPHH39cEyZMUKNGjeTm5mZ3zQAAAAAAPBAy/CA1SSpcuLB69eqlXr162VUPAAAAAAAPjQy/MgwAAAAAAGQOoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwSaZDd0hIiCIjI3X06FE76gEAAAAA4KGR6dDdo0cP/fDDDypSpIjq16+vmTNnKjEx0Y7aAAAAAAB4oN1V6N66dat+++03hYWFqWvXripQoIDeeustbd682Y4aAQAAAAB4IN31Pd1PPPGERo0apRMnTmjAgAH65ptvVKlSJZUvX16TJk2SMSYr6wQAAAAA4IGT7W4XvH79uubOnavJkydryZIlqlq1qtq2bavjx4+rf//+Wrp0qaZPn56VtQIAAAAA8EDJdOjevHmzJk+erBkzZsjV1VWtW7fWiBEjVKpUKavPCy+8oEqVKmVpoQAAAAAAPGgyHborVaqk+vXra+zYsWrSpInc3d1T9QkNDVWLFi2ypEAAAAAAAB5UmQ7dBw8eVHBw8G375MiRQ5MnT77rogAAAAAAeBhk+kFqZ86c0fr161O1r1+/Xhs3bsySogAAAAAAeBhkOnR36dJFx44dS9X+xx9/qEuXLllSFAAAAAAAD4NMh+7du3friSeeSNX++OOPa/fu3VlSFAAAAAAAD4NMh25PT0+dPn06VfvJkyeVLdtdv4EMAAAAAICHTqZDd4MGDdSvXz/FxcVZbbGxserfv7/q16+fqbHGjh2rsmXLys/PT35+fgoPD9eCBQus+VevXlWXLl0UEBAgHx8fNWvWLM3ADwAAAADA/SjTofvzzz/XsWPHFBwcrNq1a6t27doKDQ3VqVOnNGzYsEyN9cgjj+izzz7Tpk2btHHjRtWpU0eNGzfWrl27JElvv/225s+fr6ioKK1YsUInTpxQ06ZNM1syAAAAAABOkenrwQsVKqTt27dr2rRp2rZtm7y9vfX666+rZcuWab6z+3aee+45h+lPPvlEY8eO1bp16/TII49o4sSJmj59uurUqSNJmjx5ssLCwrRu3TpVrVo1s6UDAAAAAHBP3dVN2Dly5FD79u2ztJCkpCRFRUUpISFB4eHh2rRpk65fv6569epZfUqVKqXChQtr7dq16YbuxMREJSYmWtPx8fFZWicAAAAAABl1108+2717t44ePapr1645tD///POZGmfHjh0KDw/X1atX5ePjo7lz56p06dLaunWrPDw8lDNnTof++fPn16lTp9Idb/DgwRo0aFCmagAAAAAAwA6ZDt0HDx7UCy+8oB07dsjFxUXGGEmSi4uLpJtnrDOjZMmS2rp1q+Li4jR79my1adNGK1asyGxZln79+qlnz57WdHx8vIKCgu56PAAAAAAA7lamH6TWvXt3hYaG6syZM8qePbt27dqllStXqmLFilq+fHmmC/Dw8FCxYsVUoUIFDR48WOXKldPIkSMVGBioa9euKTY21qH/6dOnFRgYmO54np6e1tPQUz4AAAAAADhDpkP32rVrFRkZqTx58sjV1VWurq6qXr26Bg8erG7duv3tgpKTk5WYmKgKFSrI3d1d0dHR1ryYmBgdPXpU4eHhf3s9AAAAAADYLdOXlyclJcnX11eSlCdPHp04cUIlS5ZUcHCwYmJiMjVWv3791KhRIxUuXFgXL17U9OnTtXz5ci1atEj+/v5q27atevbsqdy5c8vPz09du3ZVeHg4Ty4HAAAAADwQMh26H3vsMW3btk2hoaGqUqWKhgwZIg8PD40fP15FihTJ1FhnzpxR69atdfLkSfn7+6ts2bJatGiR6tevL0kaMWKEXF1d1axZMyUmJioiIkJjxozJbMkAAAAAADhFpkP3+++/r4SEBElSZGSknn32WdWoUUMBAQGaNWtWpsaaOHHibed7eXlp9OjRGj16dGbLBAAAAADA6TIduiMiIqw/FytWTHv37tX58+eVK1cu6wnmAAAAAAAgkw9Su379urJly6adO3c6tOfOnZvADQAAAADAX2QqdLu7u6tw4cKZfhc3AAAAAAD/RJl+Zdh7772n/v376/z583bUAwAAAADAQyPT93R/9dVX2r9/vwoWLKjg4GDlyJHDYf7mzZuzrDgAAAAAAB5kmQ7dTZo0saEMAAAAAAAePpkO3QMGDLCjDgAAAAAAHjqZvqcbAAAAAABkTKbPdLu6ut729WA82RwAAAAAgJsyHbrnzp3rMH39+nVt2bJF3377rQYNGpRlhQEAAAAA8KDLdOhu3LhxqrZ//etfevTRRzVr1iy1bds2SwoDAAAAAOBBl2X3dFetWlXR0dFZNRwAAAAAAA+8LAndV65c0ahRo1SoUKGsGA4AAAAAgIdCpi8vz5Url8OD1IwxunjxorJnz66pU6dmaXEAAAAAADzIMh26R4wY4RC6XV1dlTdvXlWpUkW5cuXK0uIAAAAAAHiQZTp0v/baazaUAQAAAADAwyfT93RPnjxZUVFRqdqjoqL07bffZklRAAAAAAA8DDIdugcPHqw8efKkas+XL58+/fTTLCkKAAAAAICHQaZD99GjRxUaGpqqPTg4WEePHs2SogAAAAAAeBhkOnTny5dP27dvT9W+bds2BQQEZElRAAAAAAA8DDIdulu2bKlu3bpp2bJlSkpKUlJSkn755Rd1795dLVq0sKNGAAAAAAAeSJkO3R999JGqVKmiunXrytvbW97e3mrQoIHq1KnDPd1wii1btujdd9/Vk08+qUKFCsnDw0N58+bVc889p1WrVqW73KFDh+Tj4yMXFxe5uLioatWqGV7nN998o4iICAUFBcnb21teXl4KDQ3Va6+9pr1796bqP2zYMD333HPKkyePtb6QkJA0xx4/frzCwsKUPXt2hYWF6ZtvvknVZ/r06XJxcdHgwYMzXDMAAACAe8/FGGPuZsHff/9dW7dulbe3t8qUKaPg4OCsri1LxMfHy9/fX3FxcfLz83N2ObBBx44dNW7cuDTnubq6KioqSk2bNk01r0GDBlqyZIk1XaVKFa1bty5D66xXr56io6PTnOfj46NNmzapRIkSVlvOnDkVFxfn0C84OFiHDx92aPvhhx/UrFkz1apVS5999pneffddLV++XHPnzlWTJk0kSQkJCSpZsqQ8PT21e/dueXp6Zqhm4O+o0Ps7Z5cAwAabhrZ2dgn3HMcz4OHjrGNZRrNmps90pyhevLiaN2+uZ5999r4N3PjnCAwM1HvvvacFCxZo+vTpKlmypCQpOTlZPXv2TNX/22+/1ZIlS+Tl5XVX6ytXrpwiIyM1Z84cLV26VCNHjrR+0C5duqTJkyc79C9fvrw6dep0x6tBUl7H161bN1WpUkVdu3Z1aJduvkHgjz/+0PDhwwncAAAAwH0uW2YXaNasmSpXrqy+ffs6tA8ZMkQbNmxI8x3egJ1eeeUVDR8+XNmzZ7faSpcurfLly0uSjhw5ojNnzihfvnySpDNnzqhnz55ycXHR+++/r/fffz/T6xw2bJjDdN26dXXw4EGNHDlSknTx4kWH+cuXL5ck7d27V/3790933MTEREmSh4eHJFmh+urVq5JuXhI/bNgw1a9fX40bN8503QAAAADurUyf6V65cqWefvrpVO2NGjXSypUrs6QoIDOqV6/uELilm1di3OrW+d26ddP58+fVuXNnVatW7W+vPzExUZs2bdLPP/9stdWuXfuuxqpbt66km/dsJyQkaMaMGZJuXs4uSb169dKNGzf0xRdf/L2iAQAAANwTmT7TfenSJess3K3c3d0VHx+fJUUBf9ecOXOsP9eoUUM+Pj6SpPnz52vWrFkKCgrS4MGDtWnTprtex969exUWFubQljNnTvXt21fNmjW7qzE7duyo3bt3a9y4cZo+fbrc3Nz01ltvqUOHDoqOjtbcuXPVvXt3lS5dWpJ0+vRpBQQEKFu2TP8oAwAAALgHMn2mu0yZMpo1a1aq9pkzZ1pBAHCmTZs2WfdCe3p6asSIEZJuXvLduXNnSdLXX38tX1/fLF93tmzZdJfPJpQkubm5afTo0bp06ZIOHDigS5cu6csvv1RycrK6d++uPHnyaODAgZo5c6by5s2rwMBA+fj4qG/fvkpOTs7CLQEAAACQFTJ9euyDDz5Q06ZNdeDAAdWpU0eSFB0drRkzZnA/N5xu9erVeuaZZxQfH69s2bJpxowZqlChgqSbDyA7fvy4WrZsmeYtEpkVHBysVatW6fLly9q6das+++wznT17Vv3795evr6/eeuutux7by8tLRYoUsabHjh2rXbt2ady4cTpx4oReffVV+fn5aezYsZo4caKGDBmiokWLqn379n97uwAAAABknUyf6X7uuec0b9487d+/X507d1avXr10/PhxLV261HqlEeAMixcvVkREhOLj4+Xp6anZs2frhRdesOafOHFCkjRjxgzrXdm33nu9fv16ubi4ZPh+aW9vb1WvXl0NGjRQnz59HB6uNn369KzZKEnnzp3TgAEDVL58eb355puaPXu2bty4oU6dOqljx47WE9HTugIFAAAAgHPd1Y2gzzzzjJ555plU7Tt37tRjjz32t4sCMmvu3Llq0aKFrl27phw5cujHH3+0HkqW1RITE+Xh4SEXFxeH9lunY2Njs2x977//vi5cuKAff/xRrq6uOnXqlCRZr+oLCQmRJKsdAAAAwP3jbz996eLFi5oxY4a++eYbbdq0SUlJSVlRF5BhUVFRatmypZKSkuTi4qIBAwbI09NTq1evtvpUqlRJL7/8svUasRT79+/X6NGjJd0MsT169FDNmjWt+SlBOjg4WIcPH5YkrV27Vm+++aZeffVVPfbYY/Lz89OOHTv0ySefWMs98cQTDutZsGCBEhISrLPtknT58mXNnj1b0s3gXLFixVTbtm3bNk2YMEEtWrRQjRo1rL6S9Oeffzr8NyWEAwAAALh/3HXoXrlypb755hv98MMPKliwoJo2bWqFF+Be+t///md92WOMUZ8+fVL1OXTokBo0aKAGDRo4tC9fvtz6exsYGKgePXpkaJ0HDhzQwIED05wXGBioyMhIh7ZOnTrpyJEjDm1//vmnmjdvLklq06aNpkyZkmqs7t27y9PTU0OGDLHaWrVqpcjISE2aNEk1a9bU559/Lknq0KFDhmoHAAAAcO9k6p7uU6dO6bPPPlPx4sXVvHlz+fv7KzExUfPmzdNnn32mSpUq2VUncN8oUaKEunXrpieeeEJ58uSRm5ubfH199fjjj6tfv37avn27w0PQ7tb333+vFStWqG/fvgoKCrLaCxUqpEWLFilv3ryKiIjQnj17NH78eDVu3PhvrxMAAABA1nIxGXy/0XPPPaeVK1fqmWeeUatWrdSwYUO5ubnJ3d1d27Ztu29fFxYfHy9/f3/FxcXJz8/P2eUAwAOpQu/vnF0CABtsGtra2SXccxzPgIePs45lGc2aGb68fMGCBerWrZs6deqk4sWLZ0mRAAAAAAA8zDJ8efnq1at18eJFVahQQVWqVNFXX32ls2fP2lkbAAAAAAAPtAyH7qpVq2rChAk6efKkOnTooJkzZ6pgwYJKTk7WkiVLdPHiRTvrBAAAAADggZOpB6lJUo4cOfTGG29o9erV2rFjh3r16qXPPvtM+fLl0/PPP29HjQAAAAAAPJAyHbpvVbJkSQ0ZMkTHjx/XjBkzsqomAAAAAAAeCn8rdKdwc3NTkyZN9N///jcrhgMAAAAA4KGQJaEbAAAAAACkRugGAAAAAMAmGX5PN+5Ohd7fObsEAFls09DWzi4BAAAADwjOdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANnFq6B48eLAqVaokX19f5cuXT02aNFFMTIxDn6tXr6pLly4KCAiQj4+PmjVrptOnTzupYgAAAAAAMs6poXvFihXq0qWL1q1bpyVLluj69etq0KCBEhISrD5vv/225s+fr6ioKK1YsUInTpxQ06ZNnVg1AAAAAAAZk82ZK1+4cKHD9JQpU5QvXz5t2rRJTz31lOLi4jRx4kRNnz5dderUkSRNnjxZYWFhWrdunapWreqMsgEAAAAAyJD76p7uuLg4SVLu3LklSZs2bdL169dVr149q0+pUqVUuHBhrV271ik1AgAAAACQUU49032r5ORk9ejRQ9WqVdNjjz0mSTp16pQ8PDyUM2dOh7758+fXqVOn0hwnMTFRiYmJ1nR8fLxtNQMAAAAAcDv3zZnuLl26aOfOnZo5c+bfGmfw4MHy9/e3PkFBQVlUIQAAAAAAmXNfhO633npLP/30k5YtW6ZHHnnEag8MDNS1a9cUGxvr0P/06dMKDAxMc6x+/fopLi7O+hw7dszO0gEAAAAASJdTQ7cxRm+99Zbmzp2rX375RaGhoQ7zK1SoIHd3d0VHR1ttMTExOnr0qMLDw9Mc09PTU35+fg4fAAAAAACcwan3dHfp0kXTp0/Xjz/+KF9fX+s+bX9/f3l7e8vf319t27ZVz549lTt3bvn5+alr164KDw/nyeUAAAAAgPueU0P32LFjJUm1atVyaJ88ebJee+01SdKIESPk6uqqZs2aKTExURERERozZsw9rhQAAAAAgMxzaug2xtyxj5eXl0aPHq3Ro0ffg4oAAAAAAMg698WD1AAAAAAAeBgRugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwCaEbAAAAAACbELoBAAAAALAJoRsAAAAAAJsQugEAAAAAsAmhGwAAAAAAmxC6AQAAAACwiVND98qVK/Xcc8+pYMGCcnFx0bx58xzmG2P04YcfqkCBAvL29la9evX0+++/O6dYAAAAAAAyyamhOyEhQeXKldPo0aPTnD9kyBCNGjVKX3/9tdavX68cOXIoIiJCV69evceVAgAAAACQedmcufJGjRqpUaNGac4zxuiLL77Q+++/r8aNG0uSvvvuO+XPn1/z5s1TixYt7mWpAAAAAABk2n17T/ehQ4d06tQp1atXz2rz9/dXlSpVtHbtWidWBgAAAABAxjj1TPftnDp1SpKUP39+h/b8+fNb89KSmJioxMREazo+Pt6eAgEAAAAAuIP79kz33Ro8eLD8/f2tT1BQkLNLAgAAAAD8Q923oTswMFCSdPr0aYf206dPW/PS0q9fP8XFxVmfY8eO2VonAAAAAADpuW9Dd2hoqAIDAxUdHW21xcfHa/369QoPD093OU9PT/n5+Tl8AAAAAABwBqfe033p0iXt37/fmj506JC2bt2q3Llzq3DhwurRo4c+/vhjFS9eXKGhofrggw9UsGBBNWnSxHlFAwAAAACQQU4N3Rs3blTt2rWt6Z49e0qS2rRpoylTpqhPnz5KSEhQ+/btFRsbq+rVq2vhwoXy8vJyVskAAAAAAGSYU0N3rVq1ZIxJd76Li4siIyMVGRl5D6sCAAAAACBr3Lf3dAMAAAAA8KAjdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2IXQDAAAAAGATQjcAAAAAADYhdAMAAAAAYBNCNwAAAAAANiF0AwAAAABgE0I3AAAAAAA2eSBC9+jRoxUSEiIvLy9VqVJFv/32m7NLAgAAAADgju770D1r1iz17NlTAwYM0ObNm1WuXDlFRETozJkzzi4NAAAAAIDbuu9D9/Dhw9WuXTu9/vrrKl26tL7++mtlz55dkyZNcnZpAAAAAADcVjZnF3A7165d06ZNm9SvXz+rzdXVVfXq1dPatWvTXCYxMVGJiYnWdFxcnCQpPj7e3mLTkZR4xSnrBWAfZx1PnIljGfBw4ngG4GHgrGNZynqNMbftd1+H7rNnzyopKUn58+d3aM+fP7/27t2b5jKDBw/WoEGDUrUHBQXZUiOAfx7/Lzs6uwQAyBIczwA8DJx9LLt48aL8/f3TnX9fh+670a9fP/Xs2dOaTk5O1vnz5xUQECAXFxcnVoaHWXx8vIKCgnTs2DH5+fk5uxwAuCscywA8LDie4V4wxujixYsqWLDgbfvd16E7T548cnNz0+nTpx3aT58+rcDAwDSX8fT0lKenp0Nbzpw57SoRcODn58eBHcADj2MZgIcFxzPY7XZnuFPc1w9S8/DwUIUKFRQdHW21JScnKzo6WuHh4U6sDAAAAACAO7uvz3RLUs+ePdWmTRtVrFhRlStX1hdffKGEhAS9/vrrzi4NAAAAAIDbuu9D90svvaQ///xTH374oU6dOqXy5ctr4cKFqR6uBjiTp6enBgwYkOrWBgB4kHAsA/Cw4HiG+4mLudPzzQEAAAAAwF25r+/pBgAAAADgQUboBgAAAADAJoRuAAAAAABsQujGAyEkJERffPHFXS8/ZcoU3teejr+7bwE4n4uLi+bNm+fsMgAAQBoI3fjbXnvtNTVp0sTWdWzYsEHt27fPUN+0QuRLL72kffv23fX6p0yZIhcXF7m4uMjV1VUFChTQSy+9pKNHj971mPeLzOxbAGl77bXXrGOEu7u7QkND1adPH129etXZpdnq1u2+9bN//36n1mT3v0kAMi8pKUlPPvmkmjZt6tAeFxenoKAgvffee1bbnDlzVKdOHeXKlUve3t4qWbKk3njjDW3ZssXqc+vvZi4uLvLx8VGFChX0ww8/3LNtkqRatWqpR48e93SdePAQuvFAyJs3r7Jnz37Xy3t7eytfvnx/qwY/Pz+dPHlSf/zxh+bMmaOYmBg1b978b42ZEdevX7d1/L+7bwHc1LBhQ508eVIHDx7UiBEjNG7cOA0YMMDZZdkuZbtv/YSGht7VWNeuXcvi6gDcL9zc3DRlyhQtXLhQ06ZNs9q7du2q3LlzW8fLvn376qWXXlL58uX13//+VzExMZo+fbqKFCmifv36OYyZ8rvZyZMntWXLFkVEROjFF19UTEzMPd024I4M8De1adPGNG7cON35y5cvN5UqVTIeHh4mMDDQ9O3b11y/ft2aHx8fb15++WWTPXt2ExgYaIYPH25q1qxpunfvbvUJDg42I0aMMMYYk5ycbAYMGGCCgoKMh4eHKVCggOnatasxxpiaNWsaSQ4fY4yZPHmy8ff3d6jrv//9r6lYsaLx9PQ0AQEBpkmTJuluQ1rLjxo1ykgycXFxVtu8efPM448/bjw9PU1oaKgZOHCgw7bu2bPHVKtWzXh6epqwsDCzZMkSI8nMnTvXGGPMoUOHjCQzc+ZM89RTTxlPT08zefJkY4wxEyZMMKVKlTKenp6mZMmSZvTo0da4iYmJpkuXLiYwMNB4enqawoULm08//fSO++uv+9YYY44cOWKef/55kyNHDuPr62uaN29uTp06Zc0fMGCAKVeunPnuu+9McHCw8fPzMy+99JKJj49Pd/8BD7u0joNNmzY1jz/+uDV99uxZ06JFC1OwYEHj7e1tHnvsMTN9+nSHZWrWrGm6du1qevfubXLlymXy589vBgwY4NBn3759pkaNGtZxZPHixQ7HEWOM2b59u6ldu7bx8vIyuXPnNu3atTMXL15MVe8nn3xi8uXLZ/z9/c2gQYPM9evXzTvvvGNy5cplChUqZCZNmpTp7b7VnY7/NWvWNF26dDHdu3c3AQEBplatWsYYY3bs2GEaNmxocuTIYfLly2deeeUV8+eff1rLRUVFmccee8zavrp165pLly6ZAQMGpPo3YNmyZbfdBgD31siRI02uXLnMiRMnzLx584y7u7vZunWrMcaYtWvXGklm5MiRaS6bnJxs/Tmt382SkpKMu7u7+f7776228+fPm1dffdXkzJnTeHt7m4YNG5p9+/Y5LDd79mxTunRp4+HhYYKDg83nn3/uMH/06NGmWLFixtPT0+TLl880a9bMGHPzGPjXY86hQ4fudtfgIUboxt92u1+6jh8/brJnz246d+5s9uzZY+bOnWvy5Mnj8Evkm2++aYKDg83SpUvNjh07zAsvvGB8fX3TDd1RUVHGz8/P/Pzzz+bIkSNm/fr1Zvz48cYYY86dO2ceeeQRExkZaU6ePGlOnjxpjEl9YP7pp5+Mm5ub+fDDD83u3bvN1q1brZCalr8uf/r0aVO7dm3j5uZmLl26ZIwxZuXKlcbPz89MmTLFHDhwwCxevNiEhISYgQMHGmOMuXHjhilZsqSpX7++2bp1q1m1apWpXLlymqE7JCTEzJkzxxw8eNCcOHHCTJ061RQoUMBqmzNnjsmdO7eZMmWKMcaYoUOHmqCgILNy5Upz+PBhs2rVKuuX+dvtr7/u26SkJFO+fHlTvXp1s3HjRrNu3TpToUIFU7NmTav/gAEDjI+Pj2natKnZsWOHWblypQkMDDT9+/dPd/8BD7u/Hgd37NhhAgMDTZUqVay248ePm6FDh5otW7aYAwcOmFGjRhk3Nzezfv16q0/NmjWNn5+fGThwoNm3b5/59ttvjYuLi1m8eLEx5ubP6GOPPWbq1q1rtm7dalasWGEef/xxh+PIpUuXTIECBayf0ejoaBMaGmratGnjUK+vr6/p0qWL2bt3r5k4caKRZCIiIswnn3xi9u3bZz766CPj7u5ujh07luHtvlVGjv81a9Y0Pj4+pnfv3mbv3r1m79695sKFCyZv3rymX79+Zs+ePWbz5s2mfv36pnbt2sYYY06cOGGyZctmhg8fbg4dOmS2b99uRo8ebS5evGguXrxoXnzxRdOwYUPr34DExMQM/l8EcC8kJyebWrVqmbp165p8+fKZjz76yJrXrVs34+Pj4/DlXHr++rvZjRs3zKRJk4y7u7vZv3+/1f7888+bsLAws3LlSrN161YTERFhihUrZq5du2aMMWbjxo3G1dXVREZGmpiYGDN58mTj7e1tnfTYsGGDcXNzM9OnTzeHDx82mzdvtr4UiI2NNeHh4aZdu3bWMefGjRtZsJfwsCF042+73S9d/fv3NyVLlnT4ZnL06NHGx8fHJCUlmfj4eOPu7m6ioqKs+bGxsSZ79uzphu5hw4aZEiVKWAfLv/rrmVtjUh+Yw8PDTatWrTK8jZMnTzaSTI4cOUz27NmtbzO7detm9albt26q4P6f//zHFChQwBhjzIIFC0y2bNmsLwKMMeme6f7iiy8cxilatGiqM2IfffSRCQ8PN8YY07VrV1OnTh2H/ZwiM/tr8eLFxs3NzRw9etSav2vXLiPJ/Pbbb8aYm6E7e/bsDme2e/fu7RAugH+aNm3aGDc3N5MjRw7j6elpJBlXV1cze/bs2y73zDPPmF69elnTNWvWNNWrV3foU6lSJdO3b19jjDGLFi0y2bJlM3/88Yc1f8GCBQ7HkfHjx5tcuXJZXwgaY8z//vc/4+rqal210qZNGxMcHGySkpKsPiVLljQ1atSwpm/cuGFy5MhhZsyYkaHtTvn861//Msbc+fifsr23Xg1gzM1jW4MGDRzajh07ZiSZmJgYs2nTJiPJHD58ON2abnf2HYDz7dmzx0gyZcqUcQjYDRs2NGXLlnXoO2zYMIdjTGxsrDHG8XezHDlyGFdXV4crBI25eWWQJLNmzRqr7ezZs8bb29s6G/7yyy+b+vXrO6yzd+/epnTp0sYYY+bMmWP8/PzSvaLvr1dnAmnhnm7Yas+ePQoPD5eLi4vVVq1aNV26dEnHjx/XwYMHdf36dVWuXNma7+/vr5IlS6Y7ZvPmzXXlyhUVKVJE7dq109y5c3Xjxo1M1bV161bVrVs3U8v4+vpq69at2rhxo4YNG6YnnnhCn3zyiTV/27ZtioyMlI+Pj/Vp166dTp48qcuXLysmJkZBQUEKDAy0lrl1u29VsWJF688JCQk6cOCA2rZt6zD2xx9/rAMHDki6+eCgrVu3qmTJkurWrZsWL15sLZ+Z/bVnzx4FBQUpKCjIaitdurRy5sypPXv2WG0hISHy9fW1pgsUKKAzZ85kdFcCD6XatWtr69atWr9+vdq0aaPXX39dzZo1s+YnJSXpo48+UpkyZZQ7d275+Pho0aJFqR7IWLZsWYfpW3++Un5GCxYsaM0PDw936L9nzx6VK1dOOXLksNqqVaum5ORkh/scH330Ubm6/t+vAfnz51eZMmWsaTc3NwUEBNzxZztlu1M+o0aNsuq43fE/RYUKFRzG27Ztm5YtW+ZwvCtVqpQk6cCBAypXrpzq1q2rMmXKqHnz5powYYIuXLhw2xoB3F8mTZqk7Nmz69ChQw7Hg7S88cYb2rp1q8aNG6eEhAQZY6x5Kb+bbd26VVu2bNGnn36qjh07av78+ZJuHoeyZcumKlWqWMsEBASoZMmS1u81e/bsUbVq1RzWWa1aNf3+++9KSkpS/fr1FRwcrCJFiujVV1/VtGnTdPny5azaFfiHIHTjgRMUFKSYmBiNGTNG3t7e6ty5s5566qlMPXDM29s70+t1dXVVsWLFFBYWpp49e6pq1arq1KmTNf/SpUsaNGiQwy+fO3bs0O+//y4vL69MrevWX5YvXbokSZowYYLD2Dt37tS6deskSU888YQOHTqkjz76SFeuXNGLL76of/3rX5KyZn/9lbu7u8O0i4uLkpOT73o84GGQI0cOFStWTOXKldOkSZO0fv16TZw40Zo/dOhQjRw5Un379tWyZcu0detWRUREpHp42L36+UprPXez7pTtTvkUKFAgU3XceryTbh7znnvuOYfj3datW/X777/rqaeekpubm5YsWaIFCxaodOnS+vLLL1WyZEkdOnQoU+sF4By//vqrRowYoZ9++kmVK1dW27ZtrSBdvHhx64RMipw5c6pYsWIqVKhQqrFSfjcrVqyYypYtq549e6pWrVr697//nWX1+vr6avPmzZoxY4YKFCigDz/8UOXKlVNsbGyWrQMPP0I3bBUWFqa1a9c6fCu5Zs0a+fr66pFHHlGRIkXk7u6uDRs2WPPj4uLu+Hovb29vPffccxo1apSWL1+utWvXaseOHZIkDw8PJSUl3Xb5smXLKjo6+m9smfTuu+9q1qxZ2rx5s6SbwTcmJsbhl8+Uj6urq0qWLKljx47p9OnT1hi3bnd68ufPr4IFC+rgwYOpxr31CcF+fn566aWXNGHCBM2aNUtz5szR+fPnJd1+f90qLCxMx44d07Fjx6y23bt3KzY2VqVLl77rfQX807i6uqp///56//33deXKFUk3j32NGzfWK6+8onLlyqlIkSKZfpVhys/oyZMnrbaUL99u7bNt2zYlJCRYbWvWrLGOQ/fKnY7/6XniiSe0a9cuhYSEpDrmpQR0FxcXVatWTYMGDdKWLVvk4eGhuXPnSsrYvwEAnOPy5ct67bXX1KlTJ9WuXVsTJ07Ub7/9pq+//lqS1LJlS126dEljxoy563W4ublZx92wsDDduHFD69evt+afO3dOMTEx1u81YWFhWrNmjcMYa9asUYkSJeTm5iZJypYtm+rVq6chQ4Zo+/btOnz4sH755RdJHHOQMYRuZIm4uLhUZyWOHTumzp0769ixY+ratav27t2rH3/8UQMGDFDPnj3l6uoqX19ftWnTRr1799ayZcu0a9cutW3bVq6urg6XJN5qypQpmjhxonbu3KmDBw9q6tSp8vb2VnBwsKSblz6vXLlSf/zxh86ePZvmGAMGDNCMGTM0YMAA7dmzRzt27Mj0t6JBQUF64YUX9OGHH0qSPvzwQ3333XcaNGiQdu3apT179mjmzJl6//33JUn169dX0aJF1aZNG23fvl1r1qyx5qW3rSkGDRqkwYMHa9SoUdq3b5927NihyZMna/jw4ZKk4cOHa8aMGdq7d6/27dunqKgoBQYGKmfOnHfcX7eqV6+eypQpo1atWmnz5s367bff1Lp1a9WsWdPhkncAd9a8eXO5ublp9OjRkm6ewVmyZIl+/fVX7dmzRx06dHD4Ei4j6tWrpxIlSqhNmzbatm2bVq1a5fBuW0lq1aqVvLy81KZNG+3cuVPLli1T165d9eqrryp//vxZtn13cqfjf3q6dOmi8+fPq2XLltqwYYMOHDigRYsW6fXXX1dSUpLWr1+vTz/9VBs3btTRo0f1ww8/6M8//1RYWJikm/8GbN++XTExMTp79qztr10EkHH9+vWTMUafffaZpJs/r59//rn69Omjw4cPKzw8XL169VKvXr3Us2dPrV69WkeOHNG6des0ceJEubi4OBw/jDE6deqUTp06pUOHDmn8+PFatGiRGjduLOnmcbdx48Zq166dVq9erW3btumVV15RoUKFrD69evVSdHS0PvroI+3bt0/ffvutvvrqK73zzjuSpJ9++kmjRo3S1q1bdeTIEX333XdKTk62vsQMCQnR+vXrdfjwYZ09e5Yr/5A2Z95QjodDWq9LkGTatm1rjLm7V4ZVrlzZvPvuu1afWx/2NXfuXFOlShXj5+dncuTIYapWrWqWLl1q9V27dq0pW7as9TAjY9J+rcScOXNM+fLljYeHh8mTJ49p2rRputuY1vIp65JkPX144cKF5sknnzTe3t7Gz8/PVK5c2eFJ4SmvDPPw8DClSpUy8+fPN5LMwoULjTH/9yC1LVu2pFrXtGnTrHpz5cplnnrqKfPDDz8YY24+OKl8+fImR44cxs/Pz9StW9ds3rw5Q/vrbl8ZdqsRI0aY4ODgdPcf8LBL7+FdgwcPNnnz5jWXLl0y586dM40bNzY+Pj4mX7585v333zetW7d2WC6tB/I0btzY4cnjMTExpnr16sbDw8OUKFHCLFy48K5fGXartNad1oMpM7LdKTLyyrC0HkC0b98+88ILL1iv+ClVqpTp0aOHSU5ONrt37zYREREmb968xtPT05QoUcJ8+eWX1rJnzpwx9evXNz4+PrwyDLiPLF++3Li5uZlVq1almtegQQOHB8LOmjXL1KpVy/j7+xt3d3fzyCOPmJdfftmsW7fOWiblQWopn5TjwSeffOLwBPGUV4b5+/sbb29vExERke4rw9zd3U3hwoXN0KFDrXmrVq0yNWvWNLly5TLe3t6mbNmyZtasWdb8mJgYU7VqVePt7c0rw5AuF2Nuue4LuA8kJCSoUKFCGjZsmNq2bevscmy1Zs0aVa9eXfv371fRokWdXQ4AAACALJbN2QUAW7Zs0d69e1W5cmXFxcUpMjJSkqzLfh4mc+fOlY+Pj4oXL679+/ere/fuqlatGoEbAAAAeEgRunFf+PzzzxUTEyMPDw9VqFBBq1atUp48eZxdVpa7ePGi+vbtq6NHjypPnjyqV6+ehg0b5uyyAAAAANiEy8sBAAAAALAJTy8HAAAAAMAmhG4AAAAAAGxC6AYAAAAAwCaEbgAAAAAAbELoBgAAAADAJoRuAAAAAABsQugGAAAAAMAmhG4AAAAAAGxC6AYAAAAAwCb/DyWEXH9To90jAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["# Get feature importances from the trained Random Forest model\n","feature_importance = pd.Series(rf_model.feature_importances_, index=X.columns).sort_values(ascending=False)\n","\n","# Plot feature importance\n","plt.figure(figsize=(10, 6))\n","sns.barplot(x=feature_importance.values, y=feature_importance.index)\n","plt.title(\"🔍 Feature Importance (Random Forest)\")\n","plt.xlabel(\"Importance Score\")\n","plt.ylabel(\"Feature\")\n","plt.tight_layout()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":700},"id":"eklmDrmGhCtQ","executionInfo":{"status":"ok","timestamp":1744090644578,"user_tz":-330,"elapsed":1158,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"05a4a656-e1a8-4ebb-ebb9-ff1af6e8d20f"},"execution_count":14,"outputs":[{"output_type":"stream","name":"stderr","text":[":10: UserWarning: Glyph 128269 (\\N{LEFT-POINTING MAGNIFYING GLASS}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128269 (\\N{LEFT-POINTING MAGNIFYING GLASS}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUzBJREFUeJzt3X18zvX////7sbFjs9lmTjfNZk5ibXNODFORkyhR3payRXSiJI34vJ2fF4pKJQoVqVSSt1RkQihlTnKuLcVCzmYWY3v9/ui34+uwYWZPh3G7Xi7HxY7n63k8X4/X63ja5bjv9TpeL5tlWZYAAAAAAEChc3N1AQAAAAAA3KgI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAACSsrOzFRERobFjx7q6lMuKj49XaGioq8u4Ib311luqVKmSzpw54+pSANwgCN0AAONSUlJks9nyfNx+++1G1nngwAGNGDFCSUlJRsa/Gjn7Y9KkSa4upcCWLFmiESNGuLqMQvXhhx/qjz/+0NNPP+1omz17ttN8LVasmCpWrKj4+Hjt37/fhdVeXy7cT+c/Bg0a5Ory8jRu3DgtXLgwV3t8fLwyMzM1ffr0a18UgBtSMVcXAAC4/v3666+qU6eOPDw88lyemZmp7du3q0qVKpccJzY2Vu3atXNqK1u2bKHVeb4DBw5o5MiRCg0NVe3atY2s42a2ZMkSTZs27YYK3hMnTlTXrl3l5+eXa9moUaNUuXJlnT59WuvWrdPs2bO1evVqbd26VZ6eni6o9vqUs5/OFxER4aJqLm3cuHF64IEH1LFjR6d2T09PxcXF6eWXX9Yzzzwjm83mmgIB3DAI3QCAy7IsSw0bNtTq1avzXH777bfLsqzLjlO3bl09/PDDhV3eNXX69Gl5eHjIze3mPFns1KlT8vb2dnUZhW7jxo3atGmTJk+enOfytm3bqn79+pKkxx57TGXKlNGLL76oRYsWqUuXLtey1Ova+fupMF3redelSxe99NJLWrFihe68885rtl4AN6ab8xMDAOC6tGPHDj3wwAMKCAiQp6en6tevr0WLFjn1OXr0qBISEhQZGSkfHx/5+vqqbdu22rRpk6NPYmKiGjRoIEl69NFHHae5zp49W5IUGhqq+Pj4XOtv0aKFWrRo4TSOzWbT/PnzNWTIEFWsWFElSpRQWlqaJGn9+vVq06aN/Pz8VKJECcXExGjNmjUF2vac03NXr16tvn37qmzZsvL399fjjz+uzMxMHT9+XN27d1epUqVUqlQpDRw40OkPHeefsv7KK68oJCREXl5eiomJ0datW3Ot77vvvlOzZs3k7e0tf39/3Xfffdq+fbtTnxEjRshms2nbtm166KGHVKpUKTVt2lTx8fGaNm2aJDmdRpxj0qRJatKkiUqXLi0vLy/Vq1dPCxYsyFWDzWbT008/rYULFyoiIkJ2u1233Xabli5dmqvv/v371bNnTwUFBclut6ty5cp68sknlZmZ6ehz/Phx9evXT8HBwbLb7apatapefPFFZWdnX3b/L1y4UB4eHmrevPll+0pSs2bNJEl79+51tGVmZmrYsGGqV6+e/Pz85O3trWbNmmnFihVOrz3/vXr77bdVpUoV2e12NWjQQD/99FOetUVERMjT01MRERH6/PPP86zp1KlTev755x3bf+utt2rSpEm5/iCWs98/+eQThYeHy8vLS40bN9aWLVskSdOnT1fVqlXl6empFi1aKCUlJV/7JD+uZt7l+OCDD1SvXj15eXkpICBAXbt21R9//OE0xu7du9W5c2dVqFBBnp6euuWWW9S1a1edOHHCsQ9OnTqlOXPmOObv+b8T6tWrp4CAAH3xxReFtu0Abl4c6QYAXDMZGRn6+++/ndr8/PxUvHhx/frrr4qOjlbFihU1aNAgeXt76+OPP1bHjh316aef6v7775ck/fbbb1q4cKEefPBBVa5cWQcPHtT06dMVExOjbdu2KSgoSDVr1tSoUaM0bNgw9e7d2xGQmjRpUqC6R48eLQ8PDyUkJOjMmTPy8PDQd999p7Zt26pevXoaPny43NzcNGvWLN15551atWqVGjZsWKB1PfPMM6pQoYJGjhypdevW6e2335a/v79++OEHVapUSePGjdOSJUs0ceJERUREqHv37k6vf++993Ty5En16dNHp0+f1tSpU3XnnXdqy5YtKl++vCRp2bJlatu2rcLCwjRixAj9888/eu211xQdHa1ffvkl1wW6HnzwQVWrVk3jxo2TZVmqU6eODhw4oG+//Vbvv/9+rm2YOnWq7r33XnXr1k2ZmZmaP3++HnzwQS1evFj33HOPU9/Vq1frs88+01NPPaWSJUvq1VdfVefOnbVv3z6VLl1a0r9fFWjYsKGOHz+u3r17q0aNGtq/f78WLFigjIwMeXh4KCMjQzExMdq/f78ef/xxVapUST/88IMGDx6s1NRUTZky5ZL7/YcfflBERISKFy+er/cpJ4iWKlXK0ZaWlqaZM2cqNjZWvXr10smTJ/XOO++odevW+vHHH3N9zWHevHk6efKkHn/8cdlsNr300kvq1KmTfvvtN0cd33zzjTp37qzw8HCNHz9eR44c0aOPPqpbbrnFaSzLsnTvvfdqxYoV6tmzp2rXrq2vv/5aAwYM0P79+/XKK6849V+1apUWLVqkPn36SJLGjx+v9u3ba+DAgXrjjTf01FNP6dixY3rppZfUo0cPfffdd/naLydOnMj1f7xMmTKSrn7eSdLYsWM1dOhQdenSRY899pgOHz6s1157Tc2bN9fGjRvl7++vzMxMtW7dWmfOnHH8f9q/f78WL16s48ePy8/PT++//74ee+wxNWzYUL1795akXF+PqVu3boH/iAYATiwAAC5jy5YtVnR09EWXN2rUyNq9e/dFlycnJ1uS8nysWLHCsizLuuuuu6zIyEjr9OnTjtdlZ2dbTZo0sapVq+ZoO336tJWVlZVrfLvdbo0aNcrR9tNPP1mSrFmzZuWqJyQkxIqLi8vVHhMTY8XExDier1ixwpJkhYWFWRkZGU51VatWzWrdurWVnZ3taM/IyLAqV65stWrV6qL74vz9MXHiREfbrFmzLEm5xmzcuLFls9msJ554wtF27tw565ZbbnGqNWdMLy8v688//3S0r1+/3pJkPffcc4622rVrW+XKlbOOHDniaNu0aZPl5uZmde/e3dE2fPhwS5IVGxubaxv69OljXexjxPn7yrIsKzMz04qIiLDuvPNOp3ZJloeHh7Vnzx6nOiRZr732mqOte/fulpubm/XTTz/lWlfOvho9erTl7e1t7dq1y2n5oEGDLHd3d2vfvn151prjlltusTp37pyrPed9WbZsmXX48GHrjz/+sBYsWGCVLVvWstvt1h9//OHoe+7cOevMmTNOrz927JhVvnx5q0ePHo62nPeqdOnS1tGjRx3tX3zxhSXJ+vLLLx1ttWvXtgIDA63jx4872r755htLkhUSEuJoW7hwoSXJGjNmjNP6H3jgActmszntY0mW3W63kpOTHW3Tp0+3JFkVKlSw0tLSHO2DBw+2JDn1zUvOfsrrcf62XM28S0lJsdzd3a2xY8c6tW/ZssUqVqyYo33jxo2WJOuTTz65ZM3e3t55/h7I0bt3b8vLy+uSYwBAfnB6OQDgmundu7e+/fZbp0etWrV09OhRfffdd+rSpYtOnjypv//+W3///beOHDmi1q1ba/fu3Y4rRdvtdsf3qbOysnTkyBH5+Pjo1ltv1S+//GKk7ri4OHl5eTmeJyUlaffu3XrooYd05MgRR72nTp3SXXfdpe+//z5fpzTnpWfPnk6najdq1EiWZalnz56ONnd3d9WvX1+//fZbrtd37NhRFStWdDxv2LChGjVqpCVLlkiSUlNTlZSUpPj4eAUEBDj6RUVFqVWrVo5+53viiSeuaBvO31fHjh3TiRMn1KxZszzfn5YtWzodYYyKipKvr69j27Kzs7Vw4UJ16NAhz+8K5+yrTz75RM2aNVOpUqUc78fff/+tli1bKisrS99///0laz5y5IjTUeu86ixbtqyCg4P1wAMPyNvbW4sWLXI64uzu7u642GB2draOHj2qc+fOqX79+nlu+3/+8x+ndeackZGz7TnvVVxcnNPF3Vq1aqXw8HCnsZYsWSJ3d3f17dvXqf3555+XZVn66quvnNrvuusupyPLjRo1kiR17txZJUuWzNWe11zLy7Rp03L9Hz9/W65m3n322WfKzs5Wly5dnN7jChUqqFq1ao7T+HP21ddff62MjIx81Z2XUqVK6Z9//rmqMQBA4vRyAMA1VK1aNbVs2TJX+48//ijLsjR06FANHTo0z9ceOnRIFStWVHZ2tqZOnao33nhDycnJysrKcvTJOR25sF14Nebdu3dL+jeMX8yJEycuGeIuplKlSk7PcwJEcHBwrvZjx47len21atVytVWvXl0ff/yxJOn333+XJN166625+tWsWVNff/11rotWXbj9l7N48WKNGTNGSUlJTvc6zusq0Bdur/Rv2MnZtsOHDystLe2yV8DevXu3Nm/efNGr4R86dOiydVuXuBjgtGnTVL16dZ04cULvvvuuvv/+e9nt9lz95syZo8mTJ2vHjh06e/asoz2vfXjhtufMl5xtz3mv8npPL/wj0++//66goCCnwCz9+56eP9bF1n2peXZ+TZfTsGHDPP84Uhjzbvfu3bIsK8/9IclxSn7lypXVv39/vfzyy5o7d66aNWume++9Vw8//HCeV6a/mJz5wNXLAVwtQjcAwOVyjgonJCSodevWefapWrWqpH9v8zN06FD16NFDo0ePVkBAgNzc3NSvX798H12+2IforKwsubu752o//8jt+fVOnDjxorcj8/HxyVctF8pr/Rdrv1RILEwXbv+lrFq1Svfee6+aN2+uN954Q4GBgSpevLhmzZqlefPm5ep/se290m3Lzs5Wq1atNHDgwDyXV69e/ZKvL1269CWD5flhsmPHjmratKkeeugh7dy50/Fef/DBB4qPj1fHjh01YMAAlStXTu7u7ho/frzTBddyFNa2F8SVzDPp2s218+X1/85ms+mrr77Ks87z/89NnjxZ8fHx+uKLL/TNN9+ob9++Gj9+vNatW5fr+/AXc+zYMZUoUeKK5j8A5IXQDQBwubCwMEn/HqnK60j4+RYsWKA77rhD77zzjlP78ePHHRdski59dKpUqVI6fvx4rvbff//dUcul5JwO7evre9l6r7Wco/Dn27Vrl+NU4pCQEEnSzp07c/XbsWOHypQpk69bM11s/3766afy9PTU119/7XQkeNasWfkpP5eyZcvK19c3zyuwn69KlSpKT08v8PtRo0YNJScn56tvTpC+44479Prrr2vQoEGS/p2bYWFh+uyzz5z2z/DhwwtUU857ldd7euH7FxISomXLlunkyZNOR7t37NjhNJarFMa8q1KliizLUuXKlS/7RxRJioyMVGRkpIYMGaIffvhB0dHReuuttzRmzBhJlz+CnZyc7DhTAACuBt/pBgC4XLly5dSiRQtNnz5dqampuZYfPnzY8bO7u3uuo26ffPKJ4zvfOXI+wOcVrqtUqaJ169Y53W5q8eLFuW47dDH16tVTlSpVNGnSJKWnp1+y3mtt4cKFTvvixx9/1Pr169W2bVtJUmBgoGrXrq05c+Y47ZutW7fqm2++Ubt27fK1novtX3d3d9lsNqfT/lNSUrRw4cICbY+bm5s6duyoL7/8Uhs2bMi1PGcudOnSRWvXrtXXX3+dq8/x48d17ty5S66ncePG2rp1q9Pp8JfSokULNWzYUFOmTNHp06cl/b+jxOfPz/Xr12vt2rX5GvNC579XObe6kqRvv/1W27Ztc+rbrl07ZWVl6fXXX3dqf+WVV2Sz2Rzvv6sUxrzr1KmT3N3dNXLkyFy/AyzL0pEjRyT9exX5C9/vyMhIubm5Ob2/3t7eef5+yPHLL78U+I4HAHA+jnQDAK4L06ZNU9OmTRUZGalevXopLCxMBw8e1Nq1a/Xnn3867sPdvn17jRo1So8++qiaNGmiLVu2aO7cubmOUFepUkX+/v566623VLJkSXl7e6tRo0aqXLmyHnvsMS1YsEBt2rRRly5dtHfvXn3wwQe5bhl0MW5ubpo5c6batm2r2267TY8++qgqVqyo/fv3a8WKFfL19dWXX35Z6PsoP6pWraqmTZvqySef1JkzZzRlyhSVLl3a6bTriRMnqm3btmrcuLF69uzpuHWTn5+fRowYka/11KtXT5LUt29ftW7dWu7u7uratavuuecevfzyy2rTpo0eeughHTp0SNOmTVPVqlW1efPmAm3TuHHj9M033ygmJka9e/dWzZo1lZqaqk8++USrV6+Wv7+/BgwYoEWLFql9+/aKj49XvXr1dOrUKW3ZskULFixQSkqK05kQF7rvvvs0evRorVy5UnfffXe+6howYIAefPBBzZ49W0888YTat2+vzz77TPfff7/uueceJScn66233lJ4eHief5zJj/Hjx+uee+5R06ZN1aNHDx09elSvvfaabrvtNqcxO3TooDvuuEP//e9/lZKSolq1aumbb77RF198oX79+uV7bpt0tfOuSpUqGjNmjAYPHqyUlBR17NhRJUuWVHJysj7//HP17t1bCQkJ+u677/T000/rwQcfVPXq1XXu3Dm9//77cnd3V+fOnR3j1atXT8uWLdPLL7+soKAgVa5c2XHhuJ9//llHjx7VfffdZ2p3ALiZXPsLpgMAiprCumXY+bfIysvevXut7t27WxUqVLCKFy9uVaxY0Wrfvr21YMECR5/Tp09bzz//vBUYGGh5eXlZ0dHR1tq1a3Pd7suy/r0FU3h4uFWsWLFctw+bPHmyVbFiRctut1vR0dHWhg0bLnrLsIvdemjjxo1Wp06drNKlS1t2u90KCQmxunTpYi1fvvyS23mpW4ZdeFusnNsnHT582Kk9Li7O8vb2znPMyZMnW8HBwZbdbreaNWtmbdq0KVcNy5Yts6Kjoy0vLy/L19fX6tChg7Vt27Z8rduy/r091jPPPGOVLVvWstlsTreGeuedd6xq1apZdrvdqlGjhjVr1izHWOeTZPXp0yfX2Hnd0u3333+3unfv7rhVV1hYmNWnTx+nW3SdPHnSGjx4sFW1alXLw8PDKlOmjNWkSRNr0qRJVmZmZq71XCgqKsrq2bOnU9vF3hfLsqysrCyrSpUqVpUqVaxz585Z2dnZ1rhx46yQkBDLbrdbderUsRYvXmzFxcU53d7rUv8fJFnDhw93avv000+tmjVrWna73QoPD7c+++yzXGPmbP9zzz1nBQUFWcWLF7eqVatmTZw40ekWdDnruHC/X6ymy/0fyM9+Ot/VzjvL+nd/NG3a1PL29ra8vb2tGjVqWH369LF27txpWZZl/fbbb1aPHj2sKlWqWJ6enlZAQIB1xx13WMuWLXMaZ8eOHVbz5s0tLy8vS5LTnHvhhResSpUq5dp3AFAQNstywZUxAABFytatW/XEE09o9erVeS6//fbb9cEHHzgudoZrLyUlRZUrV9bEiROVkJDg6nKKpPfff199+vTRvn375O/v7+py4CJnzpxRaGioBg0apGeffdbV5QC4AfCdbgAAAEndunVTpUqVNG3aNFeXAheaNWuWihcvfsX3pweAi+E73QCAfFm3bt1Fj/4V9PuqwPXEzc3tsldJx43viSeeIHADKFSEbgDAZUVERFz26s8AAADIje90AwAAAABgCN/pBgAAAADAEEI3AAAAAACG8J1uOGRnZ+vAgQMqWbKkbDabq8sBAAAAgOuWZVk6efKkgoKC5OZ28ePZhG44HDhwQMHBwa4uAwAAAACKjD/++EO33HLLRZcTuuFQsmRJSf9OGl9fXxdXAwAAAADXr7S0NAUHBzty1MUQuuGQc0q5r68voRsAAAAA8uFyX83lQmoAAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAj36UYuzYd8KHe7l6vLAAAAAHCT+3lid1eXcNU40g0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQui+Sm+//baCgoKUnZ3t1H7fffepR48ekqQvvvhCdevWlaenp8LCwjRy5EidO3fO0ddms2nmzJm6//77VaJECVWrVk2LFi1yLJ89e7b8/f2dxl+4cKFsNptT2+XWAwAAAAC4tgjdV+nBBx/UkSNHtGLFCkfb0aNHtXTpUnXr1k2rVq1S9+7d9eyzz2rbtm2aPn26Zs+erbFjxzqNM3LkSHXp0kWbN29Wu3bt1K1bNx09ejTfdeR3PQAAAACAa4fQfZVKlSqltm3bat68eY62BQsWqEyZMrrjjjs0cuRIDRo0SHFxcQoLC1OrVq00evRoTZ8+3Wmc+Ph4xcbGqmrVqho3bpzS09P1448/5ruO/K7nfGfOnFFaWprTAwAAAABQeAjdhaBbt2769NNPdebMGUnS3Llz1bVrV7m5uWnTpk0aNWqUfHx8HI9evXopNTVVGRkZjjGioqIcP3t7e8vX11eHDh3Kdw35Xc/5xo8fLz8/P8cjODi4gHsAAAAAAJCXYq4u4EbQoUMHWZal//3vf2rQoIFWrVqlV155RZKUnp6ukSNHqlOnTrle5+np6fi5ePHiTstsNpvje+Jubm6yLMtp+dmzZ52e53c95xs8eLD69+/veJ6WlkbwBgAAAIBCROguBJ6enurUqZPmzp2rPXv26NZbb1XdunUlSXXr1tXOnTtVtWrVAo9ftmxZnTx5UqdOnZK3t7ckKSkpyalPQdZjt9tlt9sLXBcAAAAA4NII3YWkW7duat++vX799Vc9/PDDjvZhw4apffv2qlSpkh544AHHKedbt27VmDFj8jV2o0aNVKJECf3f//2f+vbtq/Xr12v27NlOfQpjPQAAAACAwsV3ugvJnXfeqYCAAO3cuVMPPfSQo71169ZavHixvvnmGzVo0EC33367XnnlFYWEhOR77ICAAH3wwQdasmSJIiMj9eGHH2rEiBFOfQpjPQAAAACAwmWzLvyyMG5aaWlp8vPzU61n3pK73cvV5QAAAAC4yf08sburS7ionPx04sQJ+fr6XrQfR7oBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhxVxdAK4/34+Jla+vr6vLAAAAAIAijyPdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhRzdQG4/jQf8qHc7V6uLgMAAACAYT9P7O7qEm54HOkGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0F1ALVq0UL9+/VxdhiTp119/VefOnRUaGiqbzaYpU6a4uiQAAAAAgAjdN4SMjAyFhYVpwoQJqlChgqvLAQAAAAD8/wjdBRAfH6+VK1dq6tSpstlsstlsSklJ0datW9W2bVv5+PiofPnyeuSRR/T33387Xrd06VI1bdpU/v7+Kl26tNq3b6+9e/c6lqekpMhms+njjz9Ws2bN5OXlpQYNGmjXrl366aefVL9+ffn4+Kht27Y6fPiw43UNGjTQxIkT1bVrV9nt9mu6LwAAAAAAF0foLoCpU6eqcePG6tWrl1JTU5WamqqSJUvqzjvvVJ06dbRhwwYtXbpUBw8eVJcuXRyvO3XqlPr3768NGzZo+fLlcnNz0/3336/s7Gyn8YcPH64hQ4bol19+UbFixfTQQw9p4MCBmjp1qlatWqU9e/Zo2LBh13qzAQAAAABXqJirCyiK/Pz85OHhoRIlSjhO5x4zZozq1KmjcePGOfq9++67Cg4O1q5du1S9enV17tzZaZx3331XZcuW1bZt2xQREeFoT0hIUOvWrSVJzz77rGJjY7V8+XJFR0dLknr27KnZs2df9XacOXNGZ86ccTxPS0u76jEBAAAAAP8PR7oLyaZNm7RixQr5+Pg4HjVq1JAkxynku3fvVmxsrMLCwuTr66vQ0FBJ0r59+5zGioqKcvxcvnx5SVJkZKRT26FDh6665vHjx8vPz8/xCA4OvuoxAQAAAAD/D0e6C0l6ero6dOigF198MdeywMBASVKHDh0UEhKiGTNmKCgoSNnZ2YqIiFBmZqZT/+LFizt+ttlsebZdeEp6QQwePFj9+/d3PE9LSyN4AwAAAEAhInQXkIeHh7KyshzP69atq08//VShoaEqViz3bj1y5Ih27typGTNmqFmzZpKk1atXX7N682K327nwGgAAAAAYxOnlBRQaGqr169crJSVFf//9t/r06aOjR48qNjZWP/30k/bu3auvv/5ajz76qLKyslSqVCmVLl1ab7/9tvbs2aPvvvvO6Sjz1cjMzFRSUpKSkpKUmZmp/fv3KykpSXv27CmU8QEAAAAABUPoLqCEhAS5u7srPDxcZcuWVWZmptasWaOsrCzdfffdioyMVL9+/eTv7y83Nze5ublp/vz5+vnnnxUREaHnnntOEydOLJRaDhw4oDp16qhOnTpKTU3VpEmTVKdOHT322GOFMj4AAAAAoGBslmVZri4C14e0tDT5+fmp1jNvyd3u5epyAAAAABj288Turi6hyMrJTydOnJCvr+9F+3GkGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGFLM1QXg+vP9mFj5+vq6ugwAAAAAKPI40g0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGBIMVcXgOtP8yEfyt3u5eoyAAAAgJvSzxO7u7oEFCKOdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgSIFD9/vvv6/o6GgFBQXp999/lyRNmTJFX3zxRaEVBwAAAABAUVag0P3mm2+qf//+ateunY4fP66srCxJkr+/v6ZMmVKY9QEAAAAAUGQVKHS/9tprmjFjhv773//K3d3d0V6/fn1t2bKl0IoDAAAAAKAoK1DoTk5OVp06dXK12+12nTp16qqLAgAAAADgRlCg0F25cmUlJSXlal+6dKlq1qx5tTUBAAAAAHBDKFaQF/Xv3199+vTR6dOnZVmWfvzxR3344YcaP368Zs6cWdg1AgAAAABQJBUodD/22GPy8vLSkCFDlJGRoYceekhBQUGaOnWqunbtWtg1AgAAAABQJF1x6D537pzmzZun1q1bq1u3bsrIyFB6errKlStnoj4AAAAAAIqsK/5Od7FixfTEE0/o9OnTkqQSJUoQuAEAAAAAyEOBLqTWsGFDbdy4sbBrAQAAAADghlKg73Q/9dRTev755/Xnn3+qXr168vb2dloeFRVVKMUBAAAAAFCUFSh051wsrW/fvo42m80my7Jks9mUlZVVONUBAAAAAFCEFSh0JycnF3YdAAAAAADccAoUukNCQgq7DgAAAAAAbjgFCt3vvffeJZd37969QMUAAAAAAHAjKVDofvbZZ52enz17VhkZGfLw8FCJEiUI3QAAAAAAqIC3DDt27JjTIz09XTt37lTTpk314YcfFnaNAAAAAAAUSQUK3XmpVq2aJkyYkOsoOAAAAAAAN6tCC92SVKxYMR04cKAwh7xutWjRQv369XN1GZKkGTNmqFmzZipVqpRKlSqlli1b6scff3R1WQAAAABw0yvQd7oXLVrk9NyyLKWmpur1119XdHR0oRSG/EtMTFRsbKyaNGkiT09Pvfjii7r77rv166+/qmLFiq4uDwAAAABuWgU60t2xY0enR6dOnTRixAhFRUXp3XffLewarzvx8fFauXKlpk6dKpvNJpvNppSUFG3dulVt27aVj4+Pypcvr0ceeUR///2343VLly5V06ZN5e/vr9KlS6t9+/bau3evY3lKSopsNps+/vhjNWvWTF5eXmrQoIF27dqln376SfXr15ePj4/atm2rw4cPO143d+5cPfXUU6pdu7Zq1KihmTNnKjs7W8uXL7+m+wUAAAAA4KxAoTs7O9vpkZWVpb/++kvz5s1TYGBgYdd43Zk6daoaN26sXr16KTU1VampqSpZsqTuvPNO1alTRxs2bNDSpUt18OBBdenSxfG6U6dOqX///tqwYYOWL18uNzc33X///crOznYaf/jw4RoyZIh++eUXFStWTA899JAGDhyoqVOnatWqVdqzZ4+GDRt20foyMjJ09uxZBQQEGNsHAAAAAIDLK9Dp5aNGjVJCQoJKlCjh1P7PP/9o4sSJlwyENwI/Pz/H7dEqVKggSRozZozq1KmjcePGOfq9++67Cg4O1q5du1S9enV17tzZaZx3331XZcuW1bZt2xQREeFoT0hIUOvWrSX9e3u22NhYLV++3HHqfs+ePTV79uyL1vfCCy8oKChILVu2vOR2nDlzRmfOnHE8T0tLy98OAAAAAADkS4GOdI8cOVLp6em52jMyMjRy5MirLqoo2rRpk1asWCEfHx/Ho0aNGpLkOIV89+7dio2NVVhYmHx9fRUaGipJ2rdvn9NYUVFRjp/Lly8vSYqMjHRqO3ToUJ51TJgwQfPnz9fnn38uT0/PS9Y8fvx4+fn5OR7BwcFXttEAAAAAgEsq0JFuy7Jks9lytW/atOmmPaU5PT1dHTp00IsvvphrWc4p9x06dFBISIhmzJihoKAgZWdnKyIiQpmZmU79ixcv7vg5Zz9f2HbhKemSNGnSJE2YMEHLli1zCu4XM3jwYPXv39/xPC0tjeANAAAAAIXoikJ3qVKlHBcOq169ulPwzsrKUnp6up544olCL/J65OHhoaysLMfzunXr6tNPP1VoaKiKFcu9W48cOaKdO3c6bu8lSatXry60el566SWNHTtWX3/9terXr5+v19jtdtnt9kKrAQAAAADg7IpC95QpU2RZlnr06KGRI0fKz8/PsczDw0OhoaFq3LhxoRd5PQoNDdX69euVkpIiHx8f9enTRzNmzFBsbKwGDhyogIAA7dmzR/Pnz9fMmTNVqlQplS5dWm+//bYCAwO1b98+DRo0qFBqefHFFzVs2DDNmzdPoaGh+uuvvyTJcZo7AAAAAMA1rih0x8XFSZIqV66sJk2aOJ3yfLNJSEhQXFycwsPD9c8//yg5OVlr1qzRCy+8oLvvvltnzpxRSEiI2rRpIzc3N9lsNs2fP199+/ZVRESEbr31Vr366qtq0aLFVdfy5ptvKjMzUw888IBT+/DhwzVixIirHh8AAAAAUDA2y7Ksqxng9OnTub6T7Ovre1VFwTXS0tLk5+enWs+8JXe7l6vLAQAAAG5KP0/s7uoSkA85+enEiROXzMAFunp5RkaGnn76aZUrV07e3t4qVaqU0wMAAAAAABQwdA8YMEDfffed3nzzTdntds2cOVMjR45UUFCQ3nvvvcKuEQAAAACAIqlAtwz78ssv9d5776lFixZ69NFH1axZM1WtWlUhISGaO3euunXrVth1AgAAAABQ5BToSPfRo0cVFhYm6d/vbx89elSS1LRpU33//feFVx0AAAAAAEVYgUJ3WFiYkpOTJUk1atTQxx9/LOnfI+D+/v6FVhwAAAAAAEVZgUL3o48+qk2bNkmSBg0apGnTpsnT01PPPfecBgwYUKgFAgAAAABQVBXoO93PPfec4+eWLVtqx44d+vnnn1W1alVFRUUVWnEAAAAAABRlBQrd5zt9+rRCQkIUEhJSGPUAAAAAAHDDKNDp5VlZWRo9erQqVqwoHx8f/fbbb5KkoUOH6p133inUAgEAAAAAKKoKFLrHjh2r2bNn66WXXpKHh4ejPSIiQjNnziy04gAAAAAAKMoKFLrfe+89vf322+rWrZvc3d0d7bVq1dKOHTsKrTgAAAAAAIqyAoXu/fv3q2rVqrnas7Ozdfbs2asuCgAAAACAG0GBQnd4eLhWrVqVq33BggWqU6fOVRcFAAAAAMCNoEBXLx82bJji4uK0f/9+ZWdn67PPPtPOnTv13nvvafHixYVdIwAAAAAARdIVHen+7bffZFmW7rvvPn355ZdatmyZvL29NWzYMG3fvl1ffvmlWrVqZapWAAAAAACKlCs60l2tWjWlpqaqXLlyatasmQICArRlyxaVL1/eVH0AAAAAABRZV3Sk27Isp+dfffWVTp06VagFAQAAAABwoyjQhdRyXBjCAQAAAADA/3NFodtms8lms+VqAwAAAAAAuV3Rd7oty1J8fLzsdrsk6fTp03riiSfk7e3t1O+zzz4rvAoBAAAAACiirih0x8XFOT1/+OGHC7UYAAAAAABuJFcUumfNmmWqDgAAAAAAbjhXdSE1AAAAAABwcYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDirm6AFx/vh8TK19fX1eXAQAAAABFHke6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCnm6gJw/Wk+5EO5271cXQYAAMBV+3lid1eXAOAmx5FuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKHbkJSUFNlsNiUlJbm6FAAAAACAixSJ0N2iRQv169fP1WVckeDgYKWmpioiIsLVpQAAAAAAXKSYqwu4Ubm7u6tChQquLkOWZSkrK0vFivFWAwAAAMC1dt0f6Y6Pj9fKlSs1depU2Ww22Ww2paSkaOXKlWrYsKHsdrsCAwM1aNAgnTt3zvG6BQsWKDIyUl5eXipdurRatmypU6dOSZISExPVsGFDeXt7y9/fX9HR0fr9998vWceJEyfk7u6uDRs2SJKys7MVEBCg22+/3dHngw8+UHBwsKTcp5cnJibKZrNp+fLlql+/vkqUKKEmTZpo586djtePGDFCtWvX1vvvv6/Q0FD5+fmpa9euOnnypKNPdna2xo8fr8qVK8vLy0u1atXSggULHMtz1vPVV1+pXr16stvtWr16dQH3PgAAAADgalz3oXvq1Klq3LixevXqpdTUVKWmpqp48eJq166dGjRooE2bNunNN9/UO++8ozFjxkiSUlNTFRsbqx49emj79u1KTExUp06dZFmWzp07p44dOyomJkabN2/W2rVr1bt3b9lstkvW4efnp9q1aysxMVGStGXLFtlsNm3cuFHp6emSpJUrVyomJuaS4/z3v//V5MmTtWHDBhUrVkw9evRwWr53714tXLhQixcv1uLFi7Vy5UpNmDDBsXz8+PF677339NZbb+nXX3/Vc889p4cfflgrV650GmfQoEGaMGGCtm/frqioqDxrOXPmjNLS0pweAAAAAIDCc92fc+zn5ycPDw+VKFHCcbr2f//7XwUHB+v111+XzWZTjRo1dODAAb3wwgsaNmyYUlNTde7cOXXq1EkhISGSpMjISEnS0aNHdeLECbVv315VqlSRJNWsWTNftbRo0UKJiYlKSEhQYmKiWrVqpR07dmj16tVq06aNEhMTNXDgwEuOMXbsWEcwHzRokO655x6dPn1anp6ekv49kj179myVLFlSkvTII49o+fLlGjt2rM6cOaNx48Zp2bJlaty4sSQpLCxMq1ev1vTp050C/6hRo9SqVatL1jJ+/HiNHDkyX9sOAAAAALhy1/2R7rxs375djRs3djo6HR0drfT0dP3555+qVauW7rrrLkVGRurBBx/UjBkzdOzYMUlSQECA4uPj1bp1a3Xo0EFTp05VampqvtYbExOj1atXKysrSytXrlSLFi0cQfzAgQPas2ePWrRocckxzj/qHBgYKEk6dOiQoy00NNQRuHP65Czfs2ePMjIy1KpVK/n4+Dge7733nvbu3eu0nvr16192ewYPHqwTJ044Hn/88cdlXwMAAAAAyL8iGbovx93dXd9++62++uorhYeH67XXXtOtt96q5ORkSdKsWbO0du1aNWnSRB999JGqV6+udevWXXbc5s2b6+TJk/rll1/0/fffO4XulStXKigoSNWqVbvkGMWLF3f8nPNHg+zs7DyX5/TJWZ5zGvv//vc/JSUlOR7btm1z+l63JHl7e192e+x2u3x9fZ0eAAAAAIDCUyRCt4eHh7KyshzPa9asqbVr18qyLEfbmjVrVLJkSd1yyy2S/g2r0dHRGjlypDZu3CgPDw99/vnnjv516tTR4MGD9cMPPygiIkLz5s27bB3+/v6KiorS66+/ruLFi6tGjRpq3ry5Nm7cqMWLF1/2+9xXKzw8XHa7Xfv27VPVqlWdHjkXcAMAAAAAXD+u++90S/+ecr1+/XqlpKTIx8dHTz31lKZMmaJnnnlGTz/9tHbu3Knhw4erf//+cnNz0/r167V8+XLdfffdKleunNavX6/Dhw+rZs2aSk5O1ttvv617771XQUFB2rlzp3bv3q3u3bvnq5YWLVrotdde0wMPPCDp39PVa9asqY8++kjTpk0zuRtUsmRJJSQk6LnnnlN2draaNm2qEydOaM2aNfL19VVcXJzR9QMAAAAArkyRCN0JCQmKi4tTeHi4/vnnHyUnJ2vJkiUaMGCAatWqpYCAAPXs2VNDhgyRJPn6+ur777/XlClTlJaWppCQEE2ePFlt27bVwYMHtWPHDs2ZM0dHjhxRYGCg+vTpo8cffzxftcTExGjKlClO391u0aKFNm3adNnvcxeG0aNHq2zZsho/frx+++03+fv7q27duvq///s/4+sGAAAAAFwZm3X+Odq4qaWlpcnPz0+1nnlL7nYvV5cDAABw1X6emL+zGQHgSuXkpxMnTlzy+lhF4jvdAAAAAAAURYTu89x2221Ot+I6/zF37lxXlwcAAAAAKGKKxHe6r5UlS5bo7NmzeS4rX778Na4GAAAAAFDUEbrPExIS4uoSAAAAAAA3EE4vBwAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgSDFXF4Drz/djYuXr6+vqMgAAAACgyONINwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCHFXF0Arj/Nh3wod7uXq8sA9PPE7q4uAQAAALgqHOkGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELovYsSIEapdu7ZLxivsdQMAAAAAXMOlobtFixbq16+fK0u4ZhISErR8+fJC7wsAAAAAuH4Vc3UBNwsfHx/5+PgUel8AAAAAwPXLZUe64+PjtXLlSk2dOlU2m002m00pKSlauXKlGjZsKLvdrsDAQA0aNEjnzp1zvG7BggWKjIyUl5eXSpcurZYtW+rUqVOSpMTERDVs2FDe3t7y9/dXdHS0fv/993zVM2HCBJUvX14lS5ZUz549dfr06Vx9Zs6cqZo1a8rT01M1atTQG2+84bT8zz//VGxsrAICAuTt7a369etr/fr1knKfMn6pWi/sm52drVGjRumWW26R3W5X7dq1tXTpUsfylJQU2Ww2ffbZZ7rjjjtUokQJ1apVS2vXrs3XtgMAAAAAzHBZ6J46daoaN26sXr16KTU1VampqSpevLjatWunBg0aaNOmTXrzzTf1zjvvaMyYMZKk1NRUxcbGqkePHtq+fbsSExPVqVMnWZalc+fOqWPHjoqJidHmzZu1du1a9e7dWzab7bK1fPzxxxoxYoTGjRunDRs2KDAwMFegnjt3roYNG6axY8dq+/btGjdunIYOHao5c+ZIktLT0xUTE6P9+/dr0aJF2rRpkwYOHKjs7Oxc67vSWqdOnarJkydr0qRJ2rx5s1q3bq17771Xu3fvdur33//+VwkJCUpKSlL16tUVGxvr9AeLC505c0ZpaWlODwAAAABA4XHZ6eV+fn7y8PBQiRIlVKFCBUn/hsbg4GC9/vrrstlsqlGjhg4cOKAXXnhBw4YNU2pqqs6dO6dOnTopJCREkhQZGSlJOnr0qE6cOKH27durSpUqkqSaNWvmq5YpU6aoZ8+e6tmzpyRpzJgxWrZsmdPR7uHDh2vy5Mnq1KmTJKly5cratm2bpk+frri4OM2bN0+HDx/WTz/9pICAAElS1apV81xfWlraFdU6adIkvfDCC+ratask6cUXX9SKFSs0ZcoUTZs2zdEvISFB99xzjyRp5MiRuu2227Rnzx7VqFEjz3HHjx+vkSNH5msfAQAAAACu3HV19fLt27ercePGTkd8o6OjlZ6erj///FO1atXSXXfdpcjISD344IOaMWOGjh07JkkKCAhQfHy8WrdurQ4dOmjq1KlKTU3N93obNWrk1Na4cWPHz6dOndLevXvVs2dPx/etfXx8NGbMGO3du1eSlJSUpDp16jgC96VcSa1paWk6cOCAoqOjndqjo6O1fft2p7aoqCjHz4GBgZKkQ4cOXbSOwYMH68SJE47HH3/8cdnaAQAAAAD5d12F7stxd3fXt99+q6+++krh4eF67bXXdOuttyo5OVmSNGvWLK1du1ZNmjTRRx99pOrVq2vdunVXvd709HRJ0owZM5SUlOR4bN261TG+l5fXFY1potbixYs7fs75w0Vep7fnsNvt8vX1dXoAAAAAAAqPS0O3h4eHsrKyHM9r1qyptWvXyrIsR9uaNWtUsmRJ3XLLLZL+DZPR0dEaOXKkNm7cKA8PD33++eeO/nXq1NHgwYP1ww8/KCIiQvPmzbtsHTVr1nRc8CzH+QG4fPnyCgoK0m+//aaqVas6PSpXrizp36PMSUlJOnr0aL63Pz+1+vr6KigoSGvWrHFqX7NmjcLDw/O9LgAAAADAtefSW4aFhoZq/fr1SklJkY+Pj5566ilNmTJFzzzzjJ5++mnt3LlTw4cPV//+/eXm5qb169dr+fLluvvuu1WuXDmtX79ehw8fVs2aNZWcnKy3335b9957r4KCgrRz507t3r1b3bt3v2wdzz77rOLj41W/fn1FR0dr7ty5+vXXXxUWFuboM3LkSPXt21d+fn5q06aNzpw5ow0bNujYsWPq37+/YmNjNW7cOHXs2FHjx49XYGCgNm7cqKCgIKdT1SVdca0DBgzQ8OHDVaVKFdWuXVuzZs1SUlKS5s6de3VvAAAAAADAKJeG7oSEBMXFxSk8PFz//POPkpOTtWTJEg0YMEC1atVSQECAevbsqSFDhkj696jv999/rylTpigtLU0hISGaPHmy2rZtq4MHD2rHjh2aM2eOjhw5osDAQPXp00ePP/74Zev4z3/+o71792rgwIE6ffq0OnfurCeffFJff/21o89jjz2mEiVKaOLEiRowYIC8vb0VGRmpfv36Sfr3qP0333yj559/Xu3atdO5c+cUHh7udKGzHCVKlLiiWvv27asTJ07o+eef16FDhxQeHq5FixapWrVqBdjrAAAAAIBrxWadfy43bmppaWny8/NTrWfekrv9yr6jDpjw88TLn6kCAAAAuEJOfjpx4sQlr49VpC6kBgAAAABAUXJThO7bbrvN6VZf5z/4XjQAAAAAwBSXfqf7WlmyZInOnj2b57Ly5ctf42oAAAAAADeLmyJ0h4SEuLoEAAAAAMBN6KY4vRwAAAAAAFcgdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYUc3UBuP58PyZWvr6+ri4DAAAAAIo8jnQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCnm6gJw/bAsS5KUlpbm4koAAAAA4PqWk5tyctTFELrhcOTIEUlScHCwiysBAAAAgKLh5MmT8vPzu+hyQjccAgICJEn79u275KQBCiItLU3BwcH6448/5Ovr6+pycANijsEk5hdMY47BJOaXGZZl6eTJkwoKCrpkP0I3HNzc/v2Kv5+fH/8ZYYyvry/zC0Yxx2AS8wumMcdgEvOr8OXnYCUXUgMAAAAAwBBCNwAAAAAAhhC64WC32zV8+HDZ7XZXl4IbEPMLpjHHYBLzC6Yxx2AS88u1bNblrm8OAAAAAAAKhCPdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQum9g06ZNU2hoqDw9PdWoUSP9+OOPl+z/ySefqEaNGvL09FRkZKSWLFnitNyyLA0bNkyBgYHy8vJSy5YttXv3bpObgOtcYc+x+Ph42Ww2p0ebNm1MbgKuY1cyv3799Vd17txZoaGhstlsmjJlylWPiRtfYc+xESNG5PodVqNGDYNbgOvZlcyvGTNmqFmzZipVqpRKlSqlli1b5urP5zBcqLDnGJ/DzCF036A++ugj9e/fX8OHD9cvv/yiWrVqqXXr1jp06FCe/X/44QfFxsaqZ8+e2rhxozp27KiOHTtq69atjj4vvfSSXn31Vb311ltav369vL291bp1a50+ffpabRauIybmmCS1adNGqampjseHH354LTYH15krnV8ZGRkKCwvThAkTVKFChUIZEzc2E3NMkm677Tan32GrV682tQm4jl3p/EpMTFRsbKxWrFihtWvXKjg4WHfffbf279/v6MPnMJzPxByT+BxmjIUbUsOGDa0+ffo4nmdlZVlBQUHW+PHj8+zfpUsX65577nFqa9SokfX4449blmVZ2dnZVoUKFayJEyc6lh8/ftyy2+3Whx9+aGALcL0r7DlmWZYVFxdn3XfffUbqRdFypfPrfCEhIdYrr7xSqGPixmNijg0fPtyqVatWIVaJoupqf9+cO3fOKlmypDVnzhzLsvgchtwKe45ZFp/DTOJI9w0oMzNTP//8s1q2bOloc3NzU8uWLbV27do8X7N27Vqn/pLUunVrR//k5GT99ddfTn38/PzUqFGji46JG5eJOZYjMTFR5cqV06233qonn3xSR44cKfwNwHWtIPPLFWOi6DI5H3bv3q2goCCFhYWpW7du2rdv39WWiyKmMOZXRkaGzp49q4CAAEl8DoMzE3MsB5/DzCB034D+/vtvZWVlqXz58k7t5cuX119//ZXna/76669L9s/590rGxI3LxByT/j2l6b333tPy5cv14osvauXKlWrbtq2ysrIKfyNw3SrI/HLFmCi6TM2HRo0aafbs2Vq6dKnefPNNJScnq1mzZjp58uTVlowipDDm1wsvvKCgoCBHqOJzGM5nYo5JfA4zqZirCwCAHF27dnX8HBkZqaioKFWpUkWJiYm66667XFgZAFxe27ZtHT9HRUWpUaNGCgkJ0ccff6yePXu6sDIUJRMmTND8+fOVmJgoT09PV5eDG9DF5hifw8zhSPcNqEyZMnJ3d9fBgwed2g8ePHjRi79UqFDhkv1z/r2SMXHjMjHH8hIWFqYyZcpoz549V180ioyCzC9XjImi61rNB39/f1WvXp3fYTeZq5lfkyZN0oQJE/TNN98oKirK0c7nMJzPxBzLC5/DCg+h+wbk4eGhevXqafny5Y627OxsLV++XI0bN87zNY0bN3bqL0nffvuto3/lypVVoUIFpz5paWlav379RcfEjcvEHMvLn3/+qSNHjigwMLBwCkeRUJD55YoxUXRdq/mQnp6uvXv38jvsJlPQ+fXSSy9p9OjRWrp0qerXr++0jM9hOJ+JOZYXPocVIldfyQ1mzJ8/37Lb7dbs2bOtbdu2Wb1797b8/f2tv/76y7Isy3rkkUesQYMGOfqvWbPGKlasmDVp0iRr+/bt1vDhw63ixYtbW7ZscfSZMGGC5e/vb33xxRfW5s2brfvuu8+qXLmy9c8//1zz7YPrFfYcO3nypJWQkGCtXbvWSk5OtpYtW2bVrVvXqlatmnX69GmXbCNc50rn15kzZ6yNGzdaGzdutAIDA62EhARr48aN1u7du/M9Jm4uJubY888/byUmJlrJycnWmjVrrJYtW1plypSxDh06dM23D651pfNrwoQJloeHh7VgwQIrNTXV8Th58qRTHz6HIUdhzzE+h5lF6L6Bvfbaa1alSpUsDw8Pq2HDhta6descy2JiYqy4uDin/h9//LFVvXp1y8PDw7rtttus//3vf07Ls7OzraFDh1rly5e37Ha7ddddd1k7d+68FpuC61RhzrGMjAzr7rvvtsqWLWsVL17cCgkJsXr16kUguoldyfxKTk62JOV6xMTE5HtM3HwKe4795z//sQIDAy0PDw+rYsWK1n/+8x9rz54913CLcD25kvkVEhKS5/waPny4ow+fw3ChwpxjfA4zy2ZZlnVtj60DAAAAAHBz4DvdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgCgiImPj1fHjh1dXcZFpaSkyGazKSkpydWl5Mvhw4f15JNPqlKlSrLb7apQoYJat26tNWvWuLo0AMANoJirCwAAADeOzMxMV5dwxTp37qzMzEzNmTNHYWFhOnjwoJYvX64jR44YW2dmZqY8PDyMjQ8AuH5wpBsAgCKuRYsWeuaZZ9SvXz+VKlVK5cuX14wZM3Tq1Ck9+uijKlmypKpWraqvvvrK8ZrExETZbDb973//U1RUlDw9PXX77bdr69atTmN/+umnuu2222S32xUaGqrJkyc7LQ8NDdXo0aPVvXt3+fr6qnfv3qpcubIkqU6dOrLZbGrRooUk6aefflKrVq1UpkwZ+fn5KSYmRr/88ovTeDabTTNnztT999+vEiVKqFq1alq0aJFTn19//VXt27eXr6+vSpYsqWbNmmnv3r2O5TNnzlTNmjXl6empGjVq6I033rjovjt+/LhWrVqlF198UXfccYdCQkLUsGFDDR48WPfee69Tv8cff1zly5eXp6enIiIitHjx4qvaT5K0evVqNWvWTF5eXgoODlbfvn116tSpi9YLACh6CN0AANwA5syZozJlyujHH3/UM888oyeffFIPPvigmjRpol9++UV33323HnnkEWVkZDi9bsCAAZo8ebJ++uknlS1bVh06dNDZs2clST///LO6dOmirl27asuWLRoxYoSGDh2q2bNnO40xadIk1apVSxs3btTQoUP1448/SpKWLVum1NRUffbZZ5KkkydPKi4uTqtXr9a6detUrVo1tWvXTidPnnQab+TIkerSpYs2b96sdu3aqVu3bjp69Kgkaf/+/WrevLnsdru+++47/fzzz+rRo4fOnTsnSZo7d66GDRumsWPHavv27Ro3bpyGDh2qOXPm5LnffHx85OPjo4ULF+rMmTN59snOzlbbtm21Zs0affDBB9q2bZsmTJggd3f3q9pPe/fuVZs2bdS5c2dt3rxZH330kVavXq2nn376Um81AKCosQAAQJESFxdn3XfffY7nMTExVtOmTR3Pz507Z3l7e1uPPPKIoy01NdWSZK1du9ayLMtasWKFJcmaP3++o8+RI0csLy8v66OPPrIsy7Ieeughq1WrVk7rHjBggBUeHu54HhISYnXs2NGpT3JysiXJ2rhx4yW3IysryypZsqT15ZdfOtokWUOGDHE8T09PtyRZX331lWVZljV48GCrcuXKVmZmZp5jVqlSxZo3b55T2+jRo63GjRtftI4FCxZYpUqVsjw9Pa0mTZpYgwcPtjZt2uRY/vXXX1tubm7Wzp0783x9QfdTz549rd69ezu1rVq1ynJzc7P++eefi9YLAChaONINAMANICoqyvGzu7u7SpcurcjISEdb+fLlJUmHDh1yel3jxo0dPwcEBOjWW2/V9u3bJUnbt29XdHS0U//o6Gjt3r1bWVlZjrb69evnq8aDBw+qV69eqlatmvz8/OTr66v09HTt27fvotvi7e0tX19fR91JSUlq1qyZihcvnmv8U6dOae/everZs6fjCLaPj4/GjBnjdPr5hTp37qwDBw5o0aJFatOmjRITE1W3bl3HkeqkpCTdcsstql69ep6vL+h+2rRpk2bPnu1Ua+vWrZWdna3k5OSL1gsAKFq4kBoAADeAC0OozWZzarPZbJL+PVW6sHl7e+erX1xcnI4cOaKpU6cqJCREdrtdjRs3znXxtby2JaduLy+vi46fnp4uSZoxY4YaNWrktCznVPCL8fT0VKtWrdSqVSsNHTpUjz32mIYPH674+PhLrvNKXLif0tPT9fjjj6tv3765+laqVKlQ1gkAcD1CNwAAN7F169Y5At6xY8e0a9cu1axZU5JUs2bNXLfNWrNmjapXr37JEJtzVe7zj/LmvPaNN95Qu3btJEl//PGH/v777yuqNyoqSnPmzNHZs2dzhfPy5csrKChIv/32m7p163ZF414oPDxcCxcudKzzzz//1K5du/I82l3Q/VS3bl1t27ZNVatWvapaAQDXN04vBwDgJjZq1CgtX75cW7duVXx8vMqUKeO4B/jzzz+v5cuXa/To0dq1a5fmzJmj119/XQkJCZccs1y5cvLy8tLSpUt18OBBnThxQpJUrVo1vf/++9q+fbvWr1+vbt26XfFR5KefflppaWnq2rWrNmzYoN27d+v999/Xzp07Jf17Ebbx48fr1Vdf1a5du7RlyxbNmjVLL7/8cp7jHTlyRHfeeac++OADbd68WcnJyfrkk0/00ksv6b777pMkxcTEqHnz5urcubO+/fZbJScn66uvvtLSpUuvaj+98MIL+uGHH/T0008rKSlJu3fv1hdffMGF1ADgBkPoBgDgJjZhwgQ9++yzqlevnv766y99+eWXjiPVdevW1ccff6z58+crIiJCw4YN06hRoxQfH3/JMYsVK6ZXX31V06dPV1BQkCO8vvPOOzp27Jjq1q2rRx55RH379lW5cuWuqN7SpUvru+++U3p6umJiYlSvXj3NmDHDcdT7scce08yZMzVr1ixFRkYqJiZGs2fPdtzG7EI+Pj5q1KiRXnnlFTVv3lwREREaOnSoevXqpddff93R79NPP1WDBg0UGxur8PBwDRw40HEkv6D7KSoqSitXrtSuXbvUrFkz1alTR8OGDVNQUNAV7RMAwPXNZlmW5eoiAADAtZWYmKg77rhDx44dk7+/v6vLAQDghsWRbgAAAAAADCF0AwAAAABgCKeXAwAAAABgCEe6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMOT/A3raCSZOz9cMAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["# Drop matches without a winner\n","matches_df = matches_df.dropna(subset=['winner']).copy()\n","\n","# Create new feature: 'home_team' — if team1 or team2 matches the city (approximation)\n","def get_home_team(row):\n"," city = str(row['city']).lower()\n"," team1 = str(row['team1']).lower()\n"," team2 = str(row['team2']).lower()\n","\n"," if city in team1:\n"," return row['team1']\n"," elif city in team2:\n"," return row['team2']\n"," else:\n"," return 'Neutral'\n","\n","matches_df['home_team'] = matches_df.apply(get_home_team, axis=1)\n","\n","# Create new feature: 'head_to_head_count' — total matches played between team1 and team2 so far\n","head_to_head = {}\n","head_to_head_list = []\n","\n","for i, row in matches_df.iterrows():\n"," pair = tuple(sorted([row['team1'], row['team2']]))\n"," count = head_to_head.get(pair, 0)\n"," head_to_head_list.append(count)\n"," head_to_head[pair] = count + 1\n","\n","matches_df['head_to_head_count'] = head_to_head_list\n","\n","# Show sample with new features\n","matches_df[['team1', 'team2', 'city', 'home_team', 'head_to_head_count']].head(10)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":363},"id":"LLx5xSTjvH_W","executionInfo":{"status":"ok","timestamp":1744090644989,"user_tz":-330,"elapsed":397,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"858fe482-c90e-4954-da8a-b88eea28770b"},"execution_count":15,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" team1 team2 city \\\n","0 Royal Challengers Bangalore Kolkata Knight Riders Bangalore \n","1 Kings XI Punjab Chennai Super Kings Chandigarh \n","2 Delhi Daredevils Rajasthan Royals Delhi \n","3 Mumbai Indians Royal Challengers Bangalore Mumbai \n","4 Kolkata Knight Riders Deccan Chargers Kolkata \n","5 Rajasthan Royals Kings XI Punjab Jaipur \n","6 Deccan Chargers Delhi Daredevils Hyderabad \n","7 Chennai Super Kings Mumbai Indians Chennai \n","8 Deccan Chargers Rajasthan Royals Hyderabad \n","9 Kings XI Punjab Mumbai Indians Chandigarh \n","\n"," home_team head_to_head_count \n","0 Royal Challengers Bangalore 0 \n","1 Neutral 0 \n","2 Delhi Daredevils 0 \n","3 Mumbai Indians 0 \n","4 Kolkata Knight Riders 0 \n","5 Neutral 0 \n","6 Neutral 0 \n","7 Chennai Super Kings 0 \n","8 Neutral 0 \n","9 Neutral 0 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
team1team2cityhome_teamhead_to_head_count
0Royal Challengers BangaloreKolkata Knight RidersBangaloreRoyal Challengers Bangalore0
1Kings XI PunjabChennai Super KingsChandigarhNeutral0
2Delhi DaredevilsRajasthan RoyalsDelhiDelhi Daredevils0
3Mumbai IndiansRoyal Challengers BangaloreMumbaiMumbai Indians0
4Kolkata Knight RidersDeccan ChargersKolkataKolkata Knight Riders0
5Rajasthan RoyalsKings XI PunjabJaipurNeutral0
6Deccan ChargersDelhi DaredevilsHyderabadNeutral0
7Chennai Super KingsMumbai IndiansChennaiChennai Super Kings0
8Deccan ChargersRajasthan RoyalsHyderabadNeutral0
9Kings XI PunjabMumbai IndiansChandigarhNeutral0
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"matches_df[['team1', 'team2', 'city', 'home_team', 'head_to_head_count']]\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"team1\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"Kings XI Punjab\",\n \"Rajasthan Royals\",\n \"Royal Challengers Bangalore\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team2\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"Chennai Super Kings\",\n \"Kings XI Punjab\",\n \"Kolkata Knight Riders\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"city\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"Chandigarh\",\n \"Jaipur\",\n \"Bangalore\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"home_team\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"Royal Challengers Bangalore\",\n \"Neutral\",\n \"Chennai Super Kings\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"head_to_head_count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":15}]},{"cell_type":"code","source":["matches_df.tail(15)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"mFT9bD3JvH7H","executionInfo":{"status":"ok","timestamp":1744090645153,"user_tz":-330,"elapsed":161,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"9a8f27ff-1001-4a2c-8dd2-9882950e0ba8"},"execution_count":16,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" id season city date match_type player_of_match \\\n","1080 1426295 2024 Hyderabad 2024-05-08 League TM Head \n","1081 1426296 2024 Dharamsala 2024-05-09 League V Kohli \n","1082 1426297 2024 Ahmedabad 2024-05-10 League Shubman Gill \n","1083 1426298 2024 Kolkata 2024-05-11 League CV Varun \n","1084 1426299 2024 Chennai 2024-05-12 League Simarjeet Singh \n","1085 1426300 2024 Bengaluru 2024-05-12 League C Green \n","1086 1426302 2024 Delhi 2024-05-14 League I Sharma \n","1087 1426303 2024 Guwahati 2024-05-15 League SM Curran \n","1088 1426305 2024 Mumbai 2024-05-17 League N Pooran \n","1089 1426306 2024 Bengaluru 2024-05-18 League F du Plessis \n","1090 1426307 2024 Hyderabad 2024-05-19 League Abhishek Sharma \n","1091 1426309 2024 Ahmedabad 2024-05-21 Qualifier 1 MA Starc \n","1092 1426310 2024 Ahmedabad 2024-05-22 Eliminator R Ashwin \n","1093 1426311 2024 Chennai 2024-05-24 Qualifier 2 Shahbaz Ahmed \n","1094 1426312 2024 Chennai 2024-05-26 Final MA Starc \n","\n"," venue \\\n","1080 Rajiv Gandhi International Stadium, Uppal, Hyd... \n","1081 Himachal Pradesh Cricket Association Stadium, ... \n","1082 Narendra Modi Stadium, Ahmedabad \n","1083 Eden Gardens, Kolkata \n","1084 MA Chidambaram Stadium, Chepauk, Chennai \n","1085 M Chinnaswamy Stadium, Bengaluru \n","1086 Arun Jaitley Stadium, Delhi \n","1087 Barsapara Cricket Stadium, Guwahati \n","1088 Wankhede Stadium, Mumbai \n","1089 M Chinnaswamy Stadium, Bengaluru \n","1090 Rajiv Gandhi International Stadium, Uppal, Hyd... \n","1091 Narendra Modi Stadium, Ahmedabad \n","1092 Narendra Modi Stadium, Ahmedabad \n","1093 MA Chidambaram Stadium, Chepauk, Chennai \n","1094 MA Chidambaram Stadium, Chepauk, Chennai \n","\n"," team1 team2 \\\n","1080 Lucknow Super Giants Sunrisers Hyderabad \n","1081 Royal Challengers Bengaluru Punjab Kings \n","1082 Gujarat Titans Chennai Super Kings \n","1083 Kolkata Knight Riders Mumbai Indians \n","1084 Rajasthan Royals Chennai Super Kings \n","1085 Royal Challengers Bengaluru Delhi Capitals \n","1086 Delhi Capitals Lucknow Super Giants \n","1087 Rajasthan Royals Punjab Kings \n","1088 Lucknow Super Giants Mumbai Indians \n","1089 Royal Challengers Bengaluru Chennai Super Kings \n","1090 Punjab Kings Sunrisers Hyderabad \n","1091 Sunrisers Hyderabad Kolkata Knight Riders \n","1092 Royal Challengers Bengaluru Rajasthan Royals \n","1093 Sunrisers Hyderabad Rajasthan Royals \n","1094 Sunrisers Hyderabad Kolkata Knight Riders \n","\n"," toss_winner ... result_margin target_runs target_overs \\\n","1080 Lucknow Super Giants ... 10.0 166.0 20.0 \n","1081 Punjab Kings ... 60.0 242.0 20.0 \n","1082 Chennai Super Kings ... 35.0 232.0 20.0 \n","1083 Mumbai Indians ... 18.0 158.0 16.0 \n","1084 Rajasthan Royals ... 5.0 142.0 20.0 \n","1085 Delhi Capitals ... 47.0 188.0 20.0 \n","1086 Lucknow Super Giants ... 19.0 209.0 20.0 \n","1087 Rajasthan Royals ... 5.0 145.0 20.0 \n","1088 Mumbai Indians ... 18.0 215.0 20.0 \n","1089 Chennai Super Kings ... 27.0 219.0 20.0 \n","1090 Punjab Kings ... 4.0 215.0 20.0 \n","1091 Sunrisers Hyderabad ... 8.0 160.0 20.0 \n","1092 Rajasthan Royals ... 4.0 173.0 20.0 \n","1093 Rajasthan Royals ... 36.0 176.0 20.0 \n","1094 Sunrisers Hyderabad ... 8.0 114.0 20.0 \n","\n"," super_over method umpire1 umpire2 year \\\n","1080 N NaN MV Saidharshan Kumar YC Barde 2024 \n","1081 N NaN Nitin Menon HAS Khalid 2024 \n","1082 N NaN KN Ananthapadmanabhan NA Patwardhan 2024 \n","1083 N NaN UV Gandhe Vinod Seshan 2024 \n","1084 N NaN R Pandit YC Barde 2024 \n","1085 N NaN A Nand Kishore VA Kulkarni 2024 \n","1086 N NaN A Totre Vinod Seshan 2024 \n","1087 N NaN R Pandit MV Saidharshan Kumar 2024 \n","1088 N NaN Navdeep Singh R Pandit 2024 \n","1089 N NaN A Totre KN Ananthapadmanabhan 2024 \n","1090 N NaN Nitin Menon VK Sharma 2024 \n","1091 N NaN AK Chaudhary R Pandit 2024 \n","1092 N NaN KN Ananthapadmanabhan MV Saidharshan Kumar 2024 \n","1093 N NaN Nitin Menon VK Sharma 2024 \n","1094 N NaN J Madanagopal Nitin Menon 2024 \n","\n"," home_team head_to_head_count \n","1080 Sunrisers Hyderabad 3 \n","1081 Neutral 1 \n","1082 Neutral 6 \n","1083 Kolkata Knight Riders 33 \n","1084 Chennai Super Kings 28 \n","1085 Royal Challengers Bengaluru 0 \n","1086 Delhi Capitals 4 \n","1087 Neutral 6 \n","1088 Mumbai Indians 5 \n","1089 Royal Challengers Bengaluru 1 \n","1090 Sunrisers Hyderabad 6 \n","1091 Neutral 26 \n","1092 Neutral 1 \n","1093 Neutral 19 \n","1094 Neutral 27 \n","\n","[15 rows x 23 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
idseasoncitydatematch_typeplayer_of_matchvenueteam1team2toss_winner...result_margintarget_runstarget_overssuper_overmethodumpire1umpire2yearhome_teamhead_to_head_count
108014262952024Hyderabad2024-05-08LeagueTM HeadRajiv Gandhi International Stadium, Uppal, Hyd...Lucknow Super GiantsSunrisers HyderabadLucknow Super Giants...10.0166.020.0NNaNMV Saidharshan KumarYC Barde2024Sunrisers Hyderabad3
108114262962024Dharamsala2024-05-09LeagueV KohliHimachal Pradesh Cricket Association Stadium, ...Royal Challengers BengaluruPunjab KingsPunjab Kings...60.0242.020.0NNaNNitin MenonHAS Khalid2024Neutral1
108214262972024Ahmedabad2024-05-10LeagueShubman GillNarendra Modi Stadium, AhmedabadGujarat TitansChennai Super KingsChennai Super Kings...35.0232.020.0NNaNKN AnanthapadmanabhanNA Patwardhan2024Neutral6
108314262982024Kolkata2024-05-11LeagueCV VarunEden Gardens, KolkataKolkata Knight RidersMumbai IndiansMumbai Indians...18.0158.016.0NNaNUV GandheVinod Seshan2024Kolkata Knight Riders33
108414262992024Chennai2024-05-12LeagueSimarjeet SinghMA Chidambaram Stadium, Chepauk, ChennaiRajasthan RoyalsChennai Super KingsRajasthan Royals...5.0142.020.0NNaNR PanditYC Barde2024Chennai Super Kings28
108514263002024Bengaluru2024-05-12LeagueC GreenM Chinnaswamy Stadium, BengaluruRoyal Challengers BengaluruDelhi CapitalsDelhi Capitals...47.0188.020.0NNaNA Nand KishoreVA Kulkarni2024Royal Challengers Bengaluru0
108614263022024Delhi2024-05-14LeagueI SharmaArun Jaitley Stadium, DelhiDelhi CapitalsLucknow Super GiantsLucknow Super Giants...19.0209.020.0NNaNA TotreVinod Seshan2024Delhi Capitals4
108714263032024Guwahati2024-05-15LeagueSM CurranBarsapara Cricket Stadium, GuwahatiRajasthan RoyalsPunjab KingsRajasthan Royals...5.0145.020.0NNaNR PanditMV Saidharshan Kumar2024Neutral6
108814263052024Mumbai2024-05-17LeagueN PooranWankhede Stadium, MumbaiLucknow Super GiantsMumbai IndiansMumbai Indians...18.0215.020.0NNaNNavdeep SinghR Pandit2024Mumbai Indians5
108914263062024Bengaluru2024-05-18LeagueF du PlessisM Chinnaswamy Stadium, BengaluruRoyal Challengers BengaluruChennai Super KingsChennai Super Kings...27.0219.020.0NNaNA TotreKN Ananthapadmanabhan2024Royal Challengers Bengaluru1
109014263072024Hyderabad2024-05-19LeagueAbhishek SharmaRajiv Gandhi International Stadium, Uppal, Hyd...Punjab KingsSunrisers HyderabadPunjab Kings...4.0215.020.0NNaNNitin MenonVK Sharma2024Sunrisers Hyderabad6
109114263092024Ahmedabad2024-05-21Qualifier 1MA StarcNarendra Modi Stadium, AhmedabadSunrisers HyderabadKolkata Knight RidersSunrisers Hyderabad...8.0160.020.0NNaNAK ChaudharyR Pandit2024Neutral26
109214263102024Ahmedabad2024-05-22EliminatorR AshwinNarendra Modi Stadium, AhmedabadRoyal Challengers BengaluruRajasthan RoyalsRajasthan Royals...4.0173.020.0NNaNKN AnanthapadmanabhanMV Saidharshan Kumar2024Neutral1
109314263112024Chennai2024-05-24Qualifier 2Shahbaz AhmedMA Chidambaram Stadium, Chepauk, ChennaiSunrisers HyderabadRajasthan RoyalsRajasthan Royals...36.0176.020.0NNaNNitin MenonVK Sharma2024Neutral19
109414263122024Chennai2024-05-26FinalMA StarcMA Chidambaram Stadium, Chepauk, ChennaiSunrisers HyderabadKolkata Knight RidersSunrisers Hyderabad...8.0114.020.0NNaNJ MadanagopalNitin Menon2024Neutral27
\n","

15 rows × 23 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe"}},"metadata":{},"execution_count":16}]},{"cell_type":"code","source":["#Add home_team and head_to_head_count to ML Model\n","from sklearn.preprocessing import LabelEncoder\n","from sklearn.preprocessing import StandardScaler\n","from sklearn.model_selection import train_test_split\n","from sklearn.ensemble import RandomForestClassifier\n","from sklearn.linear_model import LogisticRegression\n","from sklearn.metrics import accuracy_score\n","\n","# Drop matches without a winner\n","ml_df = matches_df.dropna(subset=['winner']).copy()\n","\n","# Select features including the new ones\n","features = ['team1', 'team2', 'toss_winner', 'toss_decision', 'venue', 'home_team', 'head_to_head_count']\n","target = 'winner'\n","\n","# Encode all categorical variables\n","encoder = LabelEncoder()\n","for col in ['team1', 'team2', 'toss_winner', 'toss_decision', 'venue', 'home_team', 'winner']:\n"," ml_df[col] = encoder.fit_transform(ml_df[col])\n","\n","# Define X and y\n","X = ml_df[features]\n","y = ml_df[target]\n","\n","# Train-test split\n","scaler = StandardScaler()\n","X_scaled = scaler.fit_transform(X)\n","X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n","\n","# Train models\n","log_model = LogisticRegression(max_iter=1000)\n","rf_model = RandomForestClassifier(n_estimators=100, random_state=42)\n","\n","log_model.fit(X_train, y_train)\n","rf_model.fit(X_train, y_train)\n","\n","# Predictions\n","log_preds = log_model.predict(X_test)\n","rf_preds = rf_model.predict(X_test)\n","\n","# Accuracy\n","log_acc_new = accuracy_score(y_test, log_preds)\n","rf_acc_new = accuracy_score(y_test, rf_preds)\n","\n","(log_acc_new, rf_acc_new)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"t_c4lhQHvH4O","executionInfo":{"status":"ok","timestamp":1744090646027,"user_tz":-330,"elapsed":876,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"b681e90f-3e7f-4258-b92d-6c613e77e1d7"},"execution_count":17,"outputs":[{"output_type":"execute_result","data":{"text/plain":["(0.2706422018348624, 0.47706422018348627)"]},"metadata":{},"execution_count":17}]},{"cell_type":"code","source":["import matplotlib.pyplot as plt\n","import seaborn as sns\n","\n","# Prepare data for visualization\n","model_names = ['Logistic Regression', 'Random Forest']\n","before = [24.31, 47.71]\n","after = [26.15, 47.25]\n","\n","df_compare = pd.DataFrame({\n"," 'Model': model_names * 2,\n"," 'Accuracy': before + after,\n"," 'Version': ['Before'] * 2 + ['After'] * 2\n","})\n","\n","# Plot\n","plt.figure(figsize=(10, 6))\n","sns.barplot(data=df_compare, x='Model', y='Accuracy', hue='Version')\n","plt.title(\"📊 Accuracy Comparison Before vs After Feature Engineering\")\n","plt.ylabel(\"Accuracy (%)\")\n","plt.ylim(20, 55)\n","plt.legend(title=\"Model Version\")\n","plt.tight_layout()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":700},"id":"PuzLccA2vH0x","executionInfo":{"status":"ok","timestamp":1744090647194,"user_tz":-330,"elapsed":1166,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"1bad8344-035c-48f5-ab81-e2b65e4afddf"},"execution_count":18,"outputs":[{"output_type":"stream","name":"stderr","text":[":22: UserWarning: Glyph 128202 (\\N{BAR CHART}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128202 (\\N{BAR CHART}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbaJJREFUeJzt3XdclfX///HnAdkIKA4kERXNkXuTe+LMlStz5Sy3ObLhamiaacMszcBS1Nw23LlzpeFIIiVXuT4uUBREuH5/dOP8PAIKyuVRv4/77XZuN877el/v63VdwDnnea5lMQzDEAAAAAAAyHIO9i4AAAAAAICnFaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsA8MTq3r27ChYsaO8yHrkpU6aocOHCcnR0VLly5exdzmPn/PnzevHFF+Xr6yuLxaLp06fbuyTY2ebNm2WxWLR582Z7l3JfderUUZ06dexdBoAsROgGYFeRkZGyWCxydXXV1atX7V3OEyc+Pl7Tpk1T1apV5e3tLVdXVz377LMaMGCA/vrrL3uX939aWFiYLBaLzSNPnjyqW7euVq9e/cDjrlu3TiNHjlT16tUVGhqqDz74IAurfvwlJSXJ399fFosl3e04dOhQrV27VqNHj9Z3332nxo0b6+eff9a4ceMeaa3du3dP9TeQ8lizZo0pywwPD39sv2S41/ZwdXW1d3kAYJps9i4AwJPnjz/+UPny5eXs7Jzm9Fu3bikyMlJBQUH3HWvevHny8/PTlStXtGTJEvXq1Sury31qXbx4UY0bN9a+ffvUvHlzvfTSS/L09FRUVJQWLlyoWbNm6datW/Yu01SzZ89WcnKyvcu4pwkTJqhQoUIyDEPnz59XWFiYmjZtqh9++EHNmzfP9Hi//PKLHBwcNGfOnHT/B59mv/zyi86ePauCBQtq/vz5atKkSZp9WrZsqeHDh1vbPv/8c82YMeORB28XFxd9/fXXqdrLli1ryvLCw8N1+PBhDRkyxJTxH1Z628PR0dHU5daqVUs3b958Iv5n1q1bZ+8SAGQxQjeATDMMQ1WqVNH27dvTnF6tWjUZhpGhccLDw/XSSy/p+PHjmj9//mMbuuPi4uTh4WHvMmx0795dv//+u5YsWaK2bdvaTHv33Xf11ltv2aky86X8PpycnOxdyn01adJElSpVsj7v2bOn8ubNqwULFjxQ6L5w4YLc3NyyLDwYhqH4+Hi5ubllyXhmmzdvnipUqKBu3brpzTffTPN/88KFC/Lx8TG9loxsu2zZsunll182vRaz3bhxQ+7u7g89jr22h4ODw2O/Nz1lGz8JXwwAyBwOLwdgNzt27NCJEyfUsWNHdezYUVu3btU///yTql9ycrI++eQTlS5dWq6ursqdO7caN26s3377zabfvHnzVKVKFbm7uytHjhyqVauWzR4Di8WS5l6uggULqnv37tbnKYcFb9myRa+99pry5Mmj/PnzS5JOnjyp1157TcWKFZObm5t8fX3Vrl07nThxItW4V69e1dChQ1WwYEG5uLgof/786tq1qy5evKjr16/Lw8NDgwcPTjXfP//8I0dHR02cODHdbbd792799NNP6tmzZ6rALf23N+mjjz6yafvll19Us2ZNeXh4yMfHRy1btlRkZKRNn3Hjxsliseivv/7Syy+/LG9vb+XOnVvvvPOODMPQ6dOn1bJlS3l5ecnPz09Tp061mT/lvMlFixbpzTfflJ+fnzw8PPTCCy/o9OnTNn23bdumdu3aqUCBAnJxcVFAQICGDh2qmzdv2vTr3r27PD09FR0draZNmyp79uzq3Lmzddrd53QvXLhQFStWVPbs2eXl5aXSpUvrk08+senz999/q127dsqZM6fc3d1VrVo1/fTTT2muy/fff6/3339f+fPnl6urq+rXr69jx46l85u5Px8fH7m5uSlbNtvvvZOTkzV9+nQ999xzcnV1Vd68edW3b19duXLF2sdisSg0NFRxcXHWw3LDwsIkSbdv39a7776roKAgubi4qGDBgnrzzTeVkJBgs5yCBQuqefPmWrt2rSpVqiQ3Nzd99dVXkv77mx0yZIgCAgLk4uKiIkWK6MMPP7zv0QTNmzdX4cKF05wWHBxs86XD+vXrVaNGDfn4+MjT01PFihXTm2++maFtd/PmTS1fvlwdO3ZU+/btdfPmTa1cudI6PeV/1zAMzZgxw7qNunfvrhkzZli3YcojRUa2/f223YPK6LJXrlypZs2ayd/fXy4uLgoKCtK7776rpKQka586derop59+0smTJ63rmPL/kbJt7n6tSutc5zp16qhUqVLat2+fatWqJXd3d+vvKCEhQWPHjlWRIkWs/7cjR45M9Xf2MFJq3bFjh4YNG6bcuXPLw8NDrVu31v/+979U22/cuHHy9/eXu7u76tatqyNHjqR6Xb/Xeh45ckR169aVu7u7nnnmGU2ePDlVTZlZ73nz5qlixYpyc3NTzpw51bFjx1Svf/faxnef053Z16IZM2aocOHCcnNzU5UqVbRt2zbOEwfsjD3dAOxm/vz5CgoKUuXKlVWqVCm5u7trwYIFGjFihE2/nj17KiwsTE2aNFGvXr10+/Ztbdu2Tbt27bJ+mB8/frzGjRun559/XhMmTJCzs7N2796tX375RY0aNXqg+l577TXlzp1bY8aMUVxcnCRp7969+vXXX9WxY0flz59fJ06c0MyZM1WnTh0dOXLEuifo+vXrqlmzpiIjI/XKK6+oQoUKunjxolatWqV//vlH5cqVU+vWrbVo0SJ9/PHHNodWLliwQIZhWINlWlatWiVJ6tKlS4bWZcOGDWrSpIkKFy6scePG6ebNm/rss89UvXp17d+/P1Vw7dChg0qUKKFJkybpp59+0nvvvaecOXPqq6++Ur169fThhx9q/vz5Gj58uCpXrqxatWrZzP/+++/LYrFo1KhRunDhgqZPn64GDRooIiLCuldw8eLFunHjhl599VX5+vpqz549+uyzz/TPP/9o8eLFNuPdvn1bISEhqlGjhj766KN097itX79enTp1Uv369fXhhx9K+u+6ATt27LB+wXH+/Hk9//zzunHjhgYNGiRfX1/NnTtXL7zwgpYsWaLWrVvbjDlp0iQ5ODho+PDhiomJ0eTJk9W5c2ft3r07Q9s+JiZGFy9elGEYunDhgj777DNdv3491d6+vn37KiwsTD169NCgQYN0/Phxff755/r999+1Y8cOOTk56bvvvtOsWbO0Z88e6yG6zz//vCSpV69emjt3rl588UW9/vrr2r17tyZOnKjIyEgtX77cZllRUVHq1KmT+vbtq969e6tYsWK6ceOGateurX///Vd9+/ZVgQIF9Ouvv2r06NE6e/bsPc8T7tChg7p27aq9e/eqcuXK1vaTJ09q165dmjJliqT/Tk1p3ry5ypQpowkTJsjFxUXHjh3Tjh07MrQtV61apevXr6tjx47y8/NTnTp1NH/+fL300kuS/juE+LvvvlOXLl3UsGFDde3aVZIUFBSkM2fOaP369fruu+9SjZuRbX+vbXc/Fy9etHnu5OQkb2/vTC07LCxMnp6eGjZsmDw9PfXLL79ozJgxio2NtW7ft956SzExMfrnn380bdo0SZKnp2eGtu3dLl26pCZNmqhjx456+eWXlTdvXiUnJ+uFF17Q9u3b1adPH5UoUUKHDh3StGnT9Ndff2nFihUZGvvu7SFJzs7O8vLysmkbOHCgcuTIobFjx+rEiROaPn26BgwYoEWLFln7jB49WpMnT1aLFi0UEhKiAwcOKCQkRPHx8Rmq5cqVK2rcuLHatGmj9u3ba8mSJRo1apRKly5tPXUhM+v9/vvv65133lH79u3Vq1cv/e9//9Nnn32mWrVq6ffff7c5AiOtbXwvGXktmjlzpgYMGKCaNWtq6NChOnHihFq1aqUcOXJYvzwGYAcGAGTSoUOHjOrVq6c7vWrVqsbRo0fvOcatW7cMX19f46233rK2vfTSS0bZsmVt+v3yyy+GJGPQoEGpxkhOTjYMwzCOHj1qODg4GK1btzaSkpLS7GMYhiHJGDt2bKpxAgMDjW7dulmfh4aGGpKMGjVqGLdv37bpe+PGjVTz79y505BkfPvtt9a2MWPGGJKMZcuWpVv32rVrDUnG6tWrbaaXKVPGqF27dqr57tS6dWtDknHlypV79ktRrlw5I0+ePMalS5esbQcOHDAcHByMrl27WtvGjh1rSDL69Oljbbt9+7aRP39+w2KxGJMmTbK2X7lyxXBzc7PZdps2bTIkGc8884wRGxtrbf/+++8NScYnn3xibUtrW06cONGwWCzGyZMnrW3dunUzJBlvvPFGqv7dunUzAgMDrc8HDx5seHl5pfq93WnIkCGGJGPbtm3WtmvXrhmFChUyChYsaP0bSlmXEiVKGAkJCda+n3zyiSHJOHToULrLMIz//3d098PFxcUICwuz6btt2zZDkjF//nyb9jVr1qRq79atm+Hh4WHTLyIiwpBk9OrVy6Z9+PDhhiTjl19+sbYFBgYakow1a9bY9H333XcNDw8P46+//rJpf+ONNwxHR0fj1KlT6a5rTEyM4eLiYrz++us27ZMnT7b5fU6bNs2QZPzvf/9Ld6x7ad68uc1rz6xZs4xs2bIZFy5csOknyejfv79NW//+/Y20PvZkZtunt+3Sk/K3e/cj5f87M8tO6/+lb9++hru7uxEfH29ta9asmc3/RIqUv8fjx4/btKf8nW/atMnaVrt2bUOS8eWXX9r0/e677wwHBweb/x3DMIwvv/zSkGTs2LHjXpsj3e0hyQgJCUlVa4MGDWxew4cOHWo4OjoaV69eNQzDMM6dO2dky5bNaNWqlc1yxo0bZ0hK87UprfW887U7ISHB8PPzM9q2bZvp9T5x4oTh6OhovP/++zb9Dh06ZGTLls2mPb1tnDLtzveAjL4WJSQkGL6+vkblypWNxMREa7+wsDCbvzsAjx6HlwOwi9WrV+vSpUvq1KmTta1Tp046cOCA/vjjD2vb0qVLZbFYNHbs2FRjpBweumLFCiUnJ2vMmDFycHBIs8+D6N27d6qL+9x57mZiYqIuXbqkIkWKyMfHR/v377epu2zZsqn2mt5ZU4MGDeTv76/58+dbpx0+fFgHDx687zmPsbGxkqTs2bPfdz3Onj2riIgIde/eXTlz5rS2lylTRg0bNtTPP/+cap47z613dHRUpUqVZBiGevbsaW338fFRsWLF9Pfff6eav2vXrja1vfjii8qXL5/Nsu7clnFxcbp48aKef/55GYah33//PdWYr7766n3X1cfHR3FxcVq/fn26fX7++WdVqVJFNWrUsLZ5enqqT58+OnHihI4cOWLTv0ePHjbnWNasWVOS0lzvtMyYMUPr16/X+vXrNW/ePNWtW1e9evXSsmXLrH0WL14sb29vNWzYUBcvXrQ+KlasKE9PT23atOmey0jZrsOGDbNpf/311yUp1aHzhQoVUkhIiE3b4sWLVbNmTeXIkcOmhgYNGigpKUlbt25Nd/leXl5q0qSJvv/+e5vrOSxatEjVqlVTgQIFJMm6l2/lypWZvgDepUuXtHbtWpvXjLZt21oPu31Qmd32aW27e3F1dbX+/lMeKadlZGbZd/6/XLt2TRcvXlTNmjV148YN/fnnnw+8/ulxcXFRjx49bNoWL16sEiVKqHjx4jb11qtXT5Lu+3cqpb091q9fr0mTJqXq26dPH5vX8Jo1ayopKUknT56UJG3cuFG3b9/Wa6+9ZjPfwIEDM7yenp6eNq+3zs7OqlKlis3/d0bXe9myZUpOTlb79u1t+vn5+alo0aKptk9a2/he7vda9Ntvv+nSpUvq3bu3zekrnTt3Vo4cOTK8HABZj8PLAdjFvHnzVKhQIevhpdJ/h4C6u7tr/vz51tsgRUdHy9/f3yYs3i06OloODg4qWbJkltZYqFChVG03b97UxIkTFRoaqn///dcmYMTExNjUlNa51ndycHBQ586dNXPmTOsFdObPny9XV1e1a9funvOmHIZ57dq1+14wKuUDalqHwZYoUUJr165NdTGqlJCUIuV2ZLly5UrVfunSpVTjFi1a1Oa5xWJRkSJFbM4nPXXqlMaMGaNVq1alOn/1zm0p/XfxpYwcGvnaa6/p+++/V5MmTfTMM8+oUaNGat++vRo3bmztc/LkSVWtWjXVvCVKlLBOL1WqlLX97m2R8uH17prTU6VKFZtzmjt16qTy5ctrwIABat68uZydnXX06FHFxMQoT548aY5x4cKFey7j5MmTcnBwUJEiRWza/fz85OPjY/0bSJHW3/bRo0d18OBB5c6d+4Fq6NChg1asWKGdO3fq+eefV3R0tPbt22dzWHqHDh309ddfq1evXnrjjTdUv359tWnTRi+++GKqL8zutmjRIiUmJqp8+fI257FWrVpV8+fPV//+/e85f3oyu+3T2nb34ujoqAYNGjz0sv/44w+9/fbb+uWXX6xfuqW4+/8lKzzzzDOpLuh19OhRRUZGPvDfiHTv7XG3+/3vpfxd3/13nzNnzgyHzPz586f6cjZHjhw6ePCg9XlG1/vo0aMyDCPV61+Kuy/8mNY2vpcH3R7ZsmVLdQoRgEeL0A3gkYuNjdUPP/yg+Pj4ND+chIeHW88JfhTuvBDRndK6IvHAgQMVGhqqIUOGKDg4WN7e3rJYLOrYseMD3bqqa9eumjJlilasWKFOnTopPDxczZs3t57vmZ7ixYtLkg4dOmTd25GV0rp9T3q39Lnzi4eMSkpKUsOGDXX58mWNGjVKxYsXl4eHh/79919179491bZ0cXG5byiTpDx58igiIkJr167V6tWrtXr1aoWGhqpr166aO3dupuuUsna9pf++bKlbt64++eQTHT16VM8995ySk5OVJ08em6Me7pTeh/27ZfR/Jq2/7eTkZDVs2FAjR45Mc55nn332nmO2aNFC7u7u+v777/X888/r+++/l4ODg80XSG5ubtq6das2bdqkn376SWvWrNGiRYtUr149rVu37p63jUrZNtWrV09z+t9//53uxdzuJbPbPiuv8p7RZV+9elW1a9eWl5eXJkyYoKCgILm6umr//v0aNWpUhl570vvbyMzrX3JyskqXLq2PP/44zXkCAgLuW0dmZPX/3oMuI6PrnZycbL1/fFrj3n1+fWb/lh7F9gBgDkI3gEdu2bJlio+P18yZM1PtOY2KitLbb7+tHTt2qEaNGgoKCtLatWt1+fLldPd2BwUFKTk5WUeOHFG5cuXSXW6OHDl09epVm7Zbt27p7NmzGa59yZIl6tatm81Vu+Pj41ONGxQUpMOHD993vFKlSql8+fKaP3++8ufPr1OnTumzzz6773wtWrTQxIkTNW/evPuG7sDAQEn/bdu7/fnnn8qVK1eW3w7t6NGjNs8Nw9CxY8dUpkwZSf99WfDXX39p7ty51otdSbrnYeEZ5ezsrBYtWqhFixZKTk7Wa6+9pq+++krvvPOOihQposDAwHS3hfT/t5eZbt++Lem/C+5J//29bNiwQdWrV3+gUBcYGKjk5GQdPXrUusde+u+icVevXs3QOgUFBen69esZ3gt5Nw8PDzVv3lyLFy/Wxx9/rEWLFqlmzZry9/e36efg4KD69eurfv36+vjjj/XBBx/orbfe0qZNm9Jd9vHjx/Xrr79qwIABql27ts205ORkdenSReHh4Xr77bfTrS+90Pmw2/5hZHTZmzdv1qVLl7Rs2TKbixYeP348Vd/01jNlr+jdr1V3HwVxv3oPHDig+vXrP7IvRe8l5e/62LFjNkcgXLp0KcNHomRERtc7KChIhmGoUKFC9/2Sygx3bo+6deta22/fvq0TJ05YX38BPHqc0w3gkZs3b54KFy6sfv366cUXX7R5DB8+XJ6entY9P23btpVhGBo/fnyqcVK+3W/VqpUcHBw0YcKEVHt87twDEBQUlOq81FmzZqW7pyctjo6OqfYqfPbZZ6nGaNu2rQ4cOJDqqtF31yT9dwXydevWafr06fL19bVeMfdegoOD1bhxY3399ddpXjH41q1bGj58uCQpX758KleunObOnWvzgfvw4cNat26dmjZtet/lZda3336ra9euWZ8vWbJEZ8+eta5byh6bO7eFYRipbu2VWXcf6u7g4GD9oJlya5+mTZtqz5492rlzp7VfXFycZs2apYIFC2b5aQp3S0xM1Lp16+Ts7GwNyO3bt1dSUpLefffdVP1v376dKijdLeV3ePcVxlP2zDVr1uy+dbVv3147d+7U2rVrU027evWq9YuCe+nQoYPOnDmjr7/+WgcOHFCHDh1spl++fDnVPClflN3rllMprwcjR45M9ZrRvn171a5dO929xSlSvli6e1s+7LZ/GBlddlr/L7du3dIXX3yRaj4PD480DzcPCgqSJJvXwKSkJM2aNStT9f7777+aPXt2qmk3b9603uXhUalfv76yZcummTNn2rR//vnnWbqcjK53mzZt5OjoqPHjx6d6nTcMI81TcbJSpUqV5Ovrq9mzZ9v8v86fPz9Lv4QAkHns6QbwSJ05c0abNm3SoEGD0pzu4uKikJAQLV68WJ9++qnq1q2rLl266NNPP9XRo0fVuHFjJScna9u2bapbt64GDBigIkWK6K233tK7776rmjVrqk2bNnJxcdHevXvl7+9vvd91r1691K9fP7Vt21YNGzbUgQMHtHbt2lR72++lefPm+u677+Tt7a2SJUtq586d2rBhg3x9fW36jRgxQkuWLFG7du30yiuvqGLFirp8+bJWrVqlL7/8UmXLlrX2femllzRy5EgtX75cr776aqrz/tLz7bffqlGjRmrTpo1atGih+vXry8PDQ0ePHtXChQt19uxZ6726p0yZoiZNmig4OFg9e/a03jLM29s7zXuXP6ycOXOqRo0a6tGjh86fP6/p06erSJEi6t27t6T/Do8PCgrS8OHD9e+//8rLy0tLly596A+GvXr10uXLl1WvXj3lz59fJ0+e1GeffaZy5cpZA+4bb7yhBQsWqEmTJho0aJBy5sypuXPn6vjx41q6dGmGDmPPjNWrV1v3ol+4cEHh4eE6evSo3njjDeu5+bVr11bfvn01ceJERUREqFGjRnJyctLRo0e1ePFiffLJJ3rxxRfTXUbZsmXVrVs3zZo1y3oo8p49ezR37ly1atXKZq9XekaMGKFVq1apefPm6t69uypWrKi4uDgdOnRIS5Ys0YkTJ+77v5JyH/Xhw4fL0dEx1XUNJkyYoK1bt6pZs2YKDAzUhQsX9MUXXyh//vw2F7a72/z581WuXLl0D19+4YUXNHDgQO3fv18VKlRIs0/FihUlSYMGDVJISIgcHR3VsWPHh972DyOjy37++eeVI0cOdevWTYMGDZLFYtF3332X5mHFFStW1KJFizRs2DBVrlxZnp6eatGihZ577jlVq1ZNo0ePth45tHDhwgx9mZKiS5cu+v7779WvXz9t2rRJ1atXV1JSkv788099//331vuX38vt27c1b968NKe1bt06U0fd5M2bV4MHD9bUqVP1wgsvqHHjxjpw4IBWr16tXLlyZdne+Iyud1BQkN577z2NHj3aequu7Nmz6/jx41q+fLn69Olj/TLUDM7Ozho3bpwGDhyoevXqqX379jpx4oTCwsIUFBT0WBydAPyf9QivlA7gKfEwtwybOnWqIcnYuHFjuvOn3N5k5cqVhmH8d8uqKVOmGMWLFzecnZ2N3LlzG02aNDH27dtnM98333xjlC9f3nBxcTFy5Mhh1K5d21i/fr11elJSkjFq1CgjV65chru7uxESEmIcO3Ys3VuG7d27N1VtV65cMXr06GHkypXL8PT0NEJCQow///wz1RiGYRiXLl0yBgwYYDzzzDOGs7OzkT9/fqNbt27GxYsXU43btGlTQ5Lx66+/prtd0nLjxg3jo48+MipXrmx4enoazs7ORtGiRY2BAwcax44ds+m7YcMGo3r16oabm5vh5eVltGjRwjhy5IhNn5Rbht19S6e0blNlGP/d2ua5556zPk+5tc2CBQuM0aNHG3ny5DHc3NyMZs2a2dwGzDAM48iRI0aDBg0MT09PI1euXEbv3r2NAwcOGJKM0NDQ+y47Zdqdt0dasmSJ0ahRIyNPnjyGs7OzUaBAAaNv377G2bNnbeaLjo42XnzxRcPHx8dwdXU1qlSpYvz44482fVLWZfHixTbtx48fT1VjWtK6ZZirq6tRrlw5Y+bMmTa3Qkoxa9Yso2LFioabm5uRPXt2o3Tp0sbIkSONM2fO3Hd7JCYmGuPHjzcKFSpkODk5GQEBAcbo0aNtbidlGP/d9qpZs2Zp1nzt2jVj9OjRRpEiRQxnZ2cjV65cxvPPP2989NFHxq1bt+65vik6d+5svd3T3TZu3Gi0bNnS8Pf3N5ydnQ1/f3+jU6dOqW5Tdqd9+/YZkox33nkn3T4nTpwwJBlDhw41DCPtW4bdvn3bGDhwoJE7d27DYrGkun1YRrb9vbZdWu71t5vZZe/YscOoVq2a4ebmZvj7+xsjR4603nbwzttgXb9+3XjppZcMHx8fQ5LN/0d0dLTRoEEDw8XFxcibN6/x5ptvGuvXr0/zVlp3/l/f6datW8aHH35oPPfcc9bX2ooVKxrjx483YmJi7rs97v6fuPORcjuz9F6D07rt1+3bt4133nnH8PPzM9zc3Ix69eoZkZGRhq+vr9GvX797zpveet79upLZ9V66dKlRo0YNw8PDw/Dw8DCKFy9u9O/f34iKirrvslOmpXXLsIy+Fn366adGYGCg4eLiYlSpUsXYsWOHUbFiRaNx48ZpLg+A+SyGwdUXAGTO4cOH1a9fP23fvj3N6dWqVdO8efNSXUEV6WvdurUOHTpkc1XmJ9HmzZtVt25dLV682LS9gwBwL1evXlWOHDn03nvv6a233rJ3OXaXnJys3Llzq02bNmkeIg/AfJzTDQB2dvbsWf3000/q0qWLvUsBgCfKzZs3U7WlXNugTp06j7aYx0B8fHyq0w6+/fZbXb58+f/k9gAeF5zTDeCB7Nq1K937Q6dckRn3dvz4ce3YsUNff/21nJyc1LdvX3uXBABPlEWLFiksLExNmzaVp6entm/frgULFqhRo0bp3l7uabZr1y4NHTpU7dq1k6+vr/bv3685c+aoVKlSNrfvA/BoEboBZFqpUqUydfEdpG3Lli3q0aOHChQooLlz58rPz8/eJQHAE6VMmTLKli2bJk+erNjYWOvF1d577z17l2YXBQsWVEBAgD799FPrBfO6du2qSZMmydnZ2d7lAf9n2fWc7nHjxqW6DVCxYsWsV3mtU6eOtmzZYjO9b9+++vLLLx9ZjQAAAAAAPCi77+l+7rnntGHDBuvzbNlsS+rdu7cmTJhgfe7u7v7IagMAAAAA4GHYPXRny5btnodUuru7c8glAAAAAOCJZPfQffToUfn7+8vV1VXBwcGaOHGiChQoYJ0+f/58zZs3T35+fmrRooXeeeede+7tTkhIUEJCgvV5cnKyLl++LF9fX1ksFlPXBQAAAADwf4NhGLp27Zr8/f3l4JD+jcHsek736tWrdf36dRUrVkxnz57V+PHj9e+//+rw4cPKnj27Zs2apcDAQPn7++vgwYMaNWqUqlSpomXLlqU7ZlrniQMAAAAAYIbTp08rf/786U63a+i+29WrVxUYGKiPP/5YPXv2TDX9l19+Uf369XXs2DEFBQWlOcbde7pjYmJUoEABnT59Wl5eXqbVDgAAAAD4vyM2NlYBAQG6evWqvL290+1n98PL7+Tj46Nnn31Wx44dS3N61apVJemeodvFxUUuLi6p2r28vAjdAAAAAIAsdb/TmNM/8NwOrl+/rujoaOXLly/N6REREZKU7nQAAAAAAB4ndt3TPXz4cLVo0UKBgYE6c+aMxo4dK0dHR3Xq1EnR0dEKDw9X06ZN5evrq4MHD2ro0KGqVauWypQpY8+yAQAAAADIELuG7n/++UedOnXSpUuXlDt3btWoUUO7du1S7ty5FR8frw0bNmj69OmKi4tTQECA2rZtq7ffftueJQMAAAAAkGGP1YXUzBAbGytvb2/FxMRwTjcAAACAx0ZSUpISExPtXQbS4eTkJEdHx3SnZzRrPlYXUgMAAACAp51hGDp37pyuXr1q71JwHz4+PvLz87vvxdLuhdANAAAAAI9QSuDOkyeP3N3dHyrQwRyGYejGjRu6cOGCpIe7mDehGwAAAAAekaSkJGvg9vX1tXc5uAc3NzdJ0oULF5QnT557Hmp+L4/VLcMAAAAA4GmWcg63u7u7nStBRqT8nh7m3HtCNwAAAAA8YhxS/mTIit8ToRsAAAAAAJMQugEAAADg/4jNmzfLYrFk6srpBQsW1PTp002r6UE9rnXdjdANAAAAAI+B7t27y2KxqF+/fqmm9e/fXxaLRd27d3/0hd3DwIEDVaJEiTSnnTp1So6Ojlq1apUpy967d6/69OljythZidANAAAAAI+JgIAALVy4UDdv3rS2xcfHKzw8XAUKFLBjZWnr2bOn/vzzT/3666+ppoWFhSlPnjxq2rRppse9devWffvkzp37ibggHaEbAAAAAB4TFSpUUEBAgJYtW2ZtW7ZsmQoUKKDy5cvb9E1ISNCgQYOUJ08eubq6qkaNGtq7d69Nn59//lnPPvus3NzcVLduXZ04cSLVMrdv366aNWvKzc1NAQEBGjRokOLi4jJUb7ly5VShQgV98803Nu2GYSgsLEzdunVTtmzZdPjwYTVp0kSenp7KmzevunTpoosXL1r716lTRwMGDNCQIUOUK1cuhYSEyDAMjRs3TgUKFJCLi4v8/f01aNAg6zx3H15+6tQptWzZUp6envLy8lL79u11/vx56/Rx48apXLly+u6771SwYEF5e3urY8eOunbtWobW9UERugEAAADgMfLKK68oNDTU+vybb75Rjx49UvUbOXKkli5dqrlz52r//v0qUqSIQkJCdPnyZUnS6dOn1aZNG7Vo0UIRERHq1auX3njjDZsxoqOj1bhxY7Vt21YHDx7UokWLtH37dg0YMCDD9fbs2VPff/+9TVDfvHmzjh8/rldeeUVXr15VvXr1VL58ef32229as2aNzp8/r/bt29uMM3fuXDk7O2vHjh368ssvtXTpUk2bNk1fffWVjh49qhUrVqh06dJp1pCcnKyWLVvq8uXL2rJli9avX6+///5bHTp0SLW+K1as0I8//qgff/xRW7Zs0aRJkzK8rg/EeMrFxMQYkoyYmBh7lwIAAADg/7ibN28aR44cMW7evJlqWrdu3YyWLVsaFy5cMFxcXIwTJ04YJ06cMFxdXY3//e9/RsuWLY1u3boZhmEY169fN5ycnIz58+db579165bh7+9vTJ482TAMwxg9erRRsmRJm2WMGjXKkGRcuXLFMAzD6Nmzp9GnTx+bPtu2bTMcHBysNQYGBhrTpk1Ld52uXLliuLq6GqGhoda2Ll26GDVq1DAMwzDeffddo1GjRjbznD592pBkREVFGYZhGLVr1zbKly9v02fq1KnGs88+a9y6dSvN5d5Z17p16wxHR0fj1KlT1ul//PGHIcnYs2ePYRiGMXbsWMPd3d2IjY219hkxYoRRtWrVdNftXr+vjGZN9nQDAAAAwGMkd+7catasmcLCwhQaGqpmzZopV65cNn2io6OVmJio6tWrW9ucnJxUpUoVRUZGSpIiIyNVtWpVm/mCg4Ntnh84cEBhYWHy9PS0PkJCQpScnKzjx49nqF4fHx+1adPGeoh5bGysli5dqp49e1qXsWnTJptlFC9e3LoeKSpWrGgzbrt27XTz5k0VLlxYvXv31vLly3X79u00a4iMjFRAQIACAgKsbSVLlpSPj491e0j/HZKePXt26/N8+fLpwoULGVrPB5XN1NEBAAAAAJn2yiuvWA/xnjFjhmnLuX79uvr27WtzrnSKzFy4rWfPnqpfv76OHTumTZs2ydHRUe3atbMuo0WLFvrwww9TzZcvXz7rzx4eHjbTAgICFBUVpQ0bNmj9+vV67bXXNGXKFG3ZskVOTk4Zru1Od89nsViUnJz8QGNlFKEbAAAAAB4zjRs31q1bt2SxWBQSEpJqelBQkPX858DAQElSYmKi9u7dqyFDhkiSSpQokep2Xbt27bJ5XqFCBR05ckRFihR5qHrr1q2rQoUKKTQ0VJs2bVLHjh2tIbpChQpaunSpChYsqGzZMhdB3dzc1KJFC7Vo0UL9+/dX8eLFdejQIVWoUMGmX4kSJXT69GmdPn3aurf7yJEjunr1qkqWLPlQ6/awOLwcAAAAAB4zjo6OioyM1JEjR+To6JhquoeHh1599VWNGDFCa9as0ZEjR9S7d2/duHHDelh3v379dPToUY0YMUJRUVEKDw9XWFiYzTijRo3Sr7/+qgEDBigiIkJHjx7VypUrM3UhNem/PcavvPKKZs6cqZ07d1prkP67x/jly5fVqVMn7d27V9HR0Vq7dq169OihpKSkdMcMCwvTnDlzdPjwYf3999+aN2+e3NzcrF8y3KlBgwYqXbq0OnfurP3792vPnj3q2rWrateurUqVKmVqXbIaoRsAAAAAHkNeXl7y8vJKd/qkSZPUtm1bdenSRRUqVNCxY8e0du1a5ciRQ9J/h4cvXbpUK1asUNmyZfXll1/qgw8+sBmjTJky2rJli/766y/VrFlT5cuX15gxY+Tv75/pert3766YmBg999xzNueS+/v7a8eOHUpKSlKjRo1UunRpDRkyRD4+PnJwSD+S+vj4aPbs2apevbrKlCmjDRs26IcffpCvr2+qvhaLRStXrlSOHDlUq1YtNWjQQIULF9aiRYsyvR5ZzWIYhmHvIswUGxsrb29vxcTE3PMPFgAAAADMFh8fr+PHj6tQoUJydXW1dzm4j3v9vjKaNdnTDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAALsbN26c8ubNK4vFohUrVti7nCyTzd4FAAAAAADSV3HEt490efumdM1U/+7du2vu3LnW5zlz5lTlypU1efJklSlTJkNjREZGavz48Vq+fLmqVaumHDlyZKqGxxl7ugEAAAAAD6Vx48Y6e/aszp49q40bNypbtmxq3rx5huePjo6WJLVs2VJ+fn5ycXF5oDoSExMfaD4zEboBAAAAAA/FxcVFfn5+8vPzU7ly5fTGG2/o9OnT+t///idJOn36tNq3by8fHx/lzJlTLVu21IkTJyT9d1h5ixYtJEkODg6yWCySpOTkZE2YMEH58+eXi4uLypUrpzVr1liXeeLECVksFi1atEi1a9eWq6ur5s+fL0n6+uuvVaJECbm6uqp48eL64osvHuHWsEXoBgAAAABkmevXr2vevHkqUqSIfH19lZiYqJCQEGXPnl3btm3Tjh075OnpqcaNG+vWrVsaPny4QkNDJcm6t1ySPvnkE02dOlUfffSRDh48qJCQEL3wwgs6evSozfLeeOMNDR48WJGRkQoJCdH8+fM1ZswYvf/++4qMjNQHH3ygd955x+YQ+EeJc7oBAAAAAA/lxx9/lKenpyQpLi5O+fLl048//igHBweFh4crOTlZX3/9tXUvdmhoqHx8fLR582Y1atRIPj4+kiQ/Pz/rmB999JFGjRqljh07SpI+/PBDbdq0SdOnT9eMGTOs/YYMGaI2bdpYn48dO1ZTp061thUqVEhHjhzRV199pW7dupm6HdJC6AYAAAAAPJS6detq5syZkqQrV67oiy++UJMmTbRnzx4dOHBAx44dU/bs2W3miY+Pt57LfbfY2FidOXNG1atXt2mvXr26Dhw4YNNWqVIl689xcXGKjo5Wz5491bt3b2v77du35e3t/VDr+KAI3QAAAACAh+Lh4aEiRYpYn3/99dfy9vbW7Nmzdf36dVWsWNF6vvWdcufOnSXLTnH9+nVJ0uzZs1W1alWbfo6Ojg+9rAdB6AYAAAAAZCmLxSIHBwfdvHlTFSpU0KJFi5QnTx55eXllaH4vLy/5+/trx44dql27trV9x44dqlKlSrrz5c2bV/7+/vr777/VuXPnh16PrEDoBgAAAAA8lISEBJ07d07Sf4eXf/7557p+/bpatGihKlWqaMqUKWrZsqX1auQnT57UsmXLNHLkSOXPnz/NMUeMGKGxY8cqKChI5cqVU2hoqCIiItLcY36n8ePHa9CgQfL29lbjxo2VkJCg3377TVeuXNGwYcOyfN3vh9ANAAAAAHgoa9asUb58+SRJ2bNnV/HixbV48WLVqVNHkrR161aNGjVKbdq00bVr1/TMM8+ofv3699zzPWjQIMXExOj111/XhQsXVLJkSa1atUpFixa9Zy29evWSu7u7pkyZohEjRsjDw0OlS5fWkCFDsmp1M8ViGIZhlyU/IrGxsfL29lZMTEyGD2UAAAAAADPEx8fr+PHjKlSokFxdXe1dDu7jXr+vjGZN7tMNAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAA0xiGoT59+ihnzpyyWCyKiIiwd0mPVDZ7FwAAAAAASN+pCaUf6fIKjDn0QPPt3LlTNWrUUOPGjfXTTz9Z29esWaOwsDBt3rxZhQsXVq5cuWSxWLR8+XK1atUqi6p+fLGnGwAAAADw0ObMmaOBAwdq69atOnPmjLU9Ojpa+fLl0/PPPy8/Pz9ly5Z1+34TExOzbCyzELoBAAAAAA/l+vXrWrRokV599VU1a9ZMYWFhkqTu3btr4MCBOnXqlCwWiwoWLKiCBQtKklq3bm1tS7Fy5UpVqFBBrq6uKly4sMaPH6/bt29bp1ssFs2cOVMvvPCCPDw89P777z/CtXwwhG4AAAAAwEP5/vvvVbx4cRUrVkwvv/yyvvnmGxmGoU8++UQTJkxQ/vz5dfbsWe3du1d79+6VJIWGhlrbJGnbtm3q2rWrBg8erCNHjuirr75SWFhYqmA9btw4tW7dWocOHdIrr7zyyNc1szinGwAAAADwUObMmaOXX35ZktS4cWPFxMRoy5YtqlOnjrJnzy5HR0f5+fnZzOPj42PTNn78eL3xxhvq1q2bJKlw4cJ69913NXLkSI0dO9ba76WXXlKPHj0ewVplDUI3AAAAAOCBRUVFac+ePVq+fLkkKVu2bOrQoYPmzJmjOnXqZHicAwcOaMeOHTZ7tpOSkhQfH68bN27I3d1dklSpUqUsrd9shG4AAAAAwAObM2eObt++LX9/f2ubYRhycXHR559/nuFxrl+/rvHjx6tNmzapprm6ulp/9vDweLiCHzFCNwAAAADggdy+fVvffvutpk6dqkaNGtlMa9WqlRYsWJDmfE5OTkpKSrJpq1ChgqKiolSkSBHT6rUHQjcAAAAA4IH8+OOPunLlinr27Clvb2+baW3bttWcOXPUuXPnVPMVLFhQGzduVPXq1eXi4qIcOXJozJgxat68uQoUKKAXX3xRDg4OOnDggA4fPqz33nvvUa1SluPq5QAAAACABzJnzhw1aNAgVeCW/gvdv/32m2JjY1NNmzp1qtavX6+AgACVL19ekhQSEqIff/xR69atU+XKlVWtWjVNmzZNgYGBpq+HmSyGYRj2LsJMsbGx8vb2VkxMjLy8vOxdDgAAAID/w+Lj43X8+HEVKlTI5jxlPJ7u9fvKaNZkTzcAAAAAACaxa+geN26cLBaLzaN48eLW6fHx8erfv798fX3l6emptm3b6vz583asGAAAAACAjLP7nu7nnntOZ8+etT62b99unTZ06FD98MMPWrx4sbZs2aIzZ86kefl4AAAAAAAeR3a/enm2bNnk5+eXqj0mJkZz5sxReHi46tWrJ0kKDQ1ViRIltGvXLlWrVu1RlwoAAAAAQKbYfU/30aNH5e/vr8KFC6tz5846deqUJGnfvn1KTExUgwYNrH2LFy+uAgUKaOfOnemOl5CQoNjYWJsHAAAAADxOnvLrWT81suL3ZNfQXbVqVYWFhWnNmjWaOXOmjh8/rpo1a+ratWs6d+6cnJ2d5ePjYzNP3rx5de7cuXTHnDhxory9va2PgIAAk9cCAAAAADLGyclJknTjxg07V4KMSPk9pfzeHoRdDy9v0qSJ9ecyZcqoatWqCgwM1Pfffy83N7cHGnP06NEaNmyY9XlsbCzBGwAAAMBjwdHRUT4+Prpw4YIkyd3dXRaLxc5V4W6GYejGjRu6cOGCfHx85Ojo+MBj2f2c7jv5+Pjo2Wef1bFjx9SwYUPdunVLV69etdnbff78+TTPAU/h4uIiFxeXR1AtAAAAAGReSp5JCd54fPn4+Nwzf2bEYxW6r1+/rujoaHXp0kUVK1aUk5OTNm7cqLZt20qSoqKidOrUKQUHB9u5UgAAAAB4MBaLRfny5VOePHmUmJho73KQDicnp4faw53CrqF7+PDhatGihQIDA3XmzBmNHTtWjo6O6tSpk7y9vdWzZ08NGzZMOXPmlJeXlwYOHKjg4GCuXA4AAADgiefo6JgloQ6PN7uG7n/++UedOnXSpUuXlDt3btWoUUO7du1S7ty5JUnTpk2Tg4OD2rZtq4SEBIWEhOiLL76wZ8kAAAAAAGSYxXjKr1UfGxsrb29vxcTEyMvLy97lAAAAAACeAhnNmna/TzcAAAAAAE8rQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACbJZu8CAAAAskLFEd/auwTANPumdLV3CQAeEHu6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAk3DLMAAAAOAxd2pCaXuXAJiqwJhD9i7BNOzpBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkj03onjRpkiwWi4YMGWJtq1OnjiwWi82jX79+9isSAAAAAIBMyGbvAiRp7969+uqrr1SmTJlU03r37q0JEyZYn7u7uz/K0gAAAAAAeGB239N9/fp1de7cWbNnz1aOHDlSTXd3d5efn5/14eXlZYcqAQAAAADIPLuH7v79+6tZs2Zq0KBBmtPnz5+vXLlyqVSpUho9erRu3Lhxz/ESEhIUGxtr8wAAAAAAwB7senj5woULtX//fu3duzfN6S+99JICAwPl7++vgwcPatSoUYqKitKyZcvSHXPixIkaP368WSUDAAAAAJBhdgvdp0+f1uDBg7V+/Xq5urqm2adPnz7Wn0uXLq18+fKpfv36io6OVlBQUJrzjB49WsOGDbM+j42NVUBAQNYWDwAAAABABtgtdO/bt08XLlxQhQoVrG1JSUnaunWrPv/8cyUkJMjR0dFmnqpVq0qSjh07lm7odnFxkYuLi3mFAwAAAACQQXYL3fXr19ehQ4ds2nr06KHixYtr1KhRqQK3JEVEREiS8uXL9yhKBAAAAADgodgtdGfPnl2lSpWyafPw8JCvr69KlSql6OhohYeHq2nTpvL19dXBgwc1dOhQ1apVK81biwEAAAAA8Lh5LO7TnRZnZ2dt2LBB06dPV1xcnAICAtS2bVu9/fbb9i4NAAAAAIAMeaxC9+bNm60/BwQEaMuWLfYrBgAAAACAh2T3+3QDAAAAAPC0InQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACbJlpnOycnJ2rJli7Zt26aTJ0/qxo0byp07t8qXL68GDRooICDArDoBAAAAAHjiZGhP982bN/Xee+8pICBATZs21erVq3X16lU5Ojrq2LFjGjt2rAoVKqSmTZtq165dZtcMAAAAAMATIUN7up999lkFBwdr9uzZatiwoZycnFL1OXnypMLDw9WxY0e99dZb6t27d5YXCwAAAADAkyRDoXvdunUqUaLEPfsEBgZq9OjRGj58uE6dOpUlxQEAAAAA8CTL0OHl9wvcd3JyclJQUFCmC5k0aZIsFouGDBlibYuPj1f//v3l6+srT09PtW3bVufPn8/02AAAAAAA2MMDX7389u3bmjFjhtq1a6c2bdpo6tSpio+Pf6Cx9u7dq6+++kplypSxaR86dKh++OEHLV68WFu2bNGZM2fUpk2bBy0ZAAAAAIBH6oFD96BBg7R8+XLVrVtXtWvXVnh4uHr06JHpca5fv67OnTtr9uzZypEjh7U9JiZGc+bM0ccff6x69eqpYsWKCg0N1a+//srF2gAAAAAAT4QM3zJs+fLlat26tfX5unXrFBUVJUdHR0lSSEiIqlWrlukC+vfvr2bNmqlBgwZ67733rO379u1TYmKiGjRoYG0rXry4ChQooJ07d6a7rISEBCUkJFifx8bGZromAAAAAACyQob3dH/zzTdq1aqVzpw5I0mqUKGC+vXrpzVr1uiHH37QyJEjVbly5UwtfOHChdq/f78mTpyYatq5c+fk7OwsHx8fm/a8efPq3Llz6Y45ceJEeXt7Wx/cOxwAAAAAYC8ZDt0//PCDOnXqpDp16uizzz7TrFmz5OXlpbfeekvvvPOOAgICFB4enuEFnz59WoMHD9b8+fPl6ur6QMWnZfTo0YqJibE+Tp8+nWVjAwAAAACQGRk+vFySOnTooJCQEI0cOVIhISH68ssvNXXq1Ada8L59+3ThwgVVqFDB2paUlKStW7fq888/19q1a3Xr1i1dvXrVZm/3+fPn5efnl+64Li4ucnFxeaCaAAAAAADISpm+kJqPj49mzZqlKVOmqGvXrhoxYsQDXbW8fv36OnTokCIiIqyPSpUqqXPnztafnZyctHHjRus8UVFROnXqlIKDgzO9PAAAAAAAHrUMh+5Tp06pffv2Kl26tDp37qyiRYtq3759cnd3V9myZbV69epMLTh79uwqVaqUzcPDw0O+vr4qVaqUvL291bNnTw0bNkybNm3Svn371KNHDwUHBz/QBdsAAAAAAHjUMhy6u3btKgcHB02ZMkV58uRR37595ezsrPHjx2vFihWaOHGi2rdvn6XFTZs2Tc2bN1fbtm1Vq1Yt+fn5admyZVm6DAAAAAAAzGIxDMPISEdPT08dOHBAQUFBMgxDhQoV0okTJ2z6zJo1S3369DGjzgcWGxsrb29vxcTEyMvLy97lAAAAk1Qc8a29SwBMszz7FHuXAJiqwJhD9i4h0zKaNTN8IbWKFStqzJgx6tatmzZs2KDSpUun6vO4BW4AAAAAAOwpw4eXf/vtt0pISNDQoUP177//6quvvjKzLgAAAAAAnngZ3tMdGBioJUuWmFkLAAAAAABPlQzt6Y6Li8vUoJntDwAAAADA0yhDobtIkSKaNGmSzp49m24fwzC0fv16NWnSRJ9++mmWFQgAAAAAwJMqQ4eXb968WW+++abGjRunsmXLqlKlSvL395erq6uuXLmiI0eOaOfOncqWLZtGjx6tvn37ml03AAAAAACPvQyF7mLFimnp0qU6deqUFi9erG3btunXX3/VzZs3lStXLpUvX16zZ89WkyZN5OjoaHbNAAAAAAA8ETJ8ITVJKlCggF5//XW9/vrrZtUDAAAAAMBTI8O3DAMAAAAAAJlD6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMkunQXbBgQU2YMEGnTp0yox4AAAAAAJ4amQ7dQ4YM0bJly1S4cGE1bNhQCxcuVEJCghm1AQAAAADwRHug0B0REaE9e/aoRIkSGjhwoPLly6cBAwZo//79ZtQIAAAAAMAT6YHP6a5QoYI+/fRTnTlzRmPHjtXXX3+typUrq1y5cvrmm29kGEZW1gkAAAAAwBMn24POmJiYqOXLlys0NFTr169XtWrV1LNnT/3zzz968803tWHDBoWHh2dlrQAAAAAAPFEyHbr379+v0NBQLViwQA4ODurataumTZum4sWLW/u0bt1alStXztJCAQAAAAB40mQ6dFeuXFkNGzbUzJkz1apVKzk5OaXqU6hQIXXs2DFLCgQAAAAA4EmV6dD9999/KzAw8J59PDw8FBoa+sBFAQAAAADwNMj0hdQuXLig3bt3p2rfvXu3fvvttywpCgAAAACAp0GmQ3f//v11+vTpVO3//vuv+vfvnyVFAQAAAADwNMh06D5y5IgqVKiQqr18+fI6cuRIlhQFAAAAAMDTINOh28XFRefPn0/VfvbsWWXL9sB3IAMAAAAA4KmT6dDdqFEjjR49WjExMda2q1ev6s0331TDhg2ztDgAAAAAAJ5kmd41/dFHH6lWrVoKDAxU+fLlJUkRERHKmzevvvvuuywvEAAAAACAJ1WmQ/czzzyjgwcPav78+Tpw4IDc3NzUo0cPderUKc17dgMAAAAA8H/VA52E7eHhoT59+mR1LQAAAAAAPFUe+MpnR44c0alTp3Tr1i2b9hdeeOGhiwIAAAAA4GmQ6dD9999/q3Xr1jp06JAsFosMw5AkWSwWSVJSUlLWVggAAAAAwBMq01cvHzx4sAoVKqQLFy7I3d1df/zxh7Zu3apKlSpp8+bNJpQIAAAAAMCTKdN7unfu3KlffvlFuXLlkoODgxwcHFSjRg1NnDhRgwYN0u+//25GnQAAAAAAPHEyvac7KSlJ2bNnlyTlypVLZ86ckSQFBgYqKioqa6sDAAAAAOAJluk93aVKldKBAwdUqFAhVa1aVZMnT5azs7NmzZqlwoULm1EjAAAAAABPpEyH7rfffltxcXGSpAkTJqh58+aqWbOmfH19tWjRoiwvEAAAAACAJ1WmQ3dISIj15yJFiujPP//U5cuXlSNHDusVzAEAAAAAQCbP6U5MTFS2bNl0+PBhm/acOXMSuAEAAAAAuEumQreTk5MKFCjAvbgBAAAAAMiATF+9/K233tKbb76py5cvm1EPAAAAAABPjUyf0/3555/r2LFj8vf3V2BgoDw8PGym79+/P8uKAwAAAADgSZbp0N2qVSsTygAAAAAA4OmT6dA9duxYM+oAAAAAAOCpk+lzugEAAAAAQMZkek+3g4PDPW8PxpXNAQAAAAD4T6ZD9/Lly22eJyYm6vfff9fcuXM1fvz4LCsMAAAAAIAnXaZDd8uWLVO1vfjii3ruuee0aNEi9ezZM0sKAwAAAADgSZdl53RXq1ZNGzduzKrhAAAAAAB44mVJ6L5586Y+/fRTPfPMM1kxHAAAAAAAT4VMH16eI0cOmwupGYaha9euyd3dXfPmzcvS4gAAAAAAeJJlOnRPmzbNJnQ7ODgod+7cqlq1qnLkyJGlxQEAAAAA8CTLdOju3r27CWUAAAAAAPD0yfQ53aGhoVq8eHGq9sWLF2vu3LlZUhQAAAAAAE+DTIfuiRMnKleuXKna8+TJow8++CBLigIAAAAA4GmQ6dB96tQpFSpUKFV7YGCgTp06lSVFAQAAAADwNMh06M6TJ48OHjyYqv3AgQPy9fXNkqIAAAAAAHgaZDp0d+rUSYMGDdKmTZuUlJSkpKQk/fLLLxo8eLA6duxoRo0AAAAAADyRMn318nfffVcnTpxQ/fr1lS3bf7MnJyera9eunNMNAAAAAMAdMh26nZ2dtWjRIr333nuKiIiQm5ubSpcurcDAQDPqAwAAAADgiZXp0J2iaNGiKlq0aFbWAgAAAADAUyXT53S3bdtWH374Yar2yZMnq127dllSFAAAAAAAT4NMh+6tW7eqadOmqdqbNGmirVu3ZmqsmTNnqkyZMvLy8pKXl5eCg4O1evVq6/Q6derIYrHYPPr165fZkgEAAAAAsItMH15+/fp1OTs7p2p3cnJSbGxspsbKnz+/Jk2apKJFi8owDM2dO1ctW7bU77//rueee06S1Lt3b02YMME6j7u7e2ZLBgAAAADALjK9p7t06dJatGhRqvaFCxeqZMmSmRqrRYsWatq0qYoWLapnn31W77//vjw9PbVr1y5rH3d3d/n5+VkfXl5emS0ZAAAAAAC7yPSe7nfeeUdt2rRRdHS06tWrJ0nauHGjFixYoMWLFz9wIUlJSVq8eLHi4uIUHBxsbZ8/f77mzZsnPz8/tWjRQu+88w57uwEAAAAAT4RMh+4WLVpoxYoV+uCDD7RkyRK5ubmpTJky2rBhg2rXrp3pAg4dOqTg4GDFx8fL09NTy5cvt+4xf+mllxQYGCh/f38dPHhQo0aNUlRUlJYtW5bueAkJCUpISLA+z+wh7wAAAAAAZJUHumVYs2bN1KxZs1Tthw8fVqlSpTI1VrFixRQREaGYmBgtWbJE3bp105YtW1SyZEn16dPH2q906dLKly+f6tevr+joaAUFBaU53sSJEzV+/PjMrRAAAAAAACbI9Dndd7t27ZpmzZqlKlWqqGzZspme39nZWUWKFFHFihU1ceJElS1bVp988kmafatWrSpJOnbsWLrjjR49WjExMdbH6dOnM10TAAAAAABZ4YH2dEv/3Trs66+/1rJly+Tv7682bdpoxowZD11QcnKyzeHhd4qIiJAk5cuXL935XVxc5OLi8tB1AAAAAADwsDIVus+dO6ewsDDNmTNHsbGxat++vRISErRixYpMX7lc+m+vdJMmTVSgQAFdu3ZN4eHh2rx5s9auXavo6GiFh4eradOm8vX11cGDBzV06FDVqlVLZcqUyfSyAAAAAAB41DJ8eHmLFi1UrFgxHTx4UNOnT9eZM2f02WefPdTCL1y4oK5du6pYsWKqX7++9u7dq7Vr16phw4ZydnbWhg0b1KhRIxUvXlyvv/662rZtqx9++OGhlgkAAAAAwKOS4T3dq1ev1qBBg/Tqq6+qaNGiWbLwOXPmpDstICBAW7ZsyZLlAAAAAABgDxne0719+3Zdu3ZNFStWVNWqVfX555/r4sWLZtYGAAAAAMATLcOhu1q1apo9e7bOnj2rvn37auHChfL391dycrLWr1+va9eumVknAAAAAABPnEzfMszDw0OvvPKKtm/frkOHDun111/XpEmTlCdPHr3wwgtm1AgAAAAAwBPpoe7TXaxYMU2ePFn//POPFixYkFU1AQAAAADwVHio0J3C0dFRrVq10qpVq7JiOAAAAAAAngpZEroBAAAAAEBqhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExi19A9c+ZMlSlTRl5eXvLy8lJwcLBWr15tnR4fH6/+/fvL19dXnp6eatu2rc6fP2/HigEAAAAAyDi7hu78+fNr0qRJ2rdvn3777TfVq1dPLVu21B9//CFJGjp0qH744QctXrxYW7Zs0ZkzZ9SmTRt7lgwAAAAAQIZls+fCW7RoYfP8/fff18yZM7Vr1y7lz59fc+bMUXh4uOrVqydJCg0NVYkSJbRr1y5Vq1bNHiUDAAAAAJBhj8053UlJSVq4cKHi4uIUHBysffv2KTExUQ0aNLD2KV68uAoUKKCdO3fasVIAAAAAADLGrnu6JenQoUMKDg5WfHy8PD09tXz5cpUsWVIRERFydnaWj4+PTf+8efPq3Llz6Y6XkJCghIQE6/PY2FizSgcAAAAA4J7svqe7WLFiioiI0O7du/Xqq6+qW7duOnLkyAOPN3HiRHl7e1sfAQEBWVgtAAAAAAAZZ/fQ7ezsrCJFiqhixYqaOHGiypYtq08++UR+fn66deuWrl69atP//Pnz8vPzS3e80aNHKyYmxvo4ffq0yWsAAAAAAEDa7B6675acnKyEhARVrFhRTk5O2rhxo3VaVFSUTp06peDg4HTnd3Fxsd6CLOUBAAAAAIA92PWc7tGjR6tJkyYqUKCArl27pvDwcG3evFlr166Vt7e3evbsqWHDhilnzpzy8vLSwIEDFRwczJXLAQAAAABPBLuG7gsXLqhr1646e/asvL29VaZMGa1du1YNGzaUJE2bNk0ODg5q27atEhISFBISoi+++MKeJQMAAAAAkGF2Dd1z5sy553RXV1fNmDFDM2bMeEQVAQAAAACQdR67c7oBAAAAAHhaELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTZLN3AQD+7zo1obS9SwBMU2DMIXuXAAAAHgPs6QYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkdg3dEydOVOXKlZU9e3blyZNHrVq1UlRUlE2fOnXqyGKx2Dz69etnp4oBAAAAAMg4u4buLVu2qH///tq1a5fWr1+vxMRENWrUSHFxcTb9evfurbNnz1ofkydPtlPFAAAAAABkXDZ7LnzNmjU2z8PCwpQnTx7t27dPtWrVsra7u7vLz8/vUZcHAAAAAMBDeazO6Y6JiZEk5cyZ06Z9/vz5ypUrl0qVKqXRo0frxo0b9igPAAAAAIBMseue7jslJydryJAhql69ukqVKmVtf+mllxQYGCh/f38dPHhQo0aNUlRUlJYtW5bmOAkJCUpISLA+j42NNb12AAAAAADS8tiE7v79++vw4cPavn27TXufPn2sP5cuXVr58uVT/fr1FR0draCgoFTjTJw4UePHjze9XgAAAAAA7uexOLx8wIAB+vHHH7Vp0yblz5//nn2rVq0qSTp27Fia00ePHq2YmBjr4/Tp01leLwAAAAAAGWHXPd2GYWjgwIFavny5Nm/erEKFCt13noiICElSvnz50pzu4uIiFxeXrCwTAAAAAIAHYtfQ3b9/f4WHh2vlypXKnj27zp07J0ny9vaWm5uboqOjFR4erqZNm8rX11cHDx7U0KFDVatWLZUpU8aepQMAAAAAcF92Dd0zZ86UJNWpU8emPTQ0VN27d5ezs7M2bNig6dOnKy4uTgEBAWrbtq3efvttO1QLAAAAAEDm2P3w8nsJCAjQli1bHlE1AAAAAABkrcfiQmoAAAAAADyNCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmMSuF1LDvVUc8a29SwBMtTy7vSsAAAAAzMWebgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJHYN3RMnTlTlypWVPXt25cmTR61atVJUVJRNn/j4ePXv31++vr7y9PRU27Ztdf78eTtVDAAAAABAxtk1dG/ZskX9+/fXrl27tH79eiUmJqpRo0aKi4uz9hk6dKh++OEHLV68WFu2bNGZM2fUpk0bO1YNAAAAAEDGZLPnwtesWWPzPCwsTHny5NG+fftUq1YtxcTEaM6cOQoPD1e9evUkSaGhoSpRooR27dqlatWq2aNsAAAAAAAy5LE6pzsmJkaSlDNnTknSvn37lJiYqAYNGlj7FC9eXAUKFNDOnTvtUiMAAAAAABll1z3dd0pOTtaQIUNUvXp1lSpVSpJ07tw5OTs7y8fHx6Zv3rx5de7cuTTHSUhIUEJCgvV5SpCPjY01p3ATJSXctHcJgKmuOSXZuwTANE/i+86TjvdNPM14z8TT7kl830yp2TCMe/Z7bEJ3//79dfjwYW3fvv2hxpk4caLGjx+fqj0gIOChxgWQ9UrZuwDATBO97V0BgKcI75l46j3B75vXrl2Tt3f69T8WoXvAgAH68ccftXXrVuXPn9/a7ufnp1u3bunq1as2e7vPnz8vPz+/NMcaPXq0hg0bZn2enJysy5cvy9fXVxaLxbR1AJA5sbGxCggI0OnTp+Xl5WXvcgAAeGzxngk8ngzD0LVr1+Tv73/PfnYN3YZhaODAgVq+fLk2b96sQoUK2UyvWLGinJyctHHjRrVt21aSFBUVpVOnTik4ODjNMV1cXOTi4mLTdvfh6QAeH15eXnyAAAAgA3jPBB4/99rDncKuobt///4KDw/XypUrlT17dut52t7e3nJzc5O3t7d69uypYcOGKWfOnPLy8tLAgQMVHBzMlcsBAAAAAI89i3G/s77NXHg6h3uHhoaqe/fukqT4+Hi9/vrrWrBggRISEhQSEqIvvvgi3cPLATwZYmNj5e3trZiYGL61BwDgHnjPBJ5sdj+8/H5cXV01Y8YMzZgx4xFUBOBRcXFx0dixY1OdDgIAAGzxngk82ey6pxsAAAAAgKeZg70LAAAAAADgaUXoBgAAAADAJIRu4ClVsGBBTZ8+/YHnDwsL43Z76XjYbQsA+L/BYrFoxYoV9i4DgJ0RugE76N69u1q1amXqMvbu3as+ffpkqG9aIbJDhw7666+/Hnj5YWFhslgsslgscnBwUL58+dShQwedOnXqgcd8XGRm2wIA7Kd79+7W9yInJycVKlRII0eOVHx8vL1LM9Wd633n49ixY3atyezPPsDjyq5XLwdgnty5cz/U/G5ubnJzc3uoMby8vBQVFSXDMHT8+HG99tprateunXbv3v1Q495PYmKinJycTBv/YbctAODRady4sUJDQ5WYmKh9+/apW7duslgs+vDDD+1dmqlS1vtOD/r+devWLTk7O2dFWcD/SezpBh5DW7ZsUZUqVeTi4qJ8+fLpjTfe0O3bt63Tr127ps6dO8vDw0P58uXTtGnTVKdOHQ0ZMsTa586914ZhaNy4cSpQoIBcXFzk7++vQYMGSZLq1KmjkydPaujQodZvwqW0Dy//4YcfVLlyZbm6uipXrlxq3br1PdfDYrHIz89P+fLl0/PPP6+ePXtqz549io2NtfZZuXKlKlSoIFdXVxUuXFjjx4+3Wdc///xTNWrUkKurq0qWLKkNGzbYHK534sQJWSwWLVq0SLVr15arq6vmz58vSfr6669VokQJubq6qnjx4vriiy+s4966dUsDBgxQvnz55OrqqsDAQE2cOPG+2+vubStJp06dUsuWLeXp6SkvLy+1b99e58+ft04fN26cypUrp++++04FCxaUt7e3OnbsqGvXrt1z+wEAHp6Li4v8/PwUEBCgVq1aqUGDBlq/fr11+qVLl9SpUyc988wzcnd3V+nSpbVgwQKbMerUqaNBgwZp5MiRypkzp/z8/DRu3DibPkePHlWtWrWs71d3LiPFoUOHVK9ePbm5ucnX11d9+vTR9evXrdNT9gZ/8MEHyps3r3x8fDRhwgTdvn1bI0aMUM6cOZU/f/5UYfpe633nw9HRUdL9P2fUqVNHAwYM0JAhQ5QrVy6FhIRIkg4fPqwmTZrI09NTefPmVZcuXXTx4kXrfEuWLFHp0qWt69egQQPFxcVp3Lhxmjt3rlauXGn9rLF58+b7rgPwtCB0A4+Zf//9V02bNlXlypV14MABzZw5U3PmzNF7771n7TNs2DDt2LFDq1at0vr167Vt2zbt378/3TGXLl2qadOm6auvvtLRo0e1YsUKlS5dWpK0bNky5c+fXxMmTNDZs2d19uzZNMf46aef1Lp1azVt2lS///67Nm7cqCpVqmR4vS5cuKDly5fL0dHR+qa/bds2de3aVYMHD9aRI0f01VdfKSwsTO+//74kKSkpSa1atZK7u7t2796tWbNm6a233kpz/DfeeEODBw9WZGSkQkJCNH/+fI0ZM0bvv/++IiMj9cEHH+idd97R3LlzJUmffvqpVq1ape+//15RUVGaP3++ChYseN/tdbfk5GS1bNlSly9f1pYtW7R+/Xr9/fff6tChg02/6OhorVixQj/++KN+/PFHbdmyRZMmTcrw9gMAPLzDhw/r119/tdlrGx8fr4oVK+qnn37S4cOH1adPH3Xp0kV79uyxmXfu3Lny8PDQ7t27NXnyZE2YMMEarJOTk9WmTRs5Oztr9+7d+vLLLzVq1Cib+ePi4hQSEqIcOXJo7969Wrx4sTZs2KABAwbY9Pvll1905swZbd26VR9//LHGjh2r5s2bK0eOHNq9e7f69eunvn376p9//nmgbZCRzxkp6+vs7KwdO3boyy+/1NWrV1WvXj2VL19ev/32m9asWaPz58+rffv2kqSzZ8+qU6dOeuWVVxQZGanNmzerTZs2MgxDw4cPV/v27dW4cWPrZ43nn3/+geoHnkgGgEeuW7duRsuWLdOc9uabbxrFihUzkpOTrW0zZswwPD09jaSkJCM2NtZwcnIyFi9ebJ1+9epVw93d3Rg8eLC1LTAw0Jg2bZphGIYxdepU49lnnzVu3bqV5jLv7JsiNDTU8Pb2tj4PDg42OnfunOF1DA0NNSQZHh4ehru7uyHJkGQMGjTI2qd+/frGBx98YDPfd999Z+TLl88wDMNYvXq1kS1bNuPs2bPW6evXrzckGcuXLzcMwzCOHz9uSDKmT59uM05QUJARHh5u0/buu+8awcHBhmEYxsCBA4169erZbOcUmdle69atMxwdHY1Tp05Zp//xxx+GJGPPnj2GYRjG2LFjDXd3dyM2NtbaZ8SIEUbVqlXTHB8AkDW6detmODo6Gh4eHoaLi4shyXBwcDCWLFlyz/maNWtmvP7669bntWvXNmrUqGHTp3LlysaoUaMMwzCMtWvXGtmyZTP+/fdf6/TVq1fbvF/NmjXLyJEjh3H9+nVrn59++slwcHAwzp07Z603MDDQSEpKsvYpVqyYUbNmTevz27dvGx4eHsaCBQsytN4pjxdffNEwjPt/zkhZ3/Lly9uM+e677xqNGjWyaTt9+rQhyYiKijL27dtnSDJOnDiRbk3pffYBnnbs6QYeM5GRkQoODrYe5i1J1atX1/Xr1/XPP//o77//VmJios1eZm9vbxUrVizdMdu1a6ebN2+qcOHC6t27t5YvX25zGFlGREREqH79+pmaJ3v27IqIiNBvv/2mqVOnqkKFCta92JJ04MABTZgwQZ6entZH7969dfbsWd24cUNRUVEKCAiQn5+fdZ709q5XqlTJ+nNcXJyio6PVs2dPm7Hfe+89RUdHS/rvEL6IiAgVK1ZMgwYN0rp166zzZ2Z7RUZGKiAgQAEBAda2kiVLysfHR5GRkda2ggULKnv27Nbn+fLl04ULFzK6KQEAD6hu3bqKiIjQ7t271a1bN/Xo0UNt27a1Tk9KStK7776r0qVLK2fOnPL09NTatWtTXfizTJkyNs/vfB1PeS/w9/e3Tg8ODrbpHxkZqbJly8rDw8PaVr16dSUnJysqKsra9txzz8nB4f9/RM+bN6/N0VaOjo7y9fW973tIynqnPD799FNrHff6nJGiYsWKNuMdOHBAmzZtsnlfLV68uKT/juYqW7as6tevr9KlS6tdu3aaPXu2rly5cs8agf8ruJAa8H9AQECAoqKitGHDBq1fv16vvfaapkyZoi1btmT4gmMPclE1BwcHFSlSRJJUokQJRUdH69VXX9V3330nSbp+/brGjx+vNm3apJrX1dU1U8u680NMyvlxs2fPVtWqVW36pRzaXqFCBR0/flyrV6/Whg0b1L59ezVo0EBLlizJku11t7vns1gsSk5OfqCxAAAZ5+HhYX0v+uabb1S2bFnNmTNHPXv2lCRNmTJFn3zyiaZPn67SpUvLw8NDQ4YM0a1bt2zGeVSv42kt50GWfed6P4g731el/95bW7RokeYF6PLlyydHR0etX79ev/76q9atW6fPPvtMb731lnbv3q1ChQo9cB3A04A93cBjpkSJEtq5c6cMw7C27dixQ9mzZ1f+/PlVuHBhOTk5ae/evdbpMTEx9729l5ubm1q0aKFPP/1Umzdv1s6dO3Xo0CFJkrOzs5KSku45f5kyZbRx48aHWLP/zrtetGiR9fzzChUqKCoqSkWKFEn1cHBwULFixXT69Gmbi5Ldud7pyZs3r/z9/fX333+nGvfON34vLy916NBBs2fP1qJFi7R06VJdvnxZ0r23151KlCih06dP6/Tp09a2I0eO6OrVqypZsuQDbysAQNZzcHDQm2++qbfffls3b96U9N97bMuWLfXyyy+rbNmyKly4cKZvmZnyXnDndVF27dqVqs+BAwcUFxdnbduxY4f1/e5Rud/njPRUqFBBf/zxhwoWLJjqvTUloFssFlWvXl3jx4/X77//LmdnZy1fvlxSxj5rAE8rQjdgJzExMTaHfUVEROj06dN67bXXdPr0aQ0cOFB//vmnVq5cqbFjx2rYsGFycHBQ9uzZ1a1bN40YMUKbNm3SH3/8oZ49e8rBwcHmULE7hYWFac6cOTp8+LD+/vtvzZs3T25ubgoMDJT036HPW7du1b///mtzFdI7jR07VgsWLNDYsWMVGRmpQ4cOZfp2KwEBAWrdurXGjBkjSRozZoy+/fZbjR8/Xn/88YciIyO1cOFCvf3225Kkhg0bKigoSN26ddPBgwe1Y8cO67T01jXF+PHjNXHiRH366af666+/dOjQIYWGhurjjz+WJH388cdasGCB/vzzT/31119avHix/Pz85OPjc9/tdacGDRqodOnS6ty5s/bv3689e/aoa9euql27ts0h7wCAx0O7du3k6OioGTNmSJKKFi1q3UMbGRmpvn372nzZmxENGjTQs88+q27duunAgQPatm1bqgt/du7cWa6ururWrZsOHz6sTZs2aeDAgerSpYvy5s2bZet3P/f7nJGe/v376/Lly+rUqZP27t2r6OhorV27Vj169FBSUpJ2796tDz74QL/99ptOnTqlZcuW6X//+59KlCgh6b/PGgcPHlRUVJQuXryoxMTER7XKgN0RugE72bx5s8qXL2/zGD9+vJ555hn9/PPP2rNnj8qWLat+/fqpZ8+e1rAp/RcYg4OD1bx5czVo0EDVq1e33horLT4+Ppo9e7aqV6+uMmXKaMOGDfrhhx/k6+srSZowYYJOnDihoKCgdO/hWadOHS1evFirVq1SuXLlVK9evVRXds2IoUOH6qefftKePXsUEhKiH3/8UevWrVPlypVVrVo1TZs2zRpuHR0dtWLFCl2/fl2VK1dWr169rB9i7nf4ea9evfT1118rNDRUpUuXVu3atRUWFmbd0509e3ZNnjxZlSpVUuXKlXXixAn9/PPPcnBwuO/2upPFYtHKlSuVI0cO1apVSw0aNFDhwoW1aNGiTG8bAID5smXLpgEDBmjy5MmKi4vT22+/rQoVKigkJER16tSRn5+fWrVqlakxHRwctHz5ct28eVNVqlRRr169bK5hIknu7u5au3atLl++rMqVK+vFF19U/fr19fnnn2fh2t1fRj5npMXf3187duxQUlKSGjVqpNKlS2vIkCHy8fGRg4ODvLy8tHXrVjVt2lTPPvus3n77bU2dOlVNmjSRJPXu3VvFihVTpUqVlDt3bu3YseNRrC7wWLAYdx5bAuCJFBcXp2eeeUZTp061nqP2tNqxY4dq1KihY8eOKSgoyN7lAAAAAPfEhdSAJ9Dvv/+uP//8U1WqVFFMTIwmTJggSWrZsqWdK8t6y5cvl6enp4oWLapjx45p8ODBql69OoEbAAAATwRCN/CE+uijjxQVFSVnZ2dVrFhR27ZtU65cuexdVpa7du2aRo0apVOnTilXrlxq0KCBpk6dau+yAAAAgAzh8HIAAAAAAEzChdQAAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAADc0+bNm2WxWHT16tUMz1OwYEFNnz7dtJoAAHhSELoBAHjCde/eXRaLRf369Us1rX///rJYLOrevfujLwwAABC6AQB4GgQEBGjhwoW6efOmtS0+Pl7h4eEqUKCAHSsDAOD/NkI3AABPgQoVKiggIEDLli2zti1btkwFChRQ+fLlrW0JCQkaNGiQ8uTJI1dXV9WoUUN79+61Gevnn3/Ws88+Kzc3N9WtW1cnTpxItbzt27erZs2acnNzU0BAgAYNGqS4uDjT1g8AgCcVoRsAgKfEK6+8otDQUOvzb775Rj169LDpM3LkSC1dulRz587V/v37VaRIEYWEhOjy5cuSpNOnT6tNmzZq0aKFIiIi1KtXL73xxhs2Y0RHR6tx48Zq27atDh48qEWLFmn79u0aMGCA+SsJAMAThtANAMBT4uWXX9b27dt18uRJnTx5Ujt27NDLL79snR4XF6eZM2dqypQpatKkiUqWLKnZs2fLzc1Nc+bMkSTNnDlTQUFBmjp1qooVK6bOnTunOh984sSJ6ty5s4YMGaKiRYvq+eef16effqpvv/1W8fHxj3KVAQB47GWzdwEAACBr5M6dW82aNVNYWJgMw1CzZs2UK1cu6/To6GglJiaqevXq1jYnJydVqVJFkZGRkqTIyEhVrVrVZtzg4GCb5wcOHNDBgwc1f/58a5thGEpOTtbx48dVokQJM1YPAIAnEqEbAICnyCuvvGI9zHvGjBmmLOP69evq27evBg0alGoaF20DAMAWoRsAgKdI48aNdevWLVksFoWEhNhMCwoKkrOzs3bs2KHAwEBJUmJiovbu3ashQ4ZIkkqUKKFVq1bZzLdr1y6b5xUqVNCRI0dUpEgR81YEAICnBOd0AwDwFHF0dFRkZKSOHDkiR0dHm2keHh569dVXNWLECK1Zs0ZHjhxR7969dePGDfXs2VOS1K9fPx09elQjRoxQVFSUwsPDFRYWZjPOqFGj9Ouvv2rAgAGKiIjQ0aNHtXLlSi6kBgBAGgjdAAA8Zby8vOTl5ZXmtEmTJqlt27bq0qWLKlSooGPHjmnt2rXKkSOHpP8OD1+6dKlWrFihsmXL6ssvv9QHH3xgM0aZMmW0ZcsW/fXXX6pZs6bKly+vMWPGyN/f3/R1AwDgSWMxDMOwdxEAAAAAADyN2NMNAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACY5P8BMFYYZf8sAeEAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["from collections import defaultdict\n","import numpy as np\n","\n","# Sort matches by date to ensure form is calculated chronologically\n","matches_df = matches_df.sort_values(by='date')\n","\n","# Initialize recent form trackers\n","team_recent_form = defaultdict(list)\n","team1_form_list = []\n","team2_form_list = []\n","\n","# Iterate and calculate rolling win ratio (last 5 matches)\n","for _, row in matches_df.iterrows():\n"," team1 = row['team1']\n"," team2 = row['team2']\n"," winner = row['winner']\n","\n"," # Get recent form: average of last 5 match results (1=win, 0=loss)\n"," team1_form = np.mean(team_recent_form[team1][-5:]) if team_recent_form[team1] else 0.5\n"," team2_form = np.mean(team_recent_form[team2][-5:]) if team_recent_form[team2] else 0.5\n","\n"," team1_form_list.append(team1_form)\n"," team2_form_list.append(team2_form)\n","\n"," # Update the tracker\n"," team_recent_form[team1].append(1 if winner == team1 else 0)\n"," team_recent_form[team2].append(1 if winner == team2 else 0)\n","\n","# Add to dataframe\n","matches_df['team1_recent_form'] = team1_form_list\n","matches_df['team2_recent_form'] = team2_form_list\n","\n","# Show sample\n","matches_df[['team1', 'team2', 'winner', 'team1_recent_form', 'team2_recent_form']].head(10)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":363},"id":"7z52Kkr5vHvs","executionInfo":{"status":"ok","timestamp":1744090647545,"user_tz":-330,"elapsed":354,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"0d2eeedf-dc2d-474f-b93a-b7cb89ec786b"},"execution_count":19,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" team1 team2 \\\n","0 Royal Challengers Bangalore Kolkata Knight Riders \n","1 Kings XI Punjab Chennai Super Kings \n","2 Delhi Daredevils Rajasthan Royals \n","3 Mumbai Indians Royal Challengers Bangalore \n","4 Kolkata Knight Riders Deccan Chargers \n","5 Rajasthan Royals Kings XI Punjab \n","6 Deccan Chargers Delhi Daredevils \n","7 Chennai Super Kings Mumbai Indians \n","8 Deccan Chargers Rajasthan Royals \n","9 Kings XI Punjab Mumbai Indians \n","\n"," winner team1_recent_form team2_recent_form \n","0 Kolkata Knight Riders 0.5 0.5 \n","1 Chennai Super Kings 0.5 0.5 \n","2 Delhi Daredevils 0.5 0.5 \n","3 Royal Challengers Bangalore 0.5 0.0 \n","4 Kolkata Knight Riders 1.0 0.5 \n","5 Rajasthan Royals 0.0 0.0 \n","6 Delhi Daredevils 0.0 1.0 \n","7 Chennai Super Kings 1.0 0.0 \n","8 Rajasthan Royals 0.0 0.5 \n","9 Kings XI Punjab 0.0 0.0 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
team1team2winnerteam1_recent_formteam2_recent_form
0Royal Challengers BangaloreKolkata Knight RidersKolkata Knight Riders0.50.5
1Kings XI PunjabChennai Super KingsChennai Super Kings0.50.5
2Delhi DaredevilsRajasthan RoyalsDelhi Daredevils0.50.5
3Mumbai IndiansRoyal Challengers BangaloreRoyal Challengers Bangalore0.50.0
4Kolkata Knight RidersDeccan ChargersKolkata Knight Riders1.00.5
5Rajasthan RoyalsKings XI PunjabRajasthan Royals0.00.0
6Deccan ChargersDelhi DaredevilsDelhi Daredevils0.01.0
7Chennai Super KingsMumbai IndiansChennai Super Kings1.00.0
8Deccan ChargersRajasthan RoyalsRajasthan Royals0.00.5
9Kings XI PunjabMumbai IndiansKings XI Punjab0.00.0
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"matches_df[['team1', 'team2', 'winner', 'team1_recent_form', 'team2_recent_form']]\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"team1\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"Kings XI Punjab\",\n \"Rajasthan Royals\",\n \"Royal Challengers Bangalore\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team2\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"Chennai Super Kings\",\n \"Kings XI Punjab\",\n \"Kolkata Knight Riders\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"winner\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"Kolkata Knight Riders\",\n \"Chennai Super Kings\",\n \"Kings XI Punjab\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team1_recent_form\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.39440531887330776,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.5,\n 1.0,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team2_recent_form\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3374742788552764,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.5,\n 0.0,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":19}]},{"cell_type":"code","source":["# Calculate home win ratio per team dynamically over time\n","from collections import defaultdict\n","\n","# Reset the dataframe index for consistency\n","matches_df = matches_df.sort_values(by='date').reset_index(drop=True)\n","\n","# Tracker for home games and home wins\n","home_game_tracker = defaultdict(int)\n","home_win_tracker = defaultdict(int)\n","home_win_percent_list = []\n","\n","# Iterate through matches and compute home win % before each match\n","for _, row in matches_df.iterrows():\n"," home_team = row['home_team']\n"," winner = row['winner']\n","\n"," if home_team != 'Neutral':\n"," # Calculate win percentage before this match\n"," total_home_games = home_game_tracker[home_team]\n"," total_home_wins = home_win_tracker[home_team]\n","\n"," win_percent = (total_home_wins / total_home_games) if total_home_games > 0 else 0.5\n"," home_win_percent_list.append(win_percent)\n","\n"," # Update trackers after current match\n"," home_game_tracker[home_team] += 1\n"," if home_team == winner:\n"," home_win_tracker[home_team] += 1\n"," else:\n"," # For neutral venues, set to neutral value\n"," home_win_percent_list.append(0.5)\n","\n","# Add to DataFrame\n","matches_df['home_win_percent'] = home_win_percent_list\n","\n","# Show sample\n","matches_df[['team1', 'team2', 'home_team', 'winner', 'home_win_percent']].head(10)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":363},"id":"2maOKcaSxycH","executionInfo":{"status":"ok","timestamp":1744090647814,"user_tz":-330,"elapsed":271,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"fb776ffd-180b-4f01-bd1d-31b940eacf37"},"execution_count":20,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" team1 team2 \\\n","0 Royal Challengers Bangalore Kolkata Knight Riders \n","1 Kings XI Punjab Chennai Super Kings \n","2 Delhi Daredevils Rajasthan Royals \n","3 Mumbai Indians Royal Challengers Bangalore \n","4 Kolkata Knight Riders Deccan Chargers \n","5 Rajasthan Royals Kings XI Punjab \n","6 Deccan Chargers Delhi Daredevils \n","7 Chennai Super Kings Mumbai Indians \n","8 Deccan Chargers Rajasthan Royals \n","9 Kings XI Punjab Mumbai Indians \n","\n"," home_team winner home_win_percent \n","0 Royal Challengers Bangalore Kolkata Knight Riders 0.5 \n","1 Neutral Chennai Super Kings 0.5 \n","2 Delhi Daredevils Delhi Daredevils 0.5 \n","3 Mumbai Indians Royal Challengers Bangalore 0.5 \n","4 Kolkata Knight Riders Kolkata Knight Riders 0.5 \n","5 Neutral Rajasthan Royals 0.5 \n","6 Neutral Delhi Daredevils 0.5 \n","7 Chennai Super Kings Chennai Super Kings 0.5 \n","8 Neutral Rajasthan Royals 0.5 \n","9 Neutral Kings XI Punjab 0.5 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
team1team2home_teamwinnerhome_win_percent
0Royal Challengers BangaloreKolkata Knight RidersRoyal Challengers BangaloreKolkata Knight Riders0.5
1Kings XI PunjabChennai Super KingsNeutralChennai Super Kings0.5
2Delhi DaredevilsRajasthan RoyalsDelhi DaredevilsDelhi Daredevils0.5
3Mumbai IndiansRoyal Challengers BangaloreMumbai IndiansRoyal Challengers Bangalore0.5
4Kolkata Knight RidersDeccan ChargersKolkata Knight RidersKolkata Knight Riders0.5
5Rajasthan RoyalsKings XI PunjabNeutralRajasthan Royals0.5
6Deccan ChargersDelhi DaredevilsNeutralDelhi Daredevils0.5
7Chennai Super KingsMumbai IndiansChennai Super KingsChennai Super Kings0.5
8Deccan ChargersRajasthan RoyalsNeutralRajasthan Royals0.5
9Kings XI PunjabMumbai IndiansNeutralKings XI Punjab0.5
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"matches_df[['team1', 'team2', 'home_team', 'winner', 'home_win_percent']]\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"team1\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"Kings XI Punjab\",\n \"Rajasthan Royals\",\n \"Royal Challengers Bangalore\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team2\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"Chennai Super Kings\",\n \"Kings XI Punjab\",\n \"Kolkata Knight Riders\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"home_team\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"Royal Challengers Bangalore\",\n \"Neutral\",\n \"Chennai Super Kings\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"winner\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"Kolkata Knight Riders\",\n \"Chennai Super Kings\",\n \"Kings XI Punjab\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"home_win_percent\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.5,\n \"max\": 0.5,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":20}]},{"cell_type":"code","source":["# Prepare title defense indicator based on previous season's winner\n","\n","# Convert season to numeric (first extract year from \"2007/08\", etc.)\n","matches_df['season_year'] = matches_df['season'].str.extract(r'(\\d{4})').astype(int)\n","\n","# Create mapping of year -> previous year winner\n","season_winner_map = {}\n","\n","# Sort matches to get one winner per season\n","season_sorted = matches_df.sort_values(by='date')\n","for season in sorted(matches_df['season_year'].unique()):\n"," winner = season_sorted[season_sorted['season_year'] == season]['winner'].mode()\n"," if not winner.empty:\n"," season_winner_map[season + 1] = winner.values[0] # next year's defending champion\n","\n","# Add title defense indicator for team1 and team2\n","matches_df['team1_title_defender'] = matches_df.apply(\n"," lambda row: 1 if row['team1'] == season_winner_map.get(row['season_year'], '') else 0,\n"," axis=1\n",")\n","matches_df['team2_title_defender'] = matches_df.apply(\n"," lambda row: 1 if row['team2'] == season_winner_map.get(row['season_year'], '') else 0,\n"," axis=1\n",")\n","\n","# Show sample\n","matches_df[['season', 'season_year', 'team1', 'team2', 'team1_title_defender', 'team2_title_defender']].head(12)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":426},"id":"L9RhMpkYxyYu","executionInfo":{"status":"ok","timestamp":1744090647984,"user_tz":-330,"elapsed":168,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"82661ed7-a4da-4551-f97f-d64fd63bd810"},"execution_count":21,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" season season_year team1 \\\n","0 2007/08 2007 Royal Challengers Bangalore \n","1 2007/08 2007 Kings XI Punjab \n","2 2007/08 2007 Delhi Daredevils \n","3 2007/08 2007 Mumbai Indians \n","4 2007/08 2007 Kolkata Knight Riders \n","5 2007/08 2007 Rajasthan Royals \n","6 2007/08 2007 Deccan Chargers \n","7 2007/08 2007 Chennai Super Kings \n","8 2007/08 2007 Deccan Chargers \n","9 2007/08 2007 Kings XI Punjab \n","10 2007/08 2007 Royal Challengers Bangalore \n","11 2007/08 2007 Chennai Super Kings \n","\n"," team2 team1_title_defender team2_title_defender \n","0 Kolkata Knight Riders 0 0 \n","1 Chennai Super Kings 0 0 \n","2 Rajasthan Royals 0 0 \n","3 Royal Challengers Bangalore 0 0 \n","4 Deccan Chargers 0 0 \n","5 Kings XI Punjab 0 0 \n","6 Delhi Daredevils 0 0 \n","7 Mumbai Indians 0 0 \n","8 Rajasthan Royals 0 0 \n","9 Mumbai Indians 0 0 \n","10 Rajasthan Royals 0 0 \n","11 Kolkata Knight Riders 0 0 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
seasonseason_yearteam1team2team1_title_defenderteam2_title_defender
02007/082007Royal Challengers BangaloreKolkata Knight Riders00
12007/082007Kings XI PunjabChennai Super Kings00
22007/082007Delhi DaredevilsRajasthan Royals00
32007/082007Mumbai IndiansRoyal Challengers Bangalore00
42007/082007Kolkata Knight RidersDeccan Chargers00
52007/082007Rajasthan RoyalsKings XI Punjab00
62007/082007Deccan ChargersDelhi Daredevils00
72007/082007Chennai Super KingsMumbai Indians00
82007/082007Deccan ChargersRajasthan Royals00
92007/082007Kings XI PunjabMumbai Indians00
102007/082007Royal Challengers BangaloreRajasthan Royals00
112007/082007Chennai Super KingsKolkata Knight Riders00
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"matches_df[['season', 'season_year', 'team1', 'team2', 'team1_title_defender', 'team2_title_defender']]\",\n \"rows\": 12,\n \"fields\": [\n {\n \"column\": \"season\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"2007/08\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"season_year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2007,\n \"max\": 2007,\n \"num_unique_values\": 1,\n \"samples\": [\n 2007\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team1\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"Kings XI Punjab\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team2\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"Chennai Super Kings\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team1_title_defender\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"team2_title_defender\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":21}]},{"cell_type":"code","source":["# Recalculate missing toss-related features before scaling\n","\n","# Toss winner chose to bat\n","matches_df['toss_bat'] = matches_df['toss_decision'].apply(lambda x: 1 if x == 'bat' else 0)\n","\n","# Toss winner also won the match\n","matches_df['toss_win_match_win'] = (matches_df['toss_winner'] == matches_df['winner']).astype(int)\n","\n","# Team1 batted first indicator (assumed from toss logic)\n","matches_df['team1_batted_first'] = matches_df['toss_decision'].apply(lambda x: 1 if x == 'bat' else 0)\n","\n","# Drop matches without a winner\n","ml_df = matches_df.dropna(subset=['winner']).copy()\n","\n","# Encode categorical features\n","from sklearn.preprocessing import LabelEncoder\n","encoder = LabelEncoder()\n","for col in ['team1', 'team2', 'toss_winner', 'toss_decision', 'venue', 'home_team', 'winner']:\n"," ml_df[col] = encoder.fit_transform(ml_df[col])\n","\n","# Define feature lists\n","numeric_features = [\n"," 'head_to_head_count', 'team1_recent_form', 'team2_recent_form',\n"," 'home_win_percent', 'toss_bat', 'toss_win_match_win', 'team1_batted_first',\n"," 'team1_title_defender', 'team2_title_defender'\n","]\n","categorical_features = ['team1', 'team2', 'toss_winner', 'toss_decision', 'venue', 'home_team']\n","\n","# Scale numeric features\n","from sklearn.preprocessing import StandardScaler\n","scaler = StandardScaler()\n","X_scaled_numeric = scaler.fit_transform(ml_df[numeric_features])\n","\n","# Combine scaled numeric with encoded categorical\n","X_encoded_categorical = ml_df[categorical_features].values\n","import numpy as np\n","X_final = np.hstack([X_encoded_categorical, X_scaled_numeric])\n","y_final = ml_df['winner']\n","\n","# Train-test split\n","from sklearn.model_selection import train_test_split\n","X_train_final, X_test_final, y_train_final, y_test_final = train_test_split(\n"," X_final, y_final, test_size=0.2, random_state=42\n",")\n","\n","# Train models\n","from sklearn.linear_model import LogisticRegression\n","from sklearn.ensemble import RandomForestClassifier\n","from sklearn.metrics import accuracy_score\n","\n","log_model_final = LogisticRegression(solver='saga', max_iter=3000)\n","rf_model_final = RandomForestClassifier(n_estimators=100, random_state=42)\n","\n","log_model_final.fit(X_train_final, y_train_final)\n","rf_model_final.fit(X_train_final, y_train_final)\n","\n","# Predict and evaluate\n","log_preds_final = log_model_final.predict(X_test_final)\n","rf_preds_final = rf_model_final.predict(X_test_final)\n","\n","log_acc_final = accuracy_score(y_test_final, log_preds_final)\n","rf_acc_final = accuracy_score(y_test_final, rf_preds_final)\n","\n","(log_acc_final, rf_acc_final)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"E-ElHD1pxyWo","executionInfo":{"status":"ok","timestamp":1744090655223,"user_tz":-330,"elapsed":7236,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"fbc63ec7-9e86-4007-eef9-5bf9c60f030c"},"execution_count":22,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n"," warnings.warn(\n"]},{"output_type":"execute_result","data":{"text/plain":["(0.3165137614678899, 0.6972477064220184)"]},"metadata":{},"execution_count":22}]},{"cell_type":"code","source":["# Try LightGBM as an alternative to XGBoost\n","from lightgbm import LGBMClassifier\n","\n","# Initialize and train LightGBM model\n","lgbm_model = LGBMClassifier(random_state=42)\n","lgbm_model.fit(X_train_final, y_train_final)\n","\n","# Predict and evaluate\n","lgbm_preds = lgbm_model.predict(X_test_final)\n","lgbm_acc = accuracy_score(y_test_final, lgbm_preds)\n","\n","lgbm_acc"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"J2WSPnh_xyUG","executionInfo":{"status":"ok","timestamp":1744090659364,"user_tz":-330,"elapsed":4144,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"7f5a1ff4-ca19-453d-b1c4-1eddbd177c24"},"execution_count":23,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n"," warnings.warn(\n"]},{"output_type":"stream","name":"stdout","text":["[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000183 seconds.\n","You can set `force_row_wise=true` to remove the overhead.\n","And if memory is not enough, you can set `force_col_wise=true`.\n","[LightGBM] [Info] Total Bins 287\n","[LightGBM] [Info] Number of data points in the train set: 872, number of used features: 15\n","[LightGBM] [Info] Start training from score -2.155669\n","[LightGBM] [Info] Start training from score -3.474953\n","[LightGBM] [Info] Start training from score -3.057217\n","[LightGBM] [Info] Start training from score -2.781805\n","[LightGBM] [Info] Start training from score -4.691348\n","[LightGBM] [Info] Start training from score -3.826350\n","[LightGBM] [Info] Start training from score -2.508110\n","[LightGBM] [Info] Start training from score -5.384495\n","[LightGBM] [Info] Start training from score -2.088658\n","[LightGBM] [Info] Start training from score -3.726267\n","[LightGBM] [Info] Start training from score -2.000105\n","[LightGBM] [Info] Start training from score -4.573565\n","[LightGBM] [Info] Start training from score -3.726267\n","[LightGBM] [Info] Start training from score -2.304881\n","[LightGBM] [Info] Start training from score -4.979030\n","[LightGBM] [Info] Start training from score -5.161352\n","[LightGBM] [Info] Start training from score -2.270980\n","[LightGBM] [Info] Start training from score -5.161352\n","[LightGBM] [Info] Start training from score -2.426984\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n"," warnings.warn(\n"]},{"output_type":"execute_result","data":{"text/plain":["0.8761467889908257"]},"metadata":{},"execution_count":23}]},{"cell_type":"code","source":["# Step 1: Re-train both models to be sure\n","from sklearn.ensemble import RandomForestClassifier\n","from lightgbm import LGBMClassifier\n","import pandas as pd\n","import numpy as np\n","import seaborn as sns\n","import matplotlib.pyplot as plt\n","\n","# Re-train Random Forest\n","rf_model_final = RandomForestClassifier(n_estimators=100, random_state=42)\n","rf_model_final.fit(X_train_final, y_train_final)\n","\n","# Re-train LightGBM\n","lgbm_model = LGBMClassifier(random_state=42)\n","lgbm_model.fit(X_train_final, y_train_final)\n","\n","# Step 2: Get feature importances\n","rf_importance = rf_model_final.feature_importances_\n","lgbm_importance = lgbm_model.feature_importances_\n","\n","# Step 3: Normalize importances for fair comparison\n","rf_importance_normalized = rf_importance / np.max(rf_importance)\n","lgbm_importance_normalized = lgbm_importance / np.max(lgbm_importance)\n","\n","# Step 4: Create DataFrame for plotting\n","feature_names = categorical_features + numeric_features\n","\n","importance_df = pd.DataFrame({\n"," 'Feature': feature_names,\n"," 'LightGBM': lgbm_importance_normalized,\n"," 'Random Forest': rf_importance_normalized\n","})\n","\n","# Melt for seaborn plotting\n","importance_melted = importance_df.melt(id_vars='Feature',\n"," var_name='Model',\n"," value_name='Importance')\n","\n","# Step 5: Plot\n","plt.figure(figsize=(12, 8))\n","sns.barplot(data=importance_melted, x='Importance', y='Feature', hue='Model')\n","plt.title(\"📊 Feature Importance Comparison (Normalized): LightGBM vs Random Forest\")\n","plt.tight_layout()\n","plt.show()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"L2kfrGeGxyIi","executionInfo":{"status":"ok","timestamp":1744090661247,"user_tz":-330,"elapsed":1884,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"390754f3-e58b-45c2-864f-2dfb619b2880"},"execution_count":24,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.\n"," warnings.warn(\n"]},{"output_type":"stream","name":"stdout","text":["[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000121 seconds.\n","You can set `force_row_wise=true` to remove the overhead.\n","And if memory is not enough, you can set `force_col_wise=true`.\n","[LightGBM] [Info] Total Bins 287\n","[LightGBM] [Info] Number of data points in the train set: 872, number of used features: 15\n","[LightGBM] [Info] Start training from score -2.155669\n","[LightGBM] [Info] Start training from score -3.474953\n","[LightGBM] [Info] Start training from score -3.057217\n","[LightGBM] [Info] Start training from score -2.781805\n","[LightGBM] [Info] Start training from score -4.691348\n","[LightGBM] [Info] Start training from score -3.826350\n","[LightGBM] [Info] Start training from score -2.508110\n","[LightGBM] [Info] Start training from score -5.384495\n","[LightGBM] [Info] Start training from score -2.088658\n","[LightGBM] [Info] Start training from score -3.726267\n","[LightGBM] [Info] Start training from score -2.000105\n","[LightGBM] [Info] Start training from score -4.573565\n","[LightGBM] [Info] Start training from score -3.726267\n","[LightGBM] [Info] Start training from score -2.304881\n","[LightGBM] [Info] Start training from score -4.979030\n","[LightGBM] [Info] Start training from score -5.161352\n","[LightGBM] [Info] Start training from score -2.270980\n","[LightGBM] [Info] Start training from score -5.161352\n","[LightGBM] [Info] Start training from score -2.426984\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n","[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n"]},{"output_type":"stream","name":"stderr","text":[":43: UserWarning: Glyph 128202 (\\N{BAR CHART}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128202 (\\N{BAR CHART}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzXFJREFUeJzs3Xd8Tvf///HnlUT2ViOIBLFDxWoJTYrailZT41NiVlG7SmskatRq5dOhRouqUR9ttVWlqKi9KmqPVFBSm4gRJOf3h1+ur0sSkogrxuN+u1235nqfc97ndc410jy9z/uYDMMwBAAAAAAAAFiRTW4XAAAAAAAAgKcPoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAADAI2LWrFkymUyKi4vL7VIytGXLFtnb2+vo0aO5XYpVxMXFyWQyadasWea2iIgImUwmq9diMpkUERFhfv7FF1+oaNGiSkpKeuj7Dg8Pl7+/f7a3dXV1zdmC8Ei6+z0KAPdDKAUAT4nUP6zSezz//PMPZZ8nT55URESEYmJiHkr/DyL1fEycODG3S8m2pUuXPpH/8//DDz+oUaNGeuaZZ2Rvb69ChQopLCxMv//+e26XBknvv/++2rRpIz8/P3NbaGioTCaTmjVrlmb9J+Gz9qgKDw/XjRs3NHXq1Afqx9/fX02bNs2hqrLv6tWrioiIUHR0dIbr/PXXX+rYsaOKFSsmR0dHubq6qlKlSho0aJD+/vtvi3XDw8MtftfZ2dnJ19dXrVu31t69ey3WjY6ONq/3zTffpLvv4OBgmUwmBQYGPvCxPqjUz1zqw8nJSRUrVtTkyZOVkpKS2+U9Mu4+T3c+9u/fn9vlpbF3715FREQ80v8wAeQ0u9wuAACQOXv27FFQUJDs7e3TXX7jxg3t27dPJUqUuGc/bdq0UePGjS3a8uXLl2N13unkyZOKjIyUv7+/KlWq9FD28TRbunSpPvvssycmmDIMQ506ddKsWbMUFBSk/v37q2DBgoqPj9cPP/ygunXrav369apZs2Zul/rQvPHGG2rdurUcHBxyu5R0xcTEaOXKldqwYUO6y5csWaLt27erSpUqVq7MuoYOHarBgwfndhlydHRUhw4d9NFHH+ntt99+qKO3pk+f/tDDjqtXryoyMlLS7TAhvRreeustPfPMM2rXrp3KlCmjW7duaffu3fr66681efJkXbt2Tba2tuZtHBwcNGPGDEnSrVu3FBsbqy+++ELLli3T3r17VahQIYt9ODo6at68efrPf/5j0R4XF6cNGzbI0dExh486+4oUKaKxY8dKks6ePat58+apX79+OnPmjEaPHp3L1T067jxPd7r7tX8U7N27V5GRkQoNDc32yETgcUMoBQCPCcMwVL16da1bty7d5c8//7wMw7hvP5UrV07zP9uPm+vXr8ve3l42Nk/ngN8rV67IxcUlt8vIcZMmTdKsWbPUt29fffTRRxZ/YL///vuaM2eO7OyezP91SX1NbW1tLf6gftTMnDlTRYsWTXd0ZdGiRXX58mVFRkbqp59+emg1PAqffzs7u0fmvRgWFqbx48dr9erVqlOnzkPbT548eR5a35mxYcMGvfXWWwoODtaSJUvk5uZmsXzSpEnpBjF2dnZpfuc9//zzatq0qX755Rd17drVYlnjxo31008/6ezZs3rmmWfM7fPmzVOBAgVUsmRJXbhwIQePLPs8PDwsjq179+4qU6aMPvnkE40cOfKR/i6xprvPU04xDEPXr1+Xk5NTjvcNPE2ezv+bBwBkaP/+/WrVqpW8vb3l6OioqlWrpvkD8/z58xo4cKAqVKggV1dXubu7q1GjRtq5c6d5nejoaFWrVk2S1LFjR/Nw+dR5Wfz9/RUeHp5m/6GhoRb/Qp56ScWCBQs0dOhQFS5cWM7OzkpISJAkbd68WQ0bNpSHh4ecnZ0VEhKi9evXZ+vYU+fzWbdunXr37q18+fLJ09NTb775pm7cuKGLFy+qffv28vLykpeXlwYNGmQRBN55mdLHH38sPz8/OTk5KSQkRLt3706zv99//121a9eWi4uLPD091bx5c+3bt89indS5a/bu3au2bdvKy8tLtWrVUnh4uD777DNJsrgcIdXEiRNVs2ZN5c2bV05OTqpSpYoWLVqUpgaTyaRevXpp8eLFCgwMlIODg8qXL69ly5alWffEiRPq3LmzChUqJAcHBxUrVkxvvfWWbty4YV7n4sWL6tu3r3x9feXg4KCAgACNGzfuviMsrl27prFjx6pMmTKaOHFiuiM+3njjDVWvXt38/O+//9Zrr70mb29vOTs76/nnn9cvv/xisU3q+2fhwoWKjIxU4cKF5ebmplatWunSpUtKSkpS3759lT9/frm6uqpjx45p5udJPUdz585V6dKl5ejoqCpVquiPP/6wWO/o0aPq0aOHSpcuLScnJ+XNm1evvfZamsswUt9na9asUY8ePZQ/f34VKVLEYtmd22zbtk0NGjTQM888IycnJxUrVkydOnWy6PPKlSsaMGCA+byXLl1aEydOTBNUZ+X1Ts/ixYtVp06ddF8fNzc39evXTz///LP+/PPP+/aVldcvvc9/6jxFx44dU9OmTeXq6qrChQubPxe7du1SnTp15OLiIj8/P82bN8+i78x8j2Xk7jml7r5M7M7HnSMZk5KSNGLECAUEBMjBwUG+vr4aNGhQmvdcUlKS+vXrp3z58snNzU0vv/yy/vnnn3RrqVKliry9vfXjjz9atJ89e1b79+/X1atX73s8mZHenFLnzp3TG2+8IXd3d3l6eqpDhw7auXNnmjm4Up04cUItWrSQq6ur8uXLp4EDByo5OVnS7e/P1FG7kZGRac5fatvcuXPTBFLS7RFOH3zwQaaCmIIFC0pSusFi8+bN5eDgoP/9738W7fPmzVNYWFim+u/Vq5dcXV3TPfdt2rRRwYIFzcedmc93Zjk6OqpatWq6fPmyTp8+bW7/66+/FB4eruLFi8vR0VEFCxZUp06ddO7cOYvtU9/Xhw8fVnh4uDw9PeXh4aGOHTumOZasvEd37NihRo0ayd3dXa6urqpbt642bdpksc6D/v59ELdu3dIHH3ygEiVKyMHBQf7+/nrvvffSfC5TL3Ndvny5qlatKicnJ/Ols5n93bdgwQJVqVJFbm5ucnd3V4UKFRQVFWU+B6+99pok6cUXXzR/Bu51OSvwJHg0/okHAGA1V69e1dmzZy3aPDw8lCdPHu3Zs0fBwcEqXLiwBg8eLBcXFy1cuFAtWrTQd999p5YtW0q6/cfk4sWL9dprr6lYsWI6deqUpk6dqpCQEPPlEGXLltXIkSM1fPhwdevWTbVr15akbF969cEHH8je3l4DBw5UUlKS7O3t9fvvv6tRo0aqUqWKRowYIRsbG82cOVN16tTR2rVrLQKMrHj77bdVsGBBRUZGatOmTZo2bZo8PT21YcMGFS1aVGPGjNHSpUs1YcIEBQYGqn379hbbf/3117p8+bJ69uyp69evKyoqSnXq1NGuXbtUoEABSdLKlSvVqFEjFS9eXBEREbp27Zo++eQTBQcH688//0zzx99rr72mkiVLasyYMTIMQ0FBQTp58qRWrFihOXPmpDmGqKgovfzyy2rXrp1u3LihBQsW6LXXXtOSJUvUpEkTi3XXrVun77//Xj169JCbm5v++9//6tVXX9WxY8eUN29eSbcvxaxevbouXryobt26qUyZMjpx4oQWLVqkq1evyt7eXlevXlVISIhOnDihN998U0WLFtWGDRs0ZMgQxcfHa/LkyRme83Xr1un8+fPq27dvpv7oO3XqlGrWrKmrV6+qd+/eyps3r2bPnq2XX35ZixYtMr9XU40dO1ZOTk4aPHiwDh8+rE8++UR58uSRjY2NLly4oIiICG3atEmzZs1SsWLFNHz4cIvt16xZo2+//Va9e/eWg4ODPv/8czVs2FBbtmwxzy+zdetWbdiwQa1bt1aRIkUUFxenKVOmKDQ0VHv37pWzs7NFnz169FC+fPk0fPhwXblyJd3jPH36tOrXr698+fJp8ODB8vT0VFxcnL7//nvzOoZh6OWXX9bq1avVuXNnVapUScuXL9c777yjEydO6OOPP05zru/3eqfnxIkTOnbsmCpXrpzhOn369NHHH3+siIiIe46Wyurrl97nX5KSk5PVqFEjvfDCCxo/frzmzp2rXr16ycXFRe+//77atWunV155RV988YXat2+vGjVqqFixYpIy9z2WWW+++abq1atn0bZs2TLNnTtX+fPnlySlpKTo5Zdf1rp169StWzeVLVtWu3bt0scff6yDBw9q8eLF5m27dOmib775Rm3btlXNmjX1+++/p/nc3qly5cppwvhPP/1UkZGRWr16dbqXwj2olJQUNWvWTFu2bNFbb72lMmXK6Mcff1SHDh3SXT85OVkNGjTQc889p4kTJ2rlypWaNGmSSpQoobfeekv58uXTlClT9NZbb6lly5Z65ZVXJEkVK1bU1atX9fvvvys0NNQc4GZF6u+85ORk/f3333r33XeVN2/edOfRcnZ2VvPmzTV//ny99dZbkqSdO3dqz549mjFjhv7666/77u/111/XZ599pl9++cUcMki3f//+/PPPCg8Pl62tbaY+31mV+o8jnp6e5rYVK1bo77//VseOHVWwYEHt2bNH06ZN0549e7Rp06Y0IXNYWJiKFSumsWPH6s8//9SMGTOUP39+jRs3zrxOZt+je/bsUe3ateXu7q5BgwYpT548mjp1qkJDQ7VmzRo999xzFus/6O/f9CQnJ6f5/57U+chSj2X27Nlq1aqVBgwYoM2bN2vs2LHat2+ffvjhB4vtDhw4oDZt2ujNN99U165dVbp06Uz/7luxYoXatGmjunXrms/lvn37tH79evXp00cvvPCCevfurf/+97967733VLZsWUky/xd4YhkAgMfCrl27jODg4AyXP/fcc8ahQ4cyXH7kyBFDUrqP1atXG4ZhGHXr1jUqVKhgXL9+3bxdSkqKUbNmTaNkyZLmtuvXrxvJyclp+ndwcDBGjhxpbtu6dashyZg5c2aaevz8/IwOHTqkaQ8JCTFCQkLMz1evXm1IMooXL25cvXrVoq6SJUsaDRo0MFJSUsztV69eNYoVK2a89NJLGZ6LO8/HhAkTzG0zZ840JKXps0aNGobJZDK6d+9ubrt165ZRpEgRi1pT+3RycjL++ecfc/vmzZsNSUa/fv3MbZUqVTLy589vnDt3zty2c+dOw8bGxmjfvr25bcSIEYYko02bNmmOoWfPnkZGv8rvPFeGYRg3btwwAgMDjTp16li0SzLs7e2Nw4cPW9Qhyfjkk0/Mbe3btzdsbGyMrVu3ptlX6rn64IMPDBcXF+PgwYMWywcPHmzY2toax44dS7dWwzCMqKgoQ5Lxww8/ZLjOnfr27WtIMtauXWtuu3z5slGsWDHD39/f/P5Mff8EBgYaN27cMK/bpk0bw2QyGY0aNbLot0aNGoafn59FW+rnZNu2bea2o0ePGo6OjkbLli3NbXefc8MwjI0bNxqSjK+//trclvo+q1WrlnHr1i2L9VOXHTlyxDAMw/jhhx8MSeme91SLFy82JBmjRo2yaG/VqpVhMpksXtvMvt7pWblypSHJ+Pnnn9MsCwkJMcqXL28YhmFERkYakozt27cbhpH+Zy2rr9/dn3/DMIwOHToYkowxY8aY2y5cuGA4OTkZJpPJWLBggbl9//79hiRjxIgR5rbMfo+l1n/n91jq5zIjhw4dMjw8PIyXXnrJ/BrPmTPHsLGxsThmwzCML774wpBkrF+/3jAMw4iJiTEkGT169LBYr23btmmOIVW3bt0MJycni7bUGlO/3+/Fz8/PaNKkyT3X6dChg8Vn47vvvjMkGZMnTza3JScnG3Xq1ElzvlJfqzvPq2EYRlBQkFGlShXz8zNnzqR7jKnv0b59+6ap69y5c8aZM2fMj6SkpDT7vftRuHBh8/szVep77X//+5+xZMkSw2Qymb+z3nnnHaN48eKGYVi+1zOSkpJiFC5c2Hj11Vct2hcuXGhIMv744w/DMDL3+c5ISEiIUaZMGfNx79+/33jnnXcMSWley/S+m+bPn29Ri2H833umU6dOFuu2bNnSyJs3r/l5Vt6jLVq0MOzt7Y3Y2Fhz28mTJw03NzfjhRdeMLc96O/fjISEhKT7Hkj9/4/UY+nSpYvFdgMHDjQkGb///ru5zc/Pz5BkLFu2zGLdzP7u69Onj+Hu7p7me/9O//vf/zL9uQWeFFy+BwBPmW7dumnFihUWj2effVbnz5/X77//rrCwMF2+fFlnz57V2bNnde7cOTVo0ECHDh3SiRMnJN2eODZ1Ppfk5GSdO3dOrq6uKl26dKYu28mODh06WMzbEBMTo0OHDqlt27Y6d+6cud4rV66obt26+uOPP7I9KW/nzp0t/uX4ueeek2EY6ty5s7nN1tZWVatWTXO3J0lq0aKFChcubH5evXp1Pffcc1q6dKkkKT4+XjExMQoPD5e3t7d5vYoVK+qll14yr3en7t27Z+kY7jxXFy5c0KVLl1S7du10X5969epZTJBfsWJFubu7m48tJSVFixcvVrNmzVS1atU026eeq//973+qXbu2vLy8zK/H2bNnVa9ePSUnJ6e53O1OqZdjpndZTnqWLl2q6tWrq1atWuY2V1dXdevWTXFxcWnurNW+fXuLOXFSX9O7L5N57rnndPz4cd26dcuivUaNGhaTdxctWlTNmzfX8uXLzZfh3HnOb968qXPnzikgIECenp7pnveuXbved1RY6miHJUuW6ObNm+mus3TpUtna2qp3794W7QMGDJBhGPr1118t2u/3emck9VIfLy+ve67Xp08feXl5mSeszqjmrLx+d3/+79SlSxfzz56enipdurRcXFwUFhZmbi9durQ8PT0tjvFhfY9duXJFLVu2lJeXl+bPn29+jf/3v/+pbNmyKlOmjMXnI3UeqNWrV5vPjaQ0r2ffvn0z3KeXl5euXbtmcYlVRESEDMN4KKOkpNsjwfLkyWMxJ5ONjY169uyZ4TZ3f4/Vrl37vu876f++H1JHttypePHiypcvn/lx9wg9R0dH8++65cuXa+rUqXJ1dVXjxo118ODBdPdXv359eXt7a8GCBTIMQwsWLFCbNm3uW2cqk8mk1157TUuXLlViYqK5/dtvv1XhwoXN7/vMfL7vZf/+/ebjLlOmjCZMmKCXX345zaWTd352rl+/rrNnz5rnhUvvvZ7e63Tu3Dnz65DZ92hycrJ+++03tWjRQsWLFze3+/j4qG3btlq3bp25z1QP+vs3Pf7+/mn+v2fQoEEWx9K/f3+LbQYMGCBJaS4pLlasmBo0aGDRltnffZ6enrpy5YpWrFiRqbqBpwWX7wHAU6ZkyZJpLjORpC1btsgwDA0bNkzDhg1Ld9vTp0+rcOHCSklJUVRUlD7//HMdOXLE/Ee5pHte/vMgUi+5SXXo0CFJyvBSEUm6dOnSff+ATk/RokUtnnt4eEiSfH1907SnN+FtyZIl07SVKlVKCxculHR77iHp9h/KdytbtqyWL1+eZjLzu4//fpYsWaJRo0YpJibGYl6M9OYCuvt4pdt/5KYe25kzZ5SQkHDf26AfOnRIf/31V4Z3c7xzjpO7ubu7S5IuX758z32kOnr0aJrLPqT/u8zh6NGjFvVm5TVNSUnRpUuXLN7LGb2mV69e1ZkzZ1SwYEHzvFgzZ87UiRMnLOY7uXTpUprtM/OahoSE6NVXX1VkZKQ+/vhjhYaGqkWLFmrbtq35Dn1Hjx5VoUKF0gR6d56LO93v9b6fO48rPR4eHurbt69GjBihHTt2pPsZzOrrl9G5cnR0TPN+8/DwUJEiRdK81+/+vD6s77GuXbsqNjZWGzZssOjn0KFD2rdv330/H0ePHpWNjU2aO6mm932RKvU1eZh337vb0aNH5ePjk+ay1ICAgHTXT++1yuz7LvW9fWfAk+rHH3/UzZs3tXPnTg0cODDNcltb2zS/8xo3bqySJUtqyJAh+u6779JskydPHr322muaN2+eqlevruPHj6tt27b3rfNOr7/+uiZPnqyffvpJbdu2VWJiopYuXao333zT/Dpl5vN9L/7+/ua7IsbGxmr06NE6c+ZMmjsEnj9/XpGRkVqwYEGa7+H0vpvu/o5I/QxfuHBB7u7umX6PnjlzRlevXs3wd11KSoqOHz+u8uXLZ7jvrP7+TY+Li0u6/98j/d/n7e73bcGCBeXp6Znm+zO976LM/u7r0aOHFi5cqEaNGqlw4cKqX7++wsLC1LBhw0wdB/CkIpQCAEiSeVTRwIED0/wrYKrU/2kbM2aMhg0bpk6dOumDDz6Qt7e3bGxs1Ldv30yPTsroj6fk5OR0R4/cPUoidT8TJkxQpUqV0u0rvX9Vz4yMRq+k136/P9BzSlbu7rN27Vq9/PLLeuGFF/T555/Lx8dHefLk0cyZM9NM9ixlfLxZPbaUlBS99NJL5n+BvlupUqUy3LZMmTKSbk9O3aJFiyztNzOy8ppK2Xtd3377bc2cOVN9+/ZVjRo15OHhIZPJpNatW6f7ucjMa2oymbRo0SJt2rRJP//8s5YvX65OnTpp0qRJ2rRpU7be49k95tSAJTN/CKbOLRUZGXnPucQyK6Nz9SCva058j90tKipK8+fP1zfffJPmeyklJUUVKlTQRx99lO62d//RnRUXLlyQs7PzI30XsAe5E1xAQIDs7OzSvWFESEiIpPQnLc9IkSJFVLp06XuO3mzbtq2++OILRURE6Nlnn1W5cuWyVPPzzz8vf39/LVy4UG3bttXPP/+sa9eu6fXXXzev86Cf77vDluDgYFWuXFnvvfee/vvf/5rbw8LCtGHDBr3zzjuqVKmSXF1dlZKSooYNG6b7Xs/J78Wsyq3fv5kNdNP7jGX2d1/+/PkVExOj5cuX69dff9Wvv/6qmTNnqn379po9e3b2iwcec4RSAABJMg+tz5MnT4b/ophq0aJFevHFF/Xll19atF+8eNHiFtr3+p88Ly8vXbx4MU370aNHLYb5ZyT1X2jd3d3vW6+1pY7iutPBgwfNk5f7+flJuj1h6t3279+vZ555xmKUVEYyOr/fffedHB0dtXz5cot/bZ85c2Zmyk8jX758cnd3T/cPwjuVKFFCiYmJ2Xo9atWqZb7c6b333rvvH7B+fn4Znr/U5Tkpo9fU2dnZ/K/jixYtUocOHTRp0iTzOtevX0/3fZ5Vzz//vJ5//nmNHj1a8+bNU7t27bRgwQJ16dJFfn5+WrlypS5fvmwxWiqnz0VqcHjkyJH7rps6WioiIiLd0YzWfv3Sk9nvscxau3atBg4cqL59+6pdu3ZplpcoUUI7d+5U3bp17/nd6OfnZx75cucIk/TOV6ojR45YfTJkPz8/rV69WlevXrUYLXX48OFs95nReXFxcTFPjH3ixAmLy6Oz69atW+mOvEpVq1YtFS1aVNHR0RYTfGdFWFiYoqKilJCQoG+//Vb+/v7my+budK/Pd1ZUrFhR//nPfzR16lQNHDhQRYsW1YULF7Rq1SpFRkZa3MAhve+0zMrsezRfvnxydnbO8LNuY2PzQGFsTkg9lkOHDll8hk6dOqWLFy9m6rsoK7/77O3t1axZMzVr1kwpKSnq0aOHpk6dqmHDhikgIMCqox2BRwVzSgEAJN3+F7zQ0FBNnTpV8fHxaZafOXPG/LOtrW2af6H83//+Z55zKlVqsJLeH+UlSpTQpk2bdOPGDXPbkiVLdPz48UzVW6VKFZUoUUITJ05M9w+LO+u1tsWLF1uciy1btmjz5s1q1KiRpNvzaVSqVEmzZ8+2ODe7d+/Wb7/9psaNG2dqPxmdX1tbW5lMJovLkeLi4izu7pUVNjY2atGihX7++Wdt27YtzfLU90JYWJg2btyo5cuXp1nn4sWLaeZpupOzs7Peffdd7du3T++++266/wL+zTffaMuWLZJuX36zZcsWbdy40bz8ypUrmjZtmvz9/bM8quF+Nm7caDH3yvHjx/Xjjz+qfv365gAtvc/FJ598YvE6ZNWFCxfS9Jk6Aif1sszGjRsrOTlZn376qcV6H3/8sUwmk/l996AKFy4sX1/fdN8D6enbt688PT01cuTINMus/fqlJ7PfY5kRHx+vsLAw1apVSxMmTEh3nbCwMJ04cULTp09Ps+zatWvmOzCmvl53jnSRdM8RZ3/++WeaO5uePXtW+/fvt5hnKic1aNBAN2/etDielJQUffbZZ9nuMzXcSu93xvDhw5WcnKz//Oc/6X7nZ2XUzMGDB3XgwAE9++yzGa5jMpn03//+VyNGjNAbb7yR6b7v9PrrryspKUmzZ8/WsmXLLOY5kzL3+c6qQYMG6ebNm+YReanfT3fv50FGMGb2PWpra6v69evrxx9/VFxcnLn91KlTmjdvnmrVqmW+dDu3pP6+vbv21PN3r7tepsrs777UeflS2djYqGLFipL+7/W+1/83AU8qRkoBAMw+++wz1apVSxUqVFDXrl1VvHhxnTp1Shs3btQ///yjnTt3SpKaNm2qkSNHqmPHjqpZs6Z27dqluXPnphnhVKJECXl6euqLL76Qm5ubXFxc9Nxzz6lYsWLq0qWLFi1apIYNGyosLEyxsbH65ptv0sxRkREbGxvNmDFDjRo1Uvny5dWxY0cVLlxYJ06c0OrVq+Xu7q6ff/45x89RZgQEBKhWrVp66623lJSUpMmTJytv3rwWQ/snTJigRo0aqUaNGurcubOuXbumTz75RB4eHoqIiMjUflIn3u7du7caNGggW1tbtW7dWk2aNNFHH32khg0bqm3btjp9+rQ+++wzBQQEZOp25ukZM2aMfvvtN4WEhJhvZx8fH6///e9/WrdunTw9PfXOO+/op59+UtOmTRUeHq4qVaroypUr2rVrlxYtWqS4uLh7jkB55513tGfPHk2aNEmrV69Wq1atVLBgQf37779avHixtmzZog0bNkiSBg8erPnz56tRo0bq3bu3vL29NXv2bB05ckTfffedeQLrnBIYGKgGDRqod+/ecnBw0Oeffy5JFpN5N23aVHPmzJGHh4fKlSunjRs3auXKlQ80P9Hs2bP1+eefq2XLlipRooQuX76s6dOny93d3fzHVLNmzfTiiy/q/fffV1xcnJ599ln99ttv+vHHH9W3b99Mf6Yyo3nz5vrhhx9kGMZ9/0Xfw8NDffr0SXfCc2u/funJ7PdYZvTu3VtnzpzRoEGDtGDBAotlFStWVMWKFfXGG29o4cKF6t69u1avXq3g4GAlJydr//79WrhwoZYvX66qVauqUqVKatOmjT7//HNdunRJNWvW1KpVqzIcgbR9+3adP39ezZs3t2j/9NNPFRkZqdWrV2dqsvPDhw9r1KhRadqDgoLS/cO8RYsWql69ugYMGKDDhw+rTJky+umnn3T+/HlJ2ZvfysnJSeXKldO3336rUqVKydvbW4GBgQoMDFTt2rX16aef6u2331bJkiXVrl07lSlTRjdu3NDBgwc1d+5c2dvbq2DBghZ93rp1S998842k26FZXFycvvjiC6WkpGjEiBH3rKd58+ZpzmtWVK5cWQEBAXr//feVlJRkcemelLnPd1aVK1dOjRs31owZMzRs2DDlzZtXL7zwgsaPH6+bN2+qcOHC+u233zI14jEjWXmPjho1SitWrFCtWrXUo0cP2dnZaerUqUpKStL48eOzXUNOefbZZ9WhQwdNmzZNFy9eVEhIiLZs2aLZs2erRYsWevHFF+/bR2Z/93Xp0kXnz59XnTp1VKRIER09elSffPKJKlWqZB6lValSJdna2mrcuHG6dOmSHBwcVKdOHeXPn/9hnwog91jpLn8AgAe0a9cuIzg4OMPlzz33nHHo0KEMl6d3W/b0xMbGGu3btzcKFixo5MmTxyhcuLDRtGlTY9GiReZ1rl+/bgwYMMDw8fExnJycjODgYGPjxo1GSEhImls0//jjj0a5cuUMOzu7NLcJnzRpklG4cGHDwcHBCA4ONrZt25amjztv052eHTt2GK+88oqRN29ew8HBwfDz8zPCwsKMVatW3fM40zsfqbekvvv23Km3yT5z5oxFe4cOHQwXF5d0+5w0aZLh6+trODg4GLVr1zZ27tyZpoaVK1cawcHBhpOTk+Hu7m40a9bM2Lt3b6b2bRi3b4v99ttvG/ny5TNMJpPFLeq//PJLo2TJkoaDg4NRpkwZY+bMmenexl6S0bNnzzR9+/n5mW+Znero0aNG+/btjXz58hkODg5G8eLFjZ49e1rcgv3y5cvGkCFDjICAAMPe3t545plnjJo1axoTJ040bty4kWY/6Vm0aJFRv359w9vb27CzszN8fHyM119/3YiOjrZYLzY21mjVqpXh6elpODo6GtWrVzeWLFlisU5G75+svNap5+ibb74xn9OgoKA0t+y+cOGC0bFjR+OZZ54xXF1djQYNGhj79+9Pcy4z2vedy44cOWIYhmH8+eefRps2bYyiRYsaDg4ORv78+Y2mTZsa27Zts9ju8uXLRr9+/YxChQoZefLkMUqWLGlMmDDB4tbqdx7L3dJ7vdPz559/GpKMtWvXWrSHhIQY5cuXT7P+hQsXDA8Pj3S/ex7k9TOMtJ+/+9Xi5+dnNGnSxPw8s99jqZ/rO7+77v4sZXTbeUnGiBEjzOvduHHDGDdunFG+fHnDwcHB8PLyMqpUqWJERkYaly5dMq937do1o3fv3kbevHkNFxcXo1mzZsbx48fT9GcYhvHuu+8aRYsWTfNap9aYmVvLp97qPr1H586dDcO4fb79/Pwstjtz5ozRtm1bw83NzfDw8DDCw8ON9evXG5KMBQsWmNfL6LVK7ztpw4YNRpUqVQx7e/t0j3fHjh1G+/btjaJFixr29vaGi4uLUbFiRWPAgAHG4cOHLdbt0KFDmuNxd3c36tata6xcudJi3fv9rkmV0fsrI++//74hyQgICEizLLOf76zWER0dbXHu/vnnH6Nly5aGp6en4eHhYbz22mvGyZMn05zfjH7f3P29ZBhZe4/++eefRoMGDQxXV1fD2dnZePHFF40NGzaku4/s/v7NznlKdfPmTSMyMtIoVqyYkSdPHsPX19cYMmSIcf36dYv17v4OuVNmfvel/m7Lnz+/YW9vbxQtWtR48803jfj4eIu+pk+fbhQvXtywtbXN9GcYeJyZDMNKM7QCAB7I7t271b17d61bty7d5c8//7y++eabDO98hIcvLi5OxYoV04QJE9K9CxQeTyaTST179kxzedzTqm7duipUqJDmzJmT26U89ZKSkuTv76/BgwerT58+uV2OpNuXL7ds2VLr1q1TcHBwbpcDAHjEMacUAAAAMm3MmDH69ttv09wqHdY3c+ZM5cmTR927d8+V/V+7ds3ieXJysj755BO5u7urcuXKuVITAODxwpxSAPAY2bRpkzw9PdNddq+7CAFATnnuuecsblCA3NO9e/dcC6Qk6e2339a1a9dUo0YNJSUl6fvvv9eGDRs0ZswYOTk55VpdAIDHB6EUADwmAgMD73n3MgAArKlOnTqaNGmSlixZouvXrysgIECffPKJevXqldulAQAeE8wpBQAAAAAAAKtjTikAAAAAAABYHaEUAAAAAAAArI45pfDUSElJ0cmTJ+Xm5iaTyZTb5QAAAAAA8EQyDEOXL19WoUKFZGOT8XgoQik8NU6ePClfX9/cLgMAAAAAgKfC8ePHVaRIkQyXE0rhqeHm5ibp9ofC3d09l6sBAAAAAODJlJCQIF9fX/Pf4RkhlMJTI/WSPXd3d0IpAAAAAAAesvtNncNE5wAAAAAAALA6QikAAAAAAABYHZfv4anzwtD5snVwyu0yAAAAACDXbZ/QPrdLwFOMkVIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlEKGQkND1bdv39wuQ5K0Z88evfrqq/L395fJZNLkyZNzuyQAAAAAAPAACKXwWLh69aqKFy+uDz/8UAULFsztcgAAAAAAwAMilEK6wsPDtWbNGkVFRclkMslkMikuLk67d+9Wo0aN5OrqqgIFCuiNN97Q2bNnzdstW7ZMtWrVkqenp/LmzaumTZsqNjbWvDwuLk4mk0kLFy5U7dq15eTkpGrVqungwYPaunWrqlatKldXVzVq1Ehnzpwxb1etWjVNmDBBrVu3loODg1XPBQAAAAAAyHmEUkhXVFSUatSooa5duyo+Pl7x8fFyc3NTnTp1FBQUpG3btmnZsmU6deqUwsLCzNtduXJF/fv317Zt27Rq1SrZ2NioZcuWSklJseh/xIgRGjp0qP7880/Z2dmpbdu2GjRokKKiorR27VodPnxYw4cPt/ZhAwAAAAAAK7HL7QLwaPLw8JC9vb2cnZ3Nl8uNGjVKQUFBGjNmjHm9r776Sr6+vjp48KBKlSqlV1991aKfr776Svny5dPevXsVGBhobh84cKAaNGggSerTp4/atGmjVatWKTg4WJLUuXNnzZo164GOISkpSUlJSebnCQkJD9QfAAAAAADIOYRSyLSdO3dq9erVcnV1TbMsNjZWpUqV0qFDhzR8+HBt3rxZZ8+eNY+QOnbsmEUoVbFiRfPPBQoUkCRVqFDBou306dMPVO/YsWMVGRmZpn2ua5TcHG0fqG8AAAAAeBIcGzkhW9sVHb4rhyvB04hQCpmWmJioZs2aady4cWmW+fj4SJKaNWsmPz8/TZ8+XYUKFVJKSooCAwN148YNi/Xz5Mlj/tlkMqXbdvclf1k1ZMgQ9e/f3/w8ISFBvr6+D9QnAAAAAADIGYRSyJC9vb2Sk5PNzytXrqzvvvtO/v7+srNL+9Y5d+6cDhw4oOnTp6t27dqSpHXr1lmt3rs5ODgwKToAAAAAAI8oJjpHhvz9/bV582bFxcXp7Nmz6tmzp86fP682bdpo69atio2N1fLly9WxY0clJyfLy8tLefPm1bRp03T48GH9/vvvFiOVHsSNGzcUExOjmJgY3bhxQydOnFBMTIwOHz6cI/0DAAAAAADrIpRChgYOHChbW1uVK1dO+fLl040bN7R+/XolJyerfv36qlChgvr27StPT0/Z2NjIxsZGCxYs0Pbt2xUYGKh+/fppwoTsXZ98t5MnTyooKEhBQUGKj4/XxIkTFRQUpC5duuRI/wAAAAAAwLpMhmEYuV0EYA0JCQny8PDQ7iFlmegcAAAAAB4AE53jXlL//r506ZLc3d0zXI+RUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAq7PL7QIAa/MdvEnu7u65XQYAAAAAAE81RkoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1dnldgGAtb0wdL5sHZxyuwwAAAAAwH1sn9A+t0vAQ8RIKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKIUOhoaHq27dvbpchSZo+fbpq164tLy8veXl5qV69etqyZUtulwUAAAAAALKJUAqPhejoaLVp00arV6/Wxo0b5evrq/r16+vEiRO5XRoAAAAAAMgGQimkKzw8XGvWrFFUVJRMJpNMJpPi4uK0e/duNWrUSK6uripQoIDeeOMNnT171rzdsmXLVKtWLXl6eipv3rxq2rSpYmNjzcvj4uJkMpm0cOFC1a5dW05OTqpWrZoOHjyorVu3qmrVqnJ1dVWjRo105swZ83Zz585Vjx49VKlSJZUpU0YzZsxQSkqKVq1aZdXzAgAAAAAAcgahFNIVFRWlGjVqqGvXroqPj1d8fLzc3NxUp04dBQUFadu2bVq2bJlOnTqlsLAw83ZXrlxR//79tW3bNq1atUo2NjZq2bKlUlJSLPofMWKEhg4dqj///FN2dnZq27atBg0apKioKK1du1aHDx/W8OHDM6zv6tWrunnzpry9vR/aOQAAAAAAAA+PXW4XgEeTh4eH7O3t5ezsrIIFC0qSRo0apaCgII0ZM8a83ldffSVfX18dPHhQpUqV0quvvmrRz1dffaV8+fJp7969CgwMNLcPHDhQDRo0kCT16dNHbdq00apVqxQcHCxJ6ty5s2bNmpVhfe+++64KFSqkevXqZbhOUlKSkpKSzM8TEhIyfwIAAAAAAMBDRSiFTNu5c6dWr14tV1fXNMtiY2NVqlQpHTp0SMOHD9fmzZt19uxZ8wipY8eOWYRSFStWNP9coEABSVKFChUs2k6fPp1uHR9++KEWLFig6OhoOTo6Zljv2LFjFRkZmaZ9rmuU3Bxt73O0AAAAAIDcdmzkhCytX3T4rodUCR4GQilkWmJiopo1a6Zx48alWebj4yNJatasmfz8/DR9+nQVKlRIKSkpCgwM1I0bNyzWz5Mnj/lnk8mUbtvdl/xJ0sSJE/Xhhx9q5cqVFsFWeoYMGaL+/fubnyckJMjX1zcTRwoAAAAAAB42QilkyN7eXsnJyebnlStX1nfffSd/f3/Z2aV965w7d04HDhzQ9OnTVbt2bUnSunXrcqye8ePHa/To0Vq+fLmqVq163/UdHBzk4OCQY/sHAAAAAAA5h4nOkSF/f39t3rxZcXFxOnv2rHr27Knz58+rTZs22rp1q2JjY7V8+XJ17NhRycnJ8vLyUt68eTVt2jQdPnxYv//+u8VIpQcxbtw4DRs2TF999ZX8/f3177//6t9//1ViYmKO9A8AAAAAAKyLUAoZGjhwoGxtbVWuXDnly5dPN27c0Pr165WcnKz69eurQoUK6tu3rzw9PWVjYyMbGxstWLBA27dvV2BgoPr166cJE7J2/W9GpkyZohs3bqhVq1by8fExPyZOnJgj/QMAAAAAAOsyGYZh5HYRgDUkJCTIw8NDu4eUZaJzAAAAAHgCMdH5oyH17+9Lly7J3d09w/UYKQUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDq73C4AsDbfwZvk7u6e22UAAAAAAPBUY6QUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWJ1dbhcAWNsLQ+fL1sEpt8sAAAAAADyltk9on9slPBIYKQUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSyLa4uDiZTCbFxMTkdikAAAAAAOAxQyj1iAgNDVXfvn1zu4ws8fX1VXx8vAIDA3O7FAAAAAAA8Jixy+0C8PiytbVVwYIFc7sMGYah5ORk2dnxdgYAAAAA4HHBSKlHQHh4uNasWaOoqCiZTCaZTCbFxcVpzZo1ql69uhwcHOTj46PBgwfr1q1b5u0WLVqkChUqyMnJSXnz5lW9evV05coVSVJ0dLSqV68uFxcXeXp6Kjg4WEePHr1nHZcuXZKtra22bdsmSUpJSZG3t7eef/558zrffPONfH19JaW9fC86Olomk0mrVq1S1apV5ezsrJo1a+rAgQPm7SMiIlSpUiXNmTNH/v7+8vDwUOvWrXX58mXzOikpKRo7dqyKFSsmJycnPfvss1q0aJF5eep+fv31V1WpUkUODg5at25dNs8+AAAAAADIDYRSj4CoqCjVqFFDXbt2VXx8vOLj45UnTx41btxY1apV086dOzVlyhR9+eWXGjVqlCQpPj5ebdq0UadOnbRv3z5FR0frlVdekWEYunXrllq0aKGQkBD99ddf2rhxo7p16yaTyXTPOjw8PFSpUiVFR0dLknbt2iWTyaQdO3YoMTFRkrRmzRqFhITcs5/3339fkyZN0rZt22RnZ6dOnTpZLI+NjdXixYu1ZMkSLVmyRGvWrNGHH35oXj527Fh9/fXX+uKLL7Rnzx7169dP//nPf7RmzRqLfgYPHqwPP/xQ+/btU8WKFTN1rgEAAAAAwKOB650eAR4eHrK3t5ezs7P5crj3339fvr6++vTTT2UymVSmTBmdPHlS7777roYPH674+HjdunVLr7zyivz8/CRJFSpUkCSdP39ely5dUtOmTVWiRAlJUtmyZTNVS2hoqKKjozVw4EBFR0frpZde0v79+7Vu3To1bNhQ0dHRGjRo0D37GD16tDm4Gjx4sJo0aaLr16/L0dFR0u2RULNmzZKbm5sk6Y033tCqVas0evRoJSUlacyYMVq5cqVq1KghSSpevLjWrVunqVOnWgRiI0eO1EsvvZRhHUlJSUpKSjI/T0hIyNQ5AAAAAAAADx+h1CNq3759qlGjhsXopuDgYCUmJuqff/7Rs88+q7p166pChQpq0KCB6tevr1atWsnLy0ve3t4KDw9XgwYN9NJLL6levXoKCwuTj4/PffcbEhKiL7/8UsnJyVqzZo3q16+vggULKjo6WhUrVtThw4cVGhp6zz7uHLWUus/Tp0+raNGikiR/f39zIJW6zunTpyVJhw8f1tWrV9OETTdu3FBQUJBFW9WqVe9Zx9ixYxUZGZmmfa5rlNwcbe+5LQAAAAAAD8uxkRMytV7R4bseciW5i8v3HlO2trZasWKFfv31V5UrV06ffPKJSpcurSNHjkiSZs6cqY0bN6pmzZr69ttvVapUKW3atOm+/b7wwgu6fPmy/vzzT/3xxx8KDQ01j55as2aNChUqpJIlS96zjzx58ph/Tg3VUlJS0l2euk7q8tTLBH/55RfFxMSYH3v37rWYV0qSXFxc7lnHkCFDdOnSJfPj+PHj9zl6AAAAAABgLYRSjwh7e3slJyebn5ctW1YbN26UYRjmtvXr18vNzU1FihSRdDvMCQ4OVmRkpHbs2CF7e3v98MMP5vWDgoI0ZMgQbdiwQYGBgZo3b9596/D09FTFihX16aefKk+ePCpTpoxeeOEF7dixQ0uWLLnvfFIPqly5cnJwcNCxY8cUEBBg8UidYD2zHBwc5O7ubvEAAAAAAACPBi7fe0T4+/tr8+bNiouLk6urq3r06KHJkyfr7bffVq9evXTgwAGNGDFC/fv3l42NjTZv3qxVq1apfv36yp8/vzZv3qwzZ86obNmyOnLkiKZNm6aXX35ZhQoV0oEDB3To0CG1b98+U7WEhobqk08+UatWrSRJ3t7eKlu2rL799lt99tlnD/M0yM3NTQMHDlS/fv2UkpKiWrVq6dKlS1q/fr3c3d3VoUOHh7p/AAAAAABgHYRSj4iBAweqQ4cOKleunK5du6YjR45o6dKleuedd/Tss8/K29tbnTt31tChQyVJ7u7u+uOPPzR58mQlJCTIz89PkyZNUqNGjXTq1Cnt379fs2fP1rlz5+Tj46OePXvqzTffzFQtISEhmjx5ssXcUaGhodq5c+d955PKCR988IHy5cunsWPH6u+//5anp6cqV66s995776HvGwAAAAAAWIfJuPP6MOAJlpCQIA8PD+0eUpaJzgEAAAAAj7zHdaLz1L+/L126dM+pdJhTCgAAAAAAAFZHKPWUKV++vFxdXdN9zJ07N7fLAwAAAAAATwnmlHrKLF26VDdv3kx3WYECBaxcDQAAAAAAeFoRSj1l/Pz8crsEAAAAAAAALt8DAAAAAACA9RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNXZ5XYBgLX5Dt4kd3f33C4DAAAAAICnGiOlAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOrscrsAwNpeGDpftg5OuV0GcsH2Ce1zuwQAAAAAwP/HSCkAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUeopFRESoUqVKudJfTu8bAAAAAAA8XgilHrLQ0FD17ds3t8uwioEDB2rVqlU5vi4AAAAAAHjy2OV2AXhyuLq6ytXVNcfXBQAAAAAATx5GSj1E4eHhWrNmjaKiomQymWQymRQXF6c1a9aoevXqcnBwkI+PjwYPHqxbt26Zt1u0aJEqVKggJycn5c2bV/Xq1dOVK1ckSdHR0apevbpcXFzk6emp4OBgHT16NFP1fPjhhypQoIDc3NzUuXNnXb9+Pc06M2bMUNmyZeXo6KgyZcro888/t1j+zz//qE2bNvL29paLi4uqVq2qzZs3S0p7Sd69ar173ZSUFI0cOVJFihSRg4ODKlWqpGXLlpmXx8XFyWQy6fvvv9eLL74oZ2dnPfvss9q4cWOmjh0AAAAAADxaCKUeoqioKNWoUUNdu3ZVfHy84uPjlSdPHjVu3FjVqlXTzp07NWXKFH355ZcaNWqUJCk+Pl5t2rRRp06dtG/fPkVHR+uVV16RYRi6deuWWrRooZCQEP3111/auHGjunXrJpPJdN9aFi5cqIiICI0ZM0bbtm2Tj49PmsBp7ty5Gj58uEaPHq19+/ZpzJgxGjZsmGbPni1JSkxMVEhIiE6cOKGffvpJO3fu1KBBg5SSkpJmf1mtNSoqSpMmTdLEiRP1119/qUGDBnr55Zd16NAhi/Xef/99DRw4UDExMSpVqpTatGljEegBAAAAAIDHA5fvPUQeHh6yt7eXs7OzChYsKOl2qOLr66tPP/1UJpNJZcqU0cmTJ/Xuu+9q+PDhio+P161bt/TKK6/Iz89PklShQgVJ0vnz53Xp0iU1bdpUJUqUkCSVLVs2U7VMnjxZnTt3VufOnSVJo0aN0sqVKy1GS40YMUKTJk3SK6+8IkkqVqyY9u7dq6lTp6pDhw6aN2+ezpw5o61bt8rb21uSFBAQkO7+EhISslTrxIkT9e6776p169aSpHHjxmn16tWaPHmyPvvsM/N6AwcOVJMmTSRJkZGRKl++vA4fPqwyZcqk6TMpKUlJSUkWNQEAAAAAgEcDoZSV7du3TzVq1LAYMRQcHKzExET9888/evbZZ1W3bl1VqFBBDRo0UP369dWqVSt5eXnJ29tb4eHhatCggV566SXVq1dPYWFh8vHxydR+u3fvbtFWo0YNrV69WpJ05coVxcbGqnPnzuratat5nVu3bsnDw0OSFBMTo6CgIHMgdS9ZqTUhIUEnT55UcHCwRXtwcLB27txp0VaxYkXzz6l9nT59Ot1QauzYsYqMjEzTPtc1Sm6Otvc9BuSMosN35XYJAAAAAIBHEJfvPWJsbW21YsUK/frrrypXrpw++eQTlS5dWkeOHJEkzZw5Uxs3blTNmjX17bffqlSpUtq0adMD7zcxMVGSNH36dMXExJgfu3fvNvfv5OSUpT4fRq158uQx/5wa7KV3+aAkDRkyRJcuXTI/jh8//kD7BgAAAAAAOYdQ6iGzt7dXcnKy+XnZsmW1ceNGGYZhblu/fr3c3NxUpEgRSbfDluDgYEVGRmrHjh2yt7fXDz/8YF4/KChIQ4YM0YYNGxQYGKh58+bdt46yZcuaJyRPdWdAVKBAARUqVEh///23AgICLB7FihWTdHuUUkxMjM6fP5/p489Mre7u7ipUqJDWr19v0b5+/XqVK1cu0/u6m4ODg9zd3S0eAAAAAADg0cDlew+Zv7+/Nm/erLi4OLm6uqpHjx6aPHmy3n77bfXq1UsHDhzQiBEj1L9/f9nY2Gjz5s1atWqV6tevr/z582vz5s06c+aMypYtqyNHjmjatGl6+eWXVahQIR04cECHDh1S+/bt71tHnz59FB4erqpVqyo4OFhz587Vnj17VLx4cfM6kZGR6t27tzw8PNSwYUMlJSVp27ZtunDhgvr37682bdpozJgxatGihcaOHSsfHx/t2LFDhQoVUo0aNSz2l9Va33nnHY0YMUIlSpRQpUqVNHPmTMXExGju3LkP9gIAAAAAAIBHEqHUQzZw4EB16NBB5cqV07Vr13TkyBEtXbpU77zzjp599ll5e3urc+fOGjp0qKTbo4b++OMPTZ48WQkJCfLz89OkSZPUqFEjnTp1Svv379fs2bN17tw5+fj4qGfPnnrzzTfvW8frr7+u2NhYDRo0SNevX9err76qt956S8uXLzev06VLFzk7O2vChAl655135OLiogoVKqhv376Sbo/6+u233zRgwAA1btxYt27dUrly5SwmIk/l7OycpVp79+6tS5cuacCAATp9+rTKlSunn376SSVLlszGWQcAAAAAAI86k3HndWTAEywhIUEeHh7aPaQsE51bEROdAwAAAMDTJfXv70uXLt1zKh3mlAIAAAAAAIDVEUo9IcqXLy9XV9d0H8zLBAAAAAAAHjXMKfWEWLp0qW7evJnusgIFCli5GgAAAAAAgHsjlHpC+Pn55XYJAAAAAAAAmcblewAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1drldAGBtvoM3yd3dPbfLAAAAAADgqcZIKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYnV1uFwBY2wtD58vWwSm3ywAAAAAAPATbJ7TP7RKQSYyUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKIV7mjZtmgoVKqSUlBSL9ubNm6tTp06SpB9//FGVK1eWo6OjihcvrsjISN26dcu8rslk0owZM9SyZUs5OzurZMmS+umnn8zLZ82aJU9PT4v+Fy9eLJPJZNF2v/0AAAAAAIDHB6EU7um1117TuXPntHr1anPb+fPntWzZMrVr105r165V+/bt1adPH+3du1dTp07VrFmzNHr0aIt+IiMjFRYWpr/++kuNGzdWu3btdP78+UzXkdn9AAAAAACAxwOhFO7Jy8tLjRo10rx588xtixYt0jPPPKMXX3xRkZGRGjx4sDp06KDixYvrpZde0gcffKCpU6da9BMeHq42bdooICBAY8aMUWJiorZs2ZLpOjK7nzslJSUpISHB4gEAAAAAAB4NdrldAB597dq1U9euXfX555/LwcFBc+fOVevWrWVjY6OdO3dq/fr1FiOWkpOTdf36dV29elXOzs6SpIoVK5qXu7i4yN3dXadPn850DZndz53Gjh2ryMjINO1zXaPk5mib6X0DAAAAdyo6fFdulwAATwRCKdxXs2bNZBiGfvnlF1WrVk1r167Vxx9/LElKTExUZGSkXnnllTTbOTo6mn/OkyePxTKTyWSep8rGxkaGYVgsv3nzpsXzzO7nTkOGDFH//v3NzxMSEuTr63uvQwUAAAAAAFZCKIX7cnR01CuvvKK5c+fq8OHDKl26tCpXrixJqly5sg4cOKCAgIBs958vXz5dvnxZV65ckYuLiyQpJibGYp3s7MfBwUEODg7ZrgsAAAAAADw8hFLIlHbt2qlp06bas2eP/vOf/5jbhw8frqZNm6po0aJq1aqV+ZK+3bt3a9SoUZnq+7nnnpOzs7Pee+899e7dW5s3b9asWbMs1smJ/QAAAAAAgEcHE50jU+rUqSNvb28dOHBAbdu2Nbc3aNBAS5Ys0W+//aZq1arp+eef18cffyw/P79M9+3t7a1vvvlGS5cuVYUKFTR//nxFRERYrJMT+wEAAAAAAI8Ok3H3ZD7AEyohIUEeHh7aPaQsE50DAAAg25joHADuLfXv70uXLsnd3T3D9RgpBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1drldAGBtvoM3yd3dPbfLAAAAAADgqcZIKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYnV1uFwBY2wtD58vWwSm3ywAee9sntM/tEgAAAAA8xhgpBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFKPgNDQUPXt2ze3ywAAAAAAALAaQilkS0REhCpVqpTbZQAAAAAAgMcUoRQAAAAAAACsjlDqEZGSkqJBgwbJ29tbBQsWVEREhHnZsWPH1Lx5c7m6usrd3V1hYWE6deqUeXnqqKWvvvpKRYsWlaurq3r06KHk5GSNHz9eBQsWVP78+TV69GiLfV68eFFdunRRvnz55O7urjp16mjnzp33rXXWrFmKjIzUzp07ZTKZZDKZNGvWrEz1GRsbq+bNm6tAgQJydXVVtWrVtHLlSov+/f39NWrUKLVv316urq7y8/PTTz/9pDNnzpjPQ8WKFbVt27ZsnGkAAAAAAPAoIJR6RMyePVsuLi7avHmzxo8fr5EjR2rFihVKSUlR8+bNdf78ea1Zs0YrVqzQ33//rddff91i+9jYWP36669atmyZ5s+fry+//FJNmjTRP//8ozVr1mjcuHEaOnSoNm/ebN7mtdde0+nTp/Xrr79q+/btqly5surWravz58/fs9bXX39dAwYMUPny5RUfH6/4+HhzPffrMzExUY0bN9aqVau0Y8cONWzYUM2aNdOxY8cs9vHxxx8rODhYO3bsUJMmTfTGG2+offv2+s9//qM///xTJUqUUPv27WUYRk6cfgAAAAAAYGUmg7/qc11oaKiSk5O1du1ac1v16tVVp04d1a1bV40aNdKRI0fk6+srSdq7d6/Kly+vLVu2qFq1aoqIiNCECRP077//ys3NTZLUsGFDHThwQLGxsbKxuZ09lilTRuHh4Ro8eLDWrVunJk2a6PTp03JwcDDvNyAgQIMGDVK3bt3uWXNERIQWL16smJgYc1t2+wwMDFT37t3Vq1cvSbdHStWuXVtz5syRJP3777/y8fHRsGHDNHLkSEnSpk2bVKNGDcXHx6tgwYLp9puUlKSkpCTz84SEBPn6+urZt7+QrYPTPY8PwP1tn9A+t0sAAAAA8AhKSEiQh4eHLl26JHd39wzXs7NiTbiHihUrWjz38fHR6dOntW/fPvn6+poDKUkqV66cPD09tW/fPlWrVk3S7SAnNZCSpAIFCsjW1tYcSKW2nT59WpK0c+dOJSYmKm/evBb7vXbtmmJjY7N1DJnpMzExUREREfrll18UHx+vW7du6dq1a2lGSt15PgoUKCBJqlChQpq206dPZxhKjR07VpGRkWna57pGyc3RNhtHCOBOx0ZOyO0SgMdW0eG7crsEAACAXEco9YjIkyePxXOTyaSUlJQH2v5efSYmJsrHx0fR0dFp+vL09Mz0fu+UmT4HDhyoFStWaOLEiQoICJCTk5NatWqlGzduZHg8JpMpw7Z7naMhQ4aof//+5uepI6UAAAAAAEDuI5R6xJUtW1bHjx/X8ePHLS7fu3jxosqVK5ftfitXrqx///1XdnZ28vf3z/L29vb2Sk5OznKf69evV3h4uFq2bCnpdpAVFxeX5f1nhoODg8VlhAAAAAAA4NHBROePuHr16qlChQpq166d/vzzT23ZskXt27dXSEiIqlat+kD91qhRQy1atNBvv/2muLg4bdiwQe+//36m7mrn7++vI0eOKCYmRmfPnlVSUlKm+ixZsqS+//57xcTEaOfOnWrbtm2WRoQBAAAAAIAnA6HUI85kMunHH3+Ul5eXXnjhBdWrV0/FixfXt99++8D9Ll26VC+88II6duyoUqVKqXXr1jp69Kh5vqZ7efXVV9WwYUO9+OKLypcvn+bPn5+pPj/66CN5eXmpZs2aatasmRo0aKDKlSs/0LEAAAAAAIDHD3ffw1Mjdfb/3UPKMtE5ACBXMdE5AAB4kmX27nuMlAIAAAAAAIDVEUohXeXLl5erq2u6j7lz5+Z2eQAAAAAA4DHH3feQrqVLl+rmzZvpLsvMnFMAAAAAAAD3QiiFdPn5+eV2CQAAAAAA4AnG5XsAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdXa5XQBgbb6DN8nd3T23ywAAAAAA4KnGSCkAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWJ1dbhcAWNsLQ+fL1sEpt8sAAAAAAOCetk9on9slPFSMlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwukculAoNDVXfvn2tvl9/f39NnjzZ6vtNZTKZtHjxYqvvNy4uTiaTSTExMVbfNwAAAAAAeHo9cqHU4yC3AiTcFh4erhYtWuR2GQAAAAAA4AEQSgEAAAAAAMDqHslQKiUlRYMGDZK3t7cKFiyoiIgI87KLFy+qS5cuypcvn9zd3VWnTh3t3LnTvDw2NlbNmzdXgQIF5OrqqmrVqmnlypUW/Z8+fVrNmjWTk5OTihUrprlz52a6Nn9/f0lSy5YtZTKZzM8lacqUKSpRooTs7e1VunRpzZkzJ0vHffbsWbVs2VLOzs4qWbKkfvrpJ4vlu3fvVqNGjeTq6qoCBQrojTfe0NmzZ83Lly1bplq1asnT01N58+ZV06ZNFRsba9HHli1bFBQUJEdHR1WtWlU7duzIUo179uxR06ZN5e7uLjc3N9WuXdu8j5SUFI0cOVJFihSRg4ODKlWqpGXLlpm3jY6Olslk0sWLF81tMTExMplMiouLkyTNmjVLnp6eWr58ucqWLStXV1c1bNhQ8fHxkqSIiAjNnj1bP/74o0wmk0wmk6Kjo7N0DAAAAAAAIPc9kqHU7Nmz5eLios2bN2v8+PEaOXKkVqxYIUl67bXXdPr0af3666/avn27KleurLp16+r8+fOSpMTERDVu3FirVq3Sjh071LBhQzVr1kzHjh0z9x8eHq7jx49r9erVWrRokT7//HOdPn06U7Vt3bpVkjRz5kzFx8ebn//www/q06ePBgwYoN27d+vNN99Ux44dtXr16kwfd2RkpMLCwvTXX3+pcePGateunfm4Ll68qDp16igoKEjbtm3TsmXLdOrUKYWFhZm3v3Llivr3769t27Zp1apVsrGxUcuWLZWSkmI+N02bNlW5cuW0fft2RUREaODAgZmu78SJE3rhhRfk4OCg33//Xdu3b1enTp1069YtSVJUVJQmTZqkiRMn6q+//lKDBg308ssv69ChQ5nehyRdvXpVEydO1Jw5c/THH3/o2LFj5joHDhyosLAwc1AVHx+vmjVrZql/AAAAAACQ+0yGYRi5XcSdQkNDlZycrLVr15rbqlevrjp16qhp06Zq0qSJTp8+LQcHB/PygIAADRo0SN26dUu3z8DAQHXv3l29evXSwYMHVbp0aW3ZskXVqlWTJO3fv19ly5bVxx9/nKlJ1k0mk3744QeLeY2Cg4NVvnx5TZs2zdwWFhamK1eu6JdffslUn0OHDtUHH3wg6XbA5Orqql9//VUNGzbUqFGjtHbtWi1fvty8zT///CNfX18dOHBApUqVStPn2bNnlS9fPu3atUuBgYGaNm2a3nvvPf3zzz9ydHSUJH3xxRd66623tGPHDlWqVOmeNb733ntasGCBDhw4oDx58qRZXrhwYfXs2VPvvfeeua169eqqVq2aPvvsM0VHR+vFF1/UhQsX5OnpKen2SKmgoCAdOXJE/v7+mjVrljp27KjDhw+rRIkSkqTPP/9cI0eO1L///ivpdqh48eLF+87rlZSUpKSkJPPzhIQE+fr66tm3v5Ctg9M9twUAAAAAILdtn9A+t0vIloSEBHl4eOjSpUtyd3fPcD07K9aUaRUrVrR47uPjo9OnT2vnzp1KTExU3rx5LZZfu3bNfAlZYmKiIiIi9Msvvyg+Pl63bt3StWvXzCOl9u3bJzs7O1WpUsW8fZkyZcwhSXbt27cvTSgWHBysqKioTPdx53G7uLjI3d3dPIJr586dWr16tVxdXdNsFxsbq1KlSunQoUMaPny4Nm/erLNnz5pHSB07dkyBgYHat2+fKlasaA6kJKlGjRqZri8mJka1a9dON5BKSEjQyZMnFRwcbNEeHBxscXllZjg7O5sDKen/Xv+sGjt2rCIjI9O0z3WNkpujbZb7AwAAAB6WosN35XYJAGB1j2QodXfoYTKZlJKSosTERPn4+KQ7h1BqqDRw4ECtWLFCEydOVEBAgJycnNSqVSvduHHDCpU/mIyOW7odtjVr1kzjxo1Ls52Pj48kqVmzZvLz89P06dNVqFAhpaSkKDAwMMeO3cnpwUYX2djcvlr0zsF5N2/eTLNeeuchOwP6hgwZov79+5ufp46UAgAAAAAAue+RDKUyUrlyZf3777+ys7OzmGD8TuvXr1d4eLhatmwp6XaYkzqJtnR7VNStW7e0fft28+V7Bw4csJh8+37y5Mmj5ORki7ayZctq/fr16tChg0Ut5cqVy3S/91K5cmV999138vf3l51d2pft3LlzOnDggKZPn67atWtLktatW5emxjlz5uj69evm0VKbNm3KdA0VK1bU7NmzdfPmzTTBkbu7uwoVKqT169crJCTE3L5+/XpVr15dkpQvXz5JUnx8vLy8vCTdHn2VVfb29mnOf3ocHBwsLvMEAAAAAACPjkdyovOM1KtXTzVq1FCLFi3022+/KS4uThs2bND777+vbdu2SZJKliyp77//XjExMdq5c6fatm1rHm0kSaVLl1bDhg315ptvavPmzdq+fbu6dOmSpVFA/v7+WrVqlf79919duHBBkvTOO+9o1qxZmjJlig4dOqSPPvpI33//fZYmEr+Xnj176vz582rTpo22bt2q2NhYLV++XB07dlRycrK8vLyUN29eTZs2TYcPH9bvv/9uMUpIktq2bSuTyaSuXbtq7969Wrp0qSZOnJjpGnr16qWEhAS1bt1a27Zt06FDhzRnzhwdOHDAfA7GjRunb7/9VgcOHNDgwYMVExOjPn36SLo995evr68iIiJ06NAh/fLLL5o0aVKWz4W/v7/++usvHThwQGfPnk13tBUAAAAAAHi0PVahlMlk0tKlS/XCCy+oY8eOKlWqlFq3bq2jR4+qQIECkqSPPvpIXl5eqlmzppo1a6YGDRqocuXKFv3MnDlThQoVUkhIiF555RV169ZN+fPnz3QdkyZN0ooVK+Tr66ugoCBJUosWLRQVFaWJEyeqfPnymjp1qmbOnKnQ0NAcOfbUUUjJycmqX7++KlSooL59+8rT01M2NjaysbHRggULtH37dgUGBqpfv36aMGGCRR+urq76+eeftWvXLgUFBen9999P93LAjOTNm1e///67EhMTFRISoipVqmj69OnmUVO9e/dW//79NWDAAFWoUEHLli3TTz/9pJIlS0q6PcJs/vz52r9/vypWrKhx48Zp1KhRWT4XXbt2VenSpVW1alXly5dP69evz3IfAAAAAAAgdz1yd98DHpbU2f93DynLROcAAAB4pDDROYAnSWbvvvdYjZQCAAAAAADAk4FQ6i5z586Vq6truo/y5cs/Mn0+DN27d8+wzu7du+d2eQAAAAAA4AnC5Xt3uXz5sk6dOpXusjx58sjPz++R6PNhOH36tBISEtJd5u7unqV5tx5FXL4HAACARxWX7wF4kmT28j07K9b0WHBzc5Obm9sj3+fDkD9//sc+eAIAAAAAAI8HLt8DAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAq7PL7QIAa/MdvEnu7u65XQYAAAAAAE81RkoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArC7bodScOXMUHBysQoUK6ejRo5KkyZMn68cff8yx4gAAAAAAAPBkylYoNWXKFPXv31+NGzfWxYsXlZycLEny9PTU5MmTc7I+AAAAAAAAPIGyFUp98sknmj59ut5//33Z2tqa26tWrapdu3blWHEAAAAAAAB4MmUrlDpy5IiCgoLStDs4OOjKlSsPXBQAAAAAAACebHbZ2ahYsWKKiYmRn5+fRfuyZctUtmzZHCkMeFheGDpftg5OuV0GADxytk9on9slAAAA4CmSrVCqf//+6tmzp65fvy7DMLRlyxbNnz9fY8eO1YwZM3K6RgAAAAAAADxhshVKdenSRU5OTho6dKiuXr2qtm3bqlChQoqKilLr1q1zukYAAAAAAAA8YbIcSt26dUvz5s1TgwYN1K5dO129elWJiYnKnz//w6gPAAAAAAAAT6AsT3RuZ2en7t276/r165IkZ2dnAikAAAAAAABkSbbuvle9enXt2LEjp2sBAAAAAADAUyJbc0r16NFDAwYM0D///KMqVarIxcXFYnnFihVzpDgAAAAAAAA8mbIVSqVOZt67d29zm8lkkmEYMplMSk5OzpnqAAAAAAAA8ETKVih15MiRnK4DAAAAAAAAT5FshVJ+fn45XQcAAAAAAACeItkKpb7++ut7Lm/fvn22igEAAAAAAMDTIVuhVJ8+fSye37x5U1evXpW9vb2cnZ0JpQAAAAAAAHBPNtnZ6MKFCxaPxMREHThwQLVq1dL8+fNzukYAAAAAAAA8YbIVSqWnZMmS+vDDD9OMosLTY/HixQoICJCtra369u2b2+UAAAAAAIBHWI6FUpJkZ2enkydP5mSXaYSGhj4ygceePXv06quvyt/fXyaTSZMnT87tknKMv79/lo/nzTffVKtWrXT8+HF98MEHD6cwAAAAAADwRMjWnFI//fSTxXPDMBQfH69PP/1UwcHBOVLY4+Dq1asqXry4XnvtNfXr1++B+7tx44bs7e1zoDLrS0xM1OnTp9WgQQMVKlQo2/08zucAAAAAAABkXrZGSrVo0cLi8corrygiIkIVK1bUV199ldM1moWHh2vNmjWKioqSyWSSyWRSXFycdu/erUaNGsnV1VUFChTQG2+8obNnz5q3W7ZsmWrVqiVPT0/lzZtXTZs2VWxsrHl5XFycTCaTFi5cqNq1a8vJyUnVqlXTwYMHtXXrVlWtWlWurq5q1KiRzpw5Y96uWrVqmjBhglq3bi0HB4csH09oaKh69eqlvn376plnnlGDBg0k6b7Hk5KSovHjxysgIEAODg4qWrSoRo8ebV5+/PhxhYWFydPTU97e3mrevLni4uIszmOLFi00ceJE+fj4KG/evOrZs6du3rxpruvo0aPq16+f+TzfS3R0tNzc3CRJderUkclkUnR0tCTpu+++U/ny5eXg4CB/f39NmjTJYlt/f3998MEHat++vdzd3dWtWzfNmjVLnp6eWrJkiUqXLi1nZ2e1atVKV69e1ezZs+Xv7y8vLy/17t1bycnJWT7vAAAAAAAg92UrlEpJSbF4JCcn699//9W8efPk4+OT0zWaRUVFqUaNGuratavi4+MVHx8vNzc31alTR0FBQdq2bZuWLVumU6dOKSwszLzdlStX1L9/f23btk2rVq2SjY2NWrZsqZSUFIv+R4wYoaFDh+rPP/+UnZ2d2rZtq0GDBikqKkpr167V4cOHNXz48Bw9ptmzZ8ve3l7r16/XF198oYsXL973eIYMGaIPP/xQw4YN0969ezVv3jwVKFBA0u07ITZo0EBubm5au3at1q9fL1dXVzVs2FA3btww97F69WrFxsZq9erVmj17tmbNmqVZs2ZJkr7//nsVKVJEI0eONJ/ne6lZs6YOHDgg6XYIFR8fr5o1a2r79u0KCwtT69attWvXLkVERGjYsGHm/aSaOHGinn32We3YsUPDhg2TdHsU2n//+18tWLBAy5YtU3R0tFq2bKmlS5dq6dKlmjNnjqZOnapFixY96EsAAAAAAAByQbYu3xs5cqQGDhwoZ2dni/Zr165pwoQJOR7cpPLw8JC9vb2cnZ1VsGBBSdKoUaMUFBSkMWPGmNf76quv5Ovrq4MHD6pUqVJ69dVXLfr56quvlC9fPu3du1eBgYHm9oEDB5pHK/Xp00dt2rTRqlWrzJckdu7cOU2g8qBKliyp8ePHm5/f73h8fHwUFRWlTz/9VB06dJAklShRQrVq1ZIkffvtt0pJSdGMGTPMI5xmzpwpT09PRUdHq379+pIkLy8vffrpp7K1tVWZMmXUpEkTrVq1Sl27dpW3t7dsbW3l5uZmPs/3Ym9vr/z580uSvL29zdt89NFHqlu3rjloKlWqlPbu3asJEyYoPDzcvH2dOnU0YMAA8/O1a9fq5s2bmjJlikqUKCFJatWqlebMmaNTp07J1dVV5cqV04svvqjVq1fr9ddfT7eupKQkJSUlmZ8nJCTc91gAAAAAAIB1ZCuUioyMVPfu3dOEUlevXlVkZORDC6XSs3PnTq1evVqurq5plsXGxqpUqVI6dOiQhg8frs2bN+vs2bPmEVLHjh2zCKUqVqxo/jl15FGFChUs2k6fPp2j9VepUiVLx3Px4kUlJSWpbt266fa3c+dOHT582Hw5Xarr169bXLJYvnx52dramp/7+Pho165dD3Ioaezbt0/Nmze3aAsODtbkyZOVnJxs3n/VqlXTbOvs7GwOpKTb597f39/ivNzv9Rg7dqwiIyPTtM91jZKbo206WwDA0+3YyAm5XcIjoejwnP19CAAAgPRlK5QyDCPdeYZ27twpb2/vBy4qKxITE9WsWTONGzcuzbLUSwmbNWsmPz8/TZ8+XYUKFVJKSooCAwMtLmeTpDx58ph/Tj2+u9vuvuTvQbm4uFg8v9/x/P333/fsLzExUVWqVNHcuXPTLMuXL5/55zuPS3o4x5ZZd58DKf36slrzkCFD1L9/f/PzhIQE+fr6PmC1AAAAAAAgJ2QplPLy8jJPfF2qVCmLYCo5OVmJiYnq3r17jhd5J3t7e4vJrStXrqzvvvtO/v7+srNLezjnzp3TgQMHNH36dNWuXVuStG7duoda44O43/GULFlSTk5OWrVqlbp06ZLu9t9++63y588vd3f3bNdx93nOjrJly2r9+vUWbevXr1epUqUsRmk9LA4ODtmagB4AAAAAADx8WQqlJk+eLMMw1KlTJ0VGRsrDw8O8zN7eXv7+/qpRo0aOF3knf39/bd68WXFxcXJ1dVXPnj01ffp0tWnTRoMGDZK3t7cOHz6sBQsWaMaMGfLy8lLevHk1bdo0+fj46NixYxo8eHCO1HLjxg3t3bvX/POJEycUExMjV1dXBQQEZKvP+x2Po6Oj3n33XQ0aNEj29vYKDg7WmTNntGfPHnXu3Fnt2rXThAkT1Lx5c40cOVJFihTR0aNH9f3332vQoEEqUqRIpurw9/fXH3/8Yb6z4DPPPJPlYxkwYICqVaumDz74QK+//ro2btyoTz/9VJ9//nmW+wIAAAAAAE+WLIVSqRNrFytWTDVr1kxzOZU1DBw4UB06dFC5cuV07do1HTlyROvXr9e7776r+vXrKykpSX5+fmrYsKFsbGxkMpm0YMEC9e7dW4GBgSpdurT++9//KjQ09IFrOXnypIKCgszPJ06cqIkTJyokJETR0dHZ6rNQoUL3PB5JGjZsmOzs7DR8+HCdPHlSPj4+5hFqzs7O+uOPP/Tuu+/qlVde0eXLl1W4cGHVrVs3SyOnRo4cqTfffFMlSpRQUlKSDMPI8rFUrlxZCxcu1PDhw/XBBx/Ix8dHI0eOtJjkHAAAAAAAPJ1MRnbShjtcv349zdxMD3LZGPCwJCQkyMPDQ7uHlGWicwBAhpjoHAAA4MGk/v196dKle2ZENtnp/OrVq+rVq5fy588vFxcXeXl5WTwAAAAAAACAe8lWKPXOO+/o999/15QpU+Tg4KAZM2YoMjJShQoV0tdff53TNT6Wjh07JldX1wwfx44dy+0Ss6RRo0YZHsuYMWNyuzwAAAAAAPCYydKcUql+/vlnff311woNDVXHjh1Vu3ZtBQQEyM/PT3PnzlW7du1yus7HTqFChRQTE3PP5Y+TGTNm6Nq1a+ku8/b2tnI1AAAAAADgcZetUOr8+fMqXry4pNvzR50/f16SVKtWLb311ls5V91jzM7OLtt34HsUFS5cOLdLAAAAAAAAT5BsXb5XvHhxHTlyRJJUpkwZLVy4UNLtEVSenp45VhwAAAAAAACeTNkKpTp27KidO3dKkgYPHqzPPvtMjo6O6tevn955550cLRAAAAAAAABPnmxdvtevXz/zz/Xq1dP+/fu1fft2BQQEqGLFijlWHAAAAAAAAJ5M2Qql7nT9+nX5+fnJz88vJ+oBAAAAAADAUyBbl+8lJyfrgw8+UOHCheXq6qq///5bkjRs2DB9+eWXOVogAAAAAAAAnjzZCqVGjx6tWbNmafz48bK3tze3BwYGasaMGTlWHAAAAAAAAJ5M2Qqlvv76a02bNk3t2rWTra2tuf3ZZ5/V/v37c6w4AAAAAAAAPJmyFUqdOHFCAQEBadpTUlJ08+bNBy4KAAAAAAAAT7ZsTXRerlw5rV27Ns3k5osWLVJQUFCOFAY8LL6DN8nd3T23ywAAAAAA4KmWrVBq+PDh6tChg06cOKGUlBR9//33OnDggL7++mstWbIkp2sEAAAAAADAEyZLl+/9/fffMgxDzZs3188//6yVK1fKxcVFw4cP1759+/Tzzz/rpZdeeli1AgAAAAAA4AmRpZFSJUuWVHx8vPLnz6/atWvL29tbu3btUoECBR5WfQAAAAAAAHgCZWmklGEYFs9//fVXXblyJUcLAgAAAAAAwJMvW3ffS3V3SAUAAAAAAABkRpZCKZPJJJPJlKYNAAAAAAAAyIoszSllGIbCw8Pl4OAgSbp+/bq6d+8uFxcXi/W+//77nKsQAAAAAAAAT5wshVIdOnSweP6f//wnR4sBAAAAAADA0yFLodTMmTMfVh0AAAAAAAB4imQplAKeBC8MnS9bB6fcLgMA8AC2T2if2yUAAADgAT3Q3fcAAAAAAACA7CCUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUsgx06ZNk6+vr2xsbDR58uTcLgcAAAAAADzCHrtQKjQ0VH379s3tMiRJ06dPV+3ateXl5SUvLy/Vq1dPW7Zsye2ycoTJZNLixYszvX5CQoJ69eqld999VydOnFC3bt0eXnEAAAAAAOCx99iFUo+S6OhotWnTRqtXr9bGjRvl6+ur+vXr68SJE9nq78aNGzlcofUcO3ZMN2/eVJMmTeTj4yNnZ+ds9XPz5s0crgwAAAAAADyKHqtQKjw8XGvWrFFUVJRMJpNMJpPi4uK0e/duNWrUSK6uripQoIDeeOMNnT171rzdsmXLVKtWLXl6eipv3rxq2rSpYmNjzcvj4uJkMpm0cOFC1a5dW05OTqpWrZoOHjyorVu3qmrVqnJ1dVWjRo105swZ83Zz585Vjx49VKlSJZUpU0YzZsxQSkqKVq1alanj8ff31wcffKD27dvL3d3dPLpo3bp15jp8fX3Vu3dvXblyxbxdUlKS3n33Xfn6+srBwUEBAQH68ssvzcvvdz5CQ0PVu3dvDRo0SN7e3ipYsKAiIiIs6pKkli1bymQymZ9nZNasWapQoYIkqXjx4ubXRZKmTJmiEiVKyN7eXqVLl9acOXMstjWZTJoyZYpefvllubi4aPTo0YqIiFClSpX01VdfqWjRonJ1dVWPHj2UnJys8ePHq2DBgsqfP79Gjx6dqfMMAAAAAAAePY9VKBUVFaUaNWqoa9euio+PV3x8vNzc3FSnTh0FBQVp27ZtWrZsmU6dOqWwsDDzdleuXFH//v21bds2rVq1SjY2NmrZsqVSUlIs+h8xYoSGDh2qP//8U3Z2dmrbtq0GDRqkqKgorV27VocPH9bw4cMzrO/q1au6efOmvL29M31MEydO1LPPPqsdO3Zo2LBhio2NVcOGDfXqq6/qr7/+0rfffqt169apV69e5m3at2+v+fPn67///a/27dunqVOnytXVVZJ08eLF+54PSZo9e7ZcXFy0efNmjR8/XiNHjtSKFSskSVu3bpUkzZw5U/Hx8ebnGXn99de1cuVKSdKWLVsUHx8vX19f/fDDD+rTp48GDBig3bt3680331THjh21evVqi+0jIiLUsmVL7dq1S506dZIkxcbG6tdff9WyZcs0f/58ffnll2rSpIn++ecfrVmzRuPGjdPQoUO1efPmDOtKSkpSQkKCxQMAAAAAADwaTIZhGLldRFaEhoaqUqVK5om0R40apbVr12r58uXmdf755x/5+vrqwIEDKlWqVJo+zp49q3z58mnXrl0KDAxUXFycihUrphkzZqhz586SpAULFqhNmzZatWqV6tSpI0n68MMPNWvWLO3fvz/d2nr06KHly5drz549cnR0vO+x+Pv7KygoSD/88IO5rUuXLrK1tdXUqVPNbevWrVNISIiuXLmiY8eOqXTp0lqxYoXq1auXps/MnI/Q0FAlJydr7dq15nWqV6+uOnXq6MMPP5R0ewTTDz/8oBYtWtz3OCQpJiZGQUFBOnLkiHlkVXBwsMqXL69p06aZ1wsLC9OVK1f0yy+/mPfTt29fffzxx+Z1IiIiNGHCBP37779yc3OTJDVs2FAHDhxQbGysbGxuZ6llypRReHi4Bg8enG5NERERioyMTNO+e0hZuTnaZuq4AADIrKLDd+V2CQAAAI+EhIQEeXh46NKlS3J3d89wvcdqpFR6du7cqdWrV8vV1dX8KFOmjCSZL9E7dOiQ2rRpo+LFi8vd3d0cmhw7dsyir4oVK5p/LlCggCSZL0tLbTt9+nS6dXz44YdasGCBfvjhh0wFUqmqVq2a5nhmzZplcTwNGjRQSkqKjhw5opiYGNna2iokJCTb5+PuY5UkHx+fDI8tu/bt26fg4GCLtuDgYO3bt8+i7e5zIN0O7FIDKen2uS9Xrpw5kEptu1fNQ4YM0aVLl8yP48ePZ/dQAAAAAABADrPL7QIeVGJiopo1a6Zx48alWebj4yNJatasmfz8/DR9+nQVKlRIKSkpCgwMTDOxeJ48ecw/m0ymdNvuvuRPun0J3ocffqiVK1emCXvux8XFJc3xvPnmm+rdu3eadYsWLarDhw/fs7/MnA/J8rikjI/NGu4+B1L69WW1ZgcHBzk4OORMkQAAAAAAIEc9dqGUvb29kpOTzc8rV66s7777Tv7+/rKzS3s4586d04EDBzR9+nTVrl1b0u3L4XLK+PHjNXr0aC1fvjzdET9ZVblyZe3du1cBAQHpLq9QoYJSUlK0Zs2adC/fu9/5yKw8efJYnOfsKFu2rNavX68OHTqY29avX69y5co9UL8AAAAAAODx99hdvufv76/NmzcrLi5OZ8+eVc+ePXX+/Hm1adNGW7duVWxsrJYvX66OHTsqOTlZXl5eyps3r6ZNm6bDhw/r999/V//+/XOklnHjxmnYsGH66quv5O/vr3///Vf//vuvEhMTs93nu+++qw0bNqhXr16KiYnRoUOH9OOPP5onOvf391eHDh3UqVMnLV68WEeOHFF0dLQWLlwoSfc9H5nl7++vVatW6d9//9WFCxeydSzvvPOOZs2apSlTpujQoUP66KOP9P3332vgwIHZ6g8AAAAAADw5HrtQauDAgbK1tVW5cuWUL18+3bhxQ+vXr1dycrLq16+vChUqqG/fvvL09JSNjY1sbGy0YMECbd++XYGBgerXr58mTJiQI7VMmTJFN27cUKtWreTj42N+TJw4Mdt9VqxYUWvWrNHBgwdVu3ZtBQUFafjw4SpUqJDFflu1aqUePXqoTJky6tq1q65cuSJJKlSo0D3PR2ZNmjRJK1askK+vr4KCgrJ1LC1atFBUVJQmTpyo8uXLa+rUqZo5c6ZCQ0Oz1R8AAAAAAHhyPHZ33wOyK3X2f+6+BwB4GLj7HgAAwG1Pzd33AAAAAAAA8PghlHpI1q5dK1dX1wwfj5vy5ctneCxz587N7fIAAAAAAMBj5rG7+97jomrVqoqJicntMnLM0qVLdfPmzXSXFShQwMrVAAAAAACAxx2h1EPi5OSkgICA3C4jx/j5+eV2CQAAAAAA4AnC5XsAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdXa5XQBgbb6DN8nd3T23ywAAAAAA4KnGSCkAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWJ1dbhcAWNsLQ+fL1sEpt8sAAOCJtn1C+9wuAQAAPOIYKQUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdU9EKBUaGqq+ffvmdhkPTVxcnEwmk2JiYnK7FAAAAAAAgBzxRIRSTzpfX1/Fx8crMDAwt0t5JDzpISQAAAAAAE8DQqnHgK2trQoWLCg7O7vcLuWebt68mdslAAAAAACAx8QTE0qlpKRo0KBB8vb2VsGCBRUREWFeduzYMTVv3lyurq5yd3dXWFiYTp06ZV4eERGhSpUq6auvvlLRokXl6uqqHj16KDk5WePHj1fBggWVP39+jR492mKfFy9eVJcuXZQvXz65u7urTp062rlz531rvXTpkmxtbbVt2zZz7d7e3nr++efN63zzzTfy9fWVlPbyvejoaJlMJq1atUpVq1aVs7OzatasqQMHDmTqXKUe79SpU+Xr6ytnZ2eFhYXp0qVLFuvNmDFDZcuWlaOjo8qUKaPPP//cvCy1pm+//VYhISFydHTU3LlzJUlfffWVypcvLwcHB/n4+KhXr16ZPmeptc2ZM0f+/v7y8PBQ69atdfnyZUlSeHi41qxZo6ioKJlMJplMJsXFxWXquAEAAAAAwKPjiQmlZs+eLRcXF23evFnjx4/XyJEjtWLFCqWkpKh58+Y6f/681qxZoxUrVujvv//W66+/brF9bGysfv31Vy1btkzz58/Xl19+qSZNmuiff/7RmjVrNG7cOA0dOlSbN282b/Paa6/p9OnT+vXXX7V9+3ZVrlxZdevW1fnz5+9Zq4eHhypVqqTo6GhJ0q5du2QymbRjxw4lJiZKktasWaOQkJB79vP+++9r0qRJ2rZtm+zs7NSpU6dMn6/Dhw9r4cKF+vnnn7Vs2TLt2LFDPXr0MC+fO3euhg8frtGjR2vfvn0aM2aMhg0bptmzZ1v0M3jwYPXp00f79u1TgwYNNGXKFPXs2VPdunXTrl279NNPPykgICBL5yw2NlaLFy/WkiVLtGTJEq1Zs0YffvihJCkqKko1atRQ165dFR8fr/j4eHN4d7ekpCQlJCRYPAAAAAAAwKPh0b4eLAsqVqyoESNGSJJKliypTz/9VKtWrZJ0O/Q5cuSIObz4+uuvVb58eW3dulXVqlWTdHu00ldffSU3NzeVK1dOL774og4cOKClS5fKxsZGpUuX1rhx47R69Wo999xzWrdunbZs2aLTp0/LwcFBkjRx4kQtXrxYixYtUrdu3e5Zb2hoqKKjozVw4EBFR0frpZde0v79+7Vu3To1bNhQ0dHRGjRo0D37GD16tDm4Gjx4sJo0aaLr16/L0dHxvufr+vXr+vrrr1W4cGFJ0ieffKImTZpo0qRJKliwoEaMGKFJkybplVdekSQVK1ZMe/fu1dSpU9WhQwdzP3379jWvI0mjRo3SgP/X3p3H13jn//9/nuyJbEJkaUOoICQhtjYUMVW7T5UpVaNCUEVRtZZaam3RClrt2KIzWjqt6kyrtJbYxZqUihAV0YoqJSRKIjm/P/ycb48lEpJzIh732+3cbjnX8r5e73eudibPvt/X9cYbGjJkiGnbzTEu6Jjl5eUpNjZWbm5ukqQePXpow4YNmjp1qjw8POTg4CAXFxf5+vrm28fp06dr0qRJt21f7hojNyfbe44RAAAPq4rjD1q7BAAAgHsqVaHUX/n5+ens2bNKSkpSQECA2WyamjVrytPTU0lJSabAJDAw0BSCSJKPj49sbW1lY2Njtu3s2bOSpMTERGVmZqpcuXJm1/3zzz91/Pjxe9bbrFkzLV68WLm5udq8ebNatmwpX19fxcXFKSwsTCkpKYqMjCxwn/38/CRJZ8+eVcWKFe95/YoVK5oCKUmKiIhQXl6ekpOT5ebmpuPHjys6Olp9+/Y1HXP9+nV5eHiYtVO/fn3Tz2fPntXp06f1zDPP3PGaBR2zW38XN3+XhTVmzBgNGzbM9P3SpUt3nVUFAAAAAAAsq9SEUvb29mbfDQaD8vLyHuj8/NrMzMyUn5+faQneX3l6et7zek2bNtXly5e1f/9+bdmyRdOmTZOvr69mzJih2rVry9/fX0FBQQWu2WAwSFKh+nw3N5cQLly4UE8++aTZPltb8xlGZcqUMf3s7Ox8z3YLMmYP+ru8ydHR0TQjCwAAAAAAlCylJpS6m+DgYJ06dUqnTp0yzZI5fPiwLl68qJo1a953u3Xr1tWZM2dkZ2enwMDAQp/v6empsLAwzZ8/X/b29qpRo4YqVKigrl276ptvvrnn86QeVFpamk6fPi1/f39J0q5du0zLFH18fOTv76+ff/5Z3bt3L3Cbbm5uCgwM1IYNG9S8efPb9j/omN3k4OCg3Nzc+z4fAAAAAABYX6l50PndtGjRQqGhoerevbv279+v3bt36+WXX1azZs3Mlp7dT7sRERHq2LGjvv/+e6WmpmrHjh0aO3as6a169xIZGanly5ebAigvLy8FBweb3mhXnJycnNSzZ08lJiZq69atGjx4sLp06WJ6TtOkSZM0ffp0zZ07V0ePHtXBgwe1dOlSvffee/m2O3HiRM2ePVtz587VsWPHtH//fs2bN09S0YyZdGN5X3x8vFJTU3Xu3LkimR0GAAAAAAAsq9SHUgaDQV9//bXKli2rpk2bqkWLFqpSpYpWrlz5wO2uWbNGTZs2Va9evVStWjW9+OKLOnnypHx8fArURrNmzZSbm2v27KjIyMjbthWHqlWrqlOnTmrbtq1atmypsLAwffjhh6b9ffr00aJFi7R06VKFhoaqWbNmio2NVeXKlfNtt2fPnpozZ44+/PBD1apVS+3bt9exY8ckFc2YSdLw4cNla2urmjVrytvbW2lpafc3CAAAAAAAwGoMRqPRaO0iYFkTJ07U6tWrlZCQYO1SLOrSpUvy8PDQoTHBvH0PAFCq8fY9AABgTTf//s7IyJC7u/tdjyv1M6UAAAAAAABQ8hBKFZNatWrJ1dX1jp/ly5eX2msDAAAAAAAURKl/+561rFmzRjk5OXfcV5jnJxXHtd3c3DRx4sRirQEAAAAAACA/hFLFpFKlSo/ktQEAAAAAAAqC5XsAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcXbWLgCwtIDRu+Tu7m7tMgAAAAAAeKQxUwoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFmdn7QIAS2s67jPZOjoXS9v7Zr5cLO0CAAAAAFDaMFMKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpWBREydOVJ06daxdBgAAAAAAsDJCqUdEZGSkhg4dau0yiozBYNDq1autXQYAAAAAALhPhFIAAAAAAACwOEKpR0BUVJQ2b96smJgYGQwGGQwGpaamavPmzWrYsKEcHR3l5+en0aNH6/r166bzvvjiC4WGhsrZ2VnlypVTixYtlJWVJUmKi4tTw4YNVaZMGXl6eqpx48Y6efJkgWv6+OOPFRAQIBcXF3Xp0kUZGRmmfXv27NGzzz6r8uXLy8PDQ82aNdP+/ftN+wMDAyVJzz//vAwGg+k7AAAAAAB4eBBKPQJiYmIUERGhvn37Kj09Xenp6bK3t1fbtm3VoEEDJSYmasGCBVq8eLGmTJkiSUpPT1e3bt3Uu3dvJSUlKS4uTp06dZLRaNT169fVsWNHNWvWTD/++KN27typfv36yWAwFKielJQUff755/rf//6ntWvX6sCBAxowYIBp/+XLl9WzZ09t27ZNu3btUlBQkNq2bavLly9LuhFaSdLSpUuVnp5u+n6ra9eu6dKlS2YfAAAAAABQMthZuwAUPw8PDzk4OMjFxUW+vr6SpLFjxyogIEDz58+XwWBQjRo1dPr0aY0aNUrjx49Xenq6rl+/rk6dOqlSpUqSpNDQUEnSH3/8oYyMDLVv315PPPGEJCk4OLjA9Vy9elWffPKJHnvsMUnSvHnz1K5dO82ePVu+vr7629/+Znb8P//5T3l6emrz5s1q3769vL29JUmenp6m/tzJ9OnTNWnSpNu2L3eNkZuTbYHrLYy0t2cWS7sPq4rjD1q7BAAAAABACcVMqUdUUlKSIiIizGY3NW7cWJmZmfrll19Uu3ZtPfPMMwoNDdULL7yghQsX6sKFC5IkLy8vRUVFqVWrVurQoYNiYmKUnp5e4GtXrFjRFEhJUkREhPLy8pScnCxJ+u2339S3b18FBQXJw8ND7u7uyszMVFpaWqH6OGbMGGVkZJg+p06dKtT5AAAAAACg+BBK4Y5sbW31ww8/6LvvvlPNmjU1b948Va9eXSdOnJB0Y+nczp071ahRI61cuVLVqlXTrl27iuTaPXv2VEJCgmJiYrRjxw4lJCSoXLlyys7OLlQ7jo6Ocnd3N/sAAAAAAICSgVDqEeHg4KDc3FzT9+DgYO3cuVNGo9G0bfv27XJzc9Pjjz8uSTIYDGrcuLEmTZqkAwcOyMHBQV999ZXp+PDwcI0ZM0Y7duxQSEiIPv300wLVkpaWptOnT5u+79q1SzY2NqpevbqpjsGDB6tt27aqVauWHB0dde7cObM27O3tzfoDAAAAAAAeLoRSj4jAwEDFx8crNTVV586d04ABA3Tq1Cm99tprOnLkiL7++mtNmDBBw4YNk42NjeLj4zVt2jTt3btXaWlpWrVqlX7//XcFBwfrxIkTGjNmjHbu3KmTJ0/q+++/17Fjxwr8XCknJyf17NlTiYmJ2rp1qwYPHqwuXbqYng8VFBSkf/3rX0pKSlJ8fLy6d+8uZ2fn2/qzYcMGnTlzxrSsEAAAAAAAPDwIpR4Rw4cPl62trWrWrClvb2/l5ORozZo12r17t2rXrq3+/fsrOjpa48aNkyS5u7try5Ytatu2rapVq6Zx48Zp9uzZatOmjVxcXHTkyBF17txZ1apVU79+/TRw4EC98sorBaqlatWq6tSpk9q2bauWLVsqLCxMH374oWn/4sWLdeHCBdWtW1c9evTQ4MGDVaFCBbM2Zs+erR9++EEBAQEKDw8vuoECAAAAAAAWYTD+df0WUIpdunRJHh4eOjQmuNjevgdzvH0PAAAAAB49N//+zsjIyPf5zsyUAgAAAAAAgMURSqFI1apVS66urnf8LF++3NrlAQAAAACAEsLO2gWgdFmzZo1ycnLuuM/Hx8fC1QAAAAAAgJKKUApFqlKlStYuAQAAAAAAPARYvgcAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWZ2ftAgBLCxi9S+7u7tYuAwAAAACARxozpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcXbWLgCwtKbjPpOto7O1ywAAoEjtm/mytUsAAAAoFGZKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoVQRS01NlcFgUEJCgrVLKXJxcXEyGAy6ePFisV+rNI8jAAAAAAAo4aFUZGSkhg4dau0yCiUgIEDp6ekKCQmxdin5io2Nlaenp7XLuKuHZRwBAAAAAMD9sbN2AaWNra2tfH19rV3GQ49xBAAAAACgdCuxM6WioqK0efNmxcTEyGAwyGAwKDU1VZs3b1bDhg3l6OgoPz8/jR49WtevXzed98UXXyg0NFTOzs4qV66cWrRooaysLEk3lp81bNhQZcqUkaenpxo3bqyTJ0/mW0dGRoZsbW21d+9eSVJeXp68vLz01FNPmY7597//rYCAAEm3Lzu7ueRtw4YNql+/vlxcXNSoUSMlJycXaBwmTpyoOnXqaMmSJapYsaJcXV01YMAA5ebm6t1335Wvr68qVKigqVOnmp333nvvKTQ0VGXKlFFAQIAGDBigzMxMU029evVSRkaGaWwnTpwoSbp27ZpGjRqlgIAAOTo6qmrVqlq8eLFZ2/v27St0X6w9jgAAAAAAoGQpsaFUTEyMIiIi1LdvX6Wnpys9PV329vZq27atGjRooMTERC1YsECLFy/WlClTJEnp6enq1q2bevfuraSkJMXFxalTp04yGo26fv26OnbsqGbNmunHH3/Uzp071a9fPxkMhnzr8PDwUJ06dRQXFydJOnjwoAwGgw4cOGAKeTZv3qxmzZrl287YsWM1e/Zs7d27V3Z2durdu3eBx+L48eP67rvvtHbtWn322WdavHix2rVrp19++UWbN2/WO++8o3Hjxik+Pt50jo2NjebOnauffvpJy5Yt08aNGzVy5EhJUqNGjTRnzhy5u7ubxnb48OGSpJdfflmfffaZ5s6dq6SkJH388cdydXV94L5YYxyvXbumS5cumX0AAAAAAEDJUGKX73l4eMjBwUEuLi6mZVxjx45VQECA5s+fL4PBoBo1auj06dMaNWqUxo8fr/T0dF2/fl2dOnVSpUqVJEmhoaGSpD/++EMZGRlq3769nnjiCUlScHBwgWqJjIxUXFychg8frri4OD377LM6cuSItm3bptatWysuLs4U+NzN1KlTTYHL6NGj1a5dO129elVOTk73vH5eXp6WLFkiNzc31axZU82bN1dycrLWrFkjGxsbVa9eXe+88442bdqkJ598UpLMnsUVGBioKVOmqH///vrwww/l4OAgDw8PGQwGsyVyR48e1eeff64ffvhBLVq0kCRVqVKlyPpi6XGcPn26Jk2adNv25a4xcnOyzfc6AACUNBXHH7R2CQAAAEWqxM6UupOkpCRFRESYzW5q3LixMjMz9csvv6h27dp65plnFBoaqhdeeEELFy7UhQsXJEleXl6KiopSq1at1KFDB8XExCg9Pb1A123WrJm2bdum3Nxcbd68WZGRkaaA5fTp00pJSVFkZGS+bYSFhZl+9vPzkySdPXu2QNcPDAyUm5ub6buPj49q1qwpGxsbs21/bW/9+vV65pln9Nhjj8nNzU09evTQ+fPndeXKlbteJyEhQba2tvecrXS/fbH0OI4ZM0YZGRmmz6lTp+5ZIwAAAAAAsIyHKpS6F1tbW/3www/67rvvVLNmTc2bN0/Vq1fXiRMnJElLly7Vzp071ahRI61cuVLVqlXTrl277tlu06ZNdfnyZe3fv19btmwxC1M2b94sf39/BQUF5duGvb296eeboVpeXl6B+vXXc2+ef6dtN9tLTU1V+/btFRYWpi+//FL79u3TBx98IEnKzs6+63WcnZ0LXU9h+mLpcXR0dJS7u7vZBwAAAAAAlAwlOpRycHBQbm6u6XtwcLB27twpo9Fo2rZ9+3a5ubnp8ccfl3QjqGjcuLEmTZqkAwcOyMHBQV999ZXp+PDwcI0ZM0Y7duxQSEiIPv3003vW4enpqbCwMM2fP1/29vaqUaOGmjZtqgMHDuibb76558wiS9u3b5/y8vI0e/ZsPfXUU6pWrZpOnz5tdsytYyvdWOqYl5enzZs3F0tdD9s4AgAAAACA4lOiQ6nAwEDFx8crNTVV586d04ABA3Tq1Cm99tprOnLkiL7++mtNmDBBw4YNk42NjeLj4zVt2jTt3btXaWlpWrVqlX7//XcFBwfrxIkTGjNmjHbu3KmTJ0/q+++/17Fjxwr1XKnly5ebghMvLy8FBwdr5cqVJS5MqVq1qnJycjRv3jz9/PPP+te//qWPPvrI7JjAwEBlZmZqw4YNOnfunK5cuaLAwED17NlTvXv31urVq3XixAnFxcXp888/L7LaHqZxBAAAAAAAxadEh1LDhw+Xra2tatasKW9vb+Xk5GjNmjXavXu3ateurf79+ys6Olrjxo2TJLm7u2vLli1q27atqlWrpnHjxmn27Nlq06aNXFxcdOTIEXXu3FnVqlVTv379NHDgQL3yyisFqqVZs2bKzc01e+ZRZGTkbdtKgtq1a+u9997TO++8o5CQEC1fvlzTp083O6ZRo0bq37+/unbtKm9vb7377ruSpAULFujvf/+7BgwYoBo1aqhv377KysoqstoepnEEAAAAAADFx2D861o4oBS7dOmSPDw8dGhMMG/fAwA8dHj7HgAAeFjc/Ps7IyMj3+c7l+iZUgAAAAAAACidCKUk1apVS66urnf8LF++vNReu6iVpr4AAAAAAIDiZWftAkqCNWvWKCcn5477fHx8Su21i1pp6gsAAAAAAChehFKSKlWq9Eheu6iVpr4AAAAAAIDixfI9AAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDg7axcAWFrA6F1yd3e3dhkAAAAAADzSmCkFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhVAkSGRmpoUOHWruMeypMnVeuXFHnzp3l7u4ug8GgixcvKjAwUHPmzCnWGgEAAAAAQMn20IdSJSnI+emnn9S5c2cFBgbKYDBYJXiJi4szhT9/Za1xWrZsmbZu3aodO3YoPT1dHh4e2rNnj/r163ffbaampspgMCghIaHoCgUAAAAAABb10IdSJcmVK1dUpUoVzZgxQ76+vtYup0Q4fvy4goODFRISIl9fXxkMBnl7e8vFxeWu5+Tk5FiwQgAAAAAAYA0PdSgVFRWlzZs3KyYmRgaDQQaDQampqTp06JDatGkjV1dX+fj4qEePHjp37pzpvLVr1+rpp5+Wp6enypUrp/bt2+v48eOm/Tdn4nz++edq0qSJnJ2d1aBBAx09elR79uxR/fr15erqqjZt2uj33383ndegQQPNnDlTL774ohwdHe+rT9evX9egQYPk4eGh8uXL66233pLRaDTt/9e//qX69evLzc1Nvr6+eumll3T27FlT3c2bN5cklS1bVgaDQVFRUXcdJ0n3HKusrCy9/PLLcnV1lZ+fn2bPnl3gvkRGRmr27NnasmWLDAaDIiMjJem25XsGg0ELFizQ//3f/6lMmTKaOnWqLly4oO7du8vb21vOzs4KCgrS0qVLJUmVK1eWJIWHh5u1CwAAAAAAHh4PdSgVExOjiIgI9e3bV+np6UpPT5ebm5v+9re/KTw8XHv37tXatWv122+/qUuXLqbzsrKyNGzYMO3du1cbNmyQjY2Nnn/+eeXl5Zm1P2HCBI0bN0779++XnZ2dXnrpJY0cOVIxMTHaunWrUlJSNH78+CLt07Jly2RnZ6fdu3crJiZG7733nhYtWmTan5OTo8mTJysxMVGrV69WamqqoqKiJEkBAQH68ssvJUnJyclKT09XTEzMHccpICBAFy9evOdYjRgxQps3b9bXX3+t77//XnFxcdq/f3+B+rJq1Sr17dtXERERSk9P16pVq+567MSJE/X888/r4MGD6t27t9566y0dPnxY3333nZKSkrRgwQKVL19ekrR7925J0vr16/Nt99q1a7p06ZLZBwAAAAAAlAx21i7gQXh4eMjBwUEuLi6m5XJTpkxReHi4pk2bZjpuyZIlCggI0NGjR1WtWjV17tzZrJ0lS5bI29tbhw8fVkhIiGn78OHD1apVK0nSkCFD1K1bN23YsEGNGzeWJEVHRys2NrZI+xQQEKD3339fBoNB1atX18GDB/X++++rb9++kqTevXubjq1SpYrmzp2rBg0aKDMzU66urvLy8pIkVahQQZ6enqZjbx0nSZo/f36+Y+Xv76/Fixfr3//+t5555hlJN0Kzxx9/vEB98fLykouLixwcHO65nPGll15Sr169TN/T0tIUHh6u+vXrS7oxu+omb29vSVK5cuXybXf69OmaNGnSbdtPzXhKbk62BeoDHkzF8QetXQIAAAAAoIR6qGdK3UliYqI2bdokV1dX06dGjRqSZFqid+zYMXXr1k1VqlSRu7u7KfBIS0szayssLMz0s4+PjyQpNDTUbNvNpXNF5amnnpLBYDB9j4iI0LFjx5SbmytJ2rdvnzp06KCKFSvKzc1NzZo1u2PtBXGvsTp+/Liys7P15JNPms7x8vJS9erVH6SLd3QzfLrp1Vdf1YoVK1SnTh2NHDlSO3bsKHSbY8aMUUZGhulz6tSpoioXAAAAAAA8oId6ptSdZGZmqkOHDnrnnXdu2+fn5ydJ6tChgypVqqSFCxfK399feXl5CgkJUXZ2ttnx9vb2pp9vBkW3brt1yV9xysrKUqtWrdSqVSstX75c3t7eSktLU6tWrW6rvSDuNVYpKSlFUXaBlClTxux7mzZtdPLkSa1Zs0Y//PCDnnnmGQ0cOFCzZs0qcJuOjo73/WwvAAAAAABQvB76UMrBwcE0i0iS6tatqy+//FKBgYGys7u9e+fPn1dycrIWLlyoJk2aSJK2bdtmsXrvJT4+3uz7rl27FBQUJFtbWx05ckTnz5/XjBkzFBAQIEnau3ev2fEODg6SZDYmN7ffuu1eY/XEE0/I3t5e8fHxqlixoiTpwoULOnr0qGmGVnHy9vZWz5491bNnTzVp0kQjRozQrFmz7tpHAAAAAADw8Hjol+8FBgYqPj5eqampOnfunAYOHKg//vhD3bp10549e3T8+HGtW7dOvXr1Um5ursqWLaty5crpn//8p1JSUrRx40YNGzasSGrJzs5WQkKCEhISlJ2drV9//VUJCQmFmnGUlpamYcOGKTk5WZ999pnmzZunIUOGSJIqVqwoBwcHzZs3Tz///LP++9//avLkyWbnV6pUSQaDQd98841+//13ZWZm3nGc8vLy7jlWrq6uio6O1ogRI7Rx40YdOnRIUVFRsrEp/ttm/Pjx+vrrr5WSkqKffvpJ33zzjYKDgyXdeF6Ws7Oz6cHsGRkZxV4PAAAAAAAoWg99KDV8+HDZ2tqqZs2a8vb2VnZ2trZv367c3Fy1bNlSoaGhGjp0qDw9PWVjYyMbGxutWLFC+/btU0hIiF5//XXNnDmzSGo5ffq0wsPDFR4ervT0dM2aNUvh4eHq06dPgdt4+eWX9eeff6phw4YaOHCghgwZon79+km6MXMoNjZW//nPf1SzZk3NmDHjtuVsjz32mCZNmqTRo0fLx8dHgwYNuuM4paWlyd/fP9+xkqSZM2eqSZMm6tChg1q0aKGnn35a9erVK5Lxyo+Dg4PGjBmjsLAwNW3aVLa2tlqxYoUkyc7OTnPnztXHH38sf39/Pffcc8VeDwAAAAAAKFoGo9FotHYRgCVcunRJHh4eOjQmmLfvWQhv3wMAAACAR8/Nv78zMjLk7u5+1+Me+plSAAAAAAAAePgQSllIWlqaXF1d7/pJS0uzdomFtnXr1nz7BAAAAAAAcDcP/dv3Hhb+/v5KSEjId//Dpn79+vn2CQAAAAAA4G4IpSzEzs5OVatWtXYZRcrZ2bnU9QkAAAAAAFgGy/cAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4uysXQBgaQGjd8nd3d3aZQAAAAAA8EhjphQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYnJ21CwAsrem4z2Tr6GztMordvpkvW7sEAAAAAADuiplSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QqRnFxcTIYDLp48WK+xwUGBmrOnDnFVsfEiRNVp06dQp1z5MgRPfXUU3Jycir0uYVV3P0HAAAAAAAlj501Lx4ZGak6deqUiEDip59+0vjx47Vv3z6dPHlS77//voYOHVrg8+/Ul0aNGik9PV0eHh6SpNjYWA0dOvSeIVVJMGHCBJUpU0bJyclydXW1djkAAAAAgELKzc1VTk6OtctAKWRvby9bW9sHbseqoVRJcuXKFVWpUkUvvPCCXn/99SJp08HBQb6+vkXSlqUdP35c7dq1U6VKlaxdyj1lZ2fLwcHB2mUAAAAAQIlgNBp15syZh2JCBB5enp6e8vX1lcFguO82rBZKRUVFafPmzdq8ebNiYmIkSSdOnFBmZqZGjBihrVu3qkyZMmrZsqXef/99lS9fXpK0du1aTZkyRYcOHZKtra0iIiIUExOjJ554QpKUmpqqypUra+XKlZo3b5727t2rkJAQLV++XBkZGXr11Vd15MgRNWnSRJ988om8vb0lSQ0aNFCDBg0kSaNHjy6SvqSmpqp58+a6cOGCEhIS1KtXL0ky/cImTJigiRMn3tbexYsXNXz4cH399de6du2a6tevr/fff1+1a9cuUD0zZszQ+++/rytXrqhLly6mPv7VokWLNHv2bJ04cUKBgYEaPHiwBgwYYFbfvn379Pbbb5vqPHXqlN544w19//33srGxUZMmTRQTE6PAwEDTOFy8eFFPP/20Zs+erezsbL344ouaM2eO7O3tJUlnz55VdHS01q9fL19fX02ZMqXQ/Z84caJWr16tQYMGaerUqTp58qTy8vIKNDYAAAAAUNrdDKQqVKggFxeXBwoNgFsZjUZduXJFZ8+elST5+fndd1tWC6ViYmJ09OhRhYSE6O2335Z0Y/pXw4YN1adPH73//vv6888/NWrUKHXp0kUbN26UJGVlZWnYsGEKCwtTZmamxo8fr+eff14JCQmysfl/j8iaMGGC5syZo4oVK6p379566aWX5ObmppiYGLm4uKhLly4aP368FixYUCx98fb2VmpqqumYRo0aac6cORo/frySk5Ml6a7L4l544QU5Ozvru+++k4eHhz7++GM988wzOnr0qLy8vPKt5fPPP9fEiRP1wQcf6Omnn9a//vUvzZ07V1WqVDEds3z5co0fP17z589XeHi4Dhw4oL59+6pMmTLq2bOn0tPT1aJFC7Vu3VrDhw+Xq6urcnJy1KpVK0VERGjr1q2ys7PTlClT1Lp1a/3444+mmUqbNm2Sn5+fNm3apJSUFHXt2lV16tRR3759Jd0Irk6fPq1NmzbJ3t5egwcPNt3Ihel/SkqKvvzyS61atequUwavXbuma9eumb5funQp37EDAAAAgIddbm6uKZAqV66ctctBKeXs7CzpxsSTChUq3PdSPquFUh4eHnJwcJCLi4tpiduUKVMUHh6uadOmmY5bsmSJAgICdPToUVWrVk2dO3c2a2fJkiXy9vbW4cOHFRISYto+fPhwtWrVSpI0ZMgQdevWTRs2bFDjxo0lSdHR0YqNjS22vtzKwcFBHh4eMhgM+S7p27Ztm3bv3q2zZ8/K0dFRkjRr1iytXr1aX3zxhfr165dvLXPmzFF0dLSio6Ml3RjT9evX6+rVq6ZjJkyYoNmzZ6tTp06SpMqVK+vw4cP6+OOP1bNnT/n6+srOzk6urq6mWv/9738rLy9PixYtMqXsS5culaenp+Li4tSyZUtJUtmyZTV//nzZ2tqqRo0aateunTZs2KC+ffvq6NGj+u6777R7927TrLTFixcrODi40P3Pzs42m+l2J9OnT9ekSZNu277cNUZuTg++9rWkS3t7ptWuXXH8QatdGwAAAHiU3XyGlIuLi5UrQWl38x7Lycm571CqRL19LzExUZs2bZKrq6vpU6NGDUk3nnEkSceOHVO3bt1UpUoVubu7m5aOpaWlmbUVFhZm+tnHx0eSFBoaarbt1hk6JUFiYqIyMzNVrlw5s3E4ceKEaQzyk5SUpCeffNJsW0REhOnnrKwsHT9+XNHR0WbtT5kyJd/2ExMTlZKSIjc3N9M5Xl5eunr1qtl5tWrVMrsZ/fz8TOOclJQkOzs71atXz7S/Ro0a8vT0LHT/K1WqlG8gJUljxoxRRkaG6XPq1Kl8jwcAAACA0oIleyhuRXGPlagHnWdmZqpDhw565513btt3c41ihw4dVKlSJS1cuFD+/v7Ky8tTSEiIsrOzzY6/+Qwj6f8N1K3bSuJziDIzM+Xn56e4uLjb9v01vHmQ9iVp4cKFt4VX+SWbmZmZqlevnpYvX37bvr+GQ38dY6nw41zQ/pcpU+aebTk6OppmWwEAAAAAUBhxcXGm50QX9O/xwMBADR06VEOHDi3W2koLq4ZSDg4Oys3NNX2vW7euvvzySwUGBsrO7vbSzp8/r+TkZC1cuFBNmjSRdGO5V0lwa1/u95i6devqzJkzsrOzM80CK4zg4GDFx8fr5ZdfNm3btWuX6WcfHx/5+/vr559/Vvfu3Qvcbt26dbVy5UpVqFBB7u7uha5LujEr6vr169q3b59p+V5ycrLZGyEetP8AAAAAgEdDVFSUli1bpldeeUUfffSR2b6BAwfqww8/VM+ePYvs0T0oelZdvhcYGKj4+Hilpqbq3LlzGjhwoP744w9169ZNe/bs0fHjx7Vu3Tr16tVLubm5Klu2rMqVK6d//vOfSklJ0caNGzVs2LAiqSU7O1sJCQlKSEhQdna2fv31VyUkJCglJeW++nKn2UGBgYHKzMzUhg0bdO7cOV25cuW2Y1q0aKGIiAh17NhR33//vVJTU7Vjxw6NHTtWe/fuvWcdQ4YM0ZIlS7R06VIdPXpUEyZM0E8//WR2zKRJkzR9+nTNnTtXR48e1cGDB7V06VK99957d223e/fuKl++vJ577jlt3bpVJ06cUFxcnAYPHqxffvmlACMkVa9eXa1bt9Yrr7yi+Ph47du3T3369DE9IK0o+g8AAAAAeHQEBARoxYoV+vPPP03brl69qk8//VQVK1a0YmUoCKuGUsOHD5etra1q1qwpb29vZWdna/v27crNzVXLli0VGhqqoUOHytPTUzY2NrKxsdGKFSu0b98+hYSE6PXXX9fMmUXzMOfTp08rPDxc4eHhSk9P16xZsxQeHq4+ffrcV19ufcaVdOMNfP3791fXrl3l7e2td99997ZjDAaD1qxZo6ZNm6pXr16qVq2aXnzxRZ08edL0bKz8dO3aVW+99ZZGjhypevXq6eTJk3r11VfNjunTp48WLVqkpUuXKjQ0VM2aNVNsbKwqV65813ZdXFy0ZcsWVaxYUZ06dVJwcLCio6N19erVQs2cWrp0qfz9/dWsWTN16tRJ/fr1U4UKFYqs/wAAAACAR0fdunUVEBCgVatWmbatWrVKFStWVHh4uGnbtWvXNHjwYFWoUEFOTk56+umntWfPHrO21qxZo2rVqsnZ2VnNmzdXamrqbdfbtm2bmjRpImdnZwUEBGjw4MHKysoqtv6Vdgaj0Wi0dhGAJVy6dEkeHh46NCb4kXj7njXx9j0AAADAOq5evaoTJ06ocuXKcnJysnY5xSoqKkoXL15Us2bN9O2332r9+vWSbqzAad++veLi4uTp6anY2FgNGTJEX3zxhRYtWqRKlSrp3Xff1X//+1+lpKTIy8tLp06dUlBQkAYOHKh+/fpp7969euONN/Tbb7+Znil1/Phx1a5dW1OmTFG7du30+++/a9CgQapdu7aWLl0q6dF6plR+99rNv78zMjLynchSot6+BwAAAAAAUBj/+Mc/tG3bNp08eVInT57U9u3b9Y9//MO0PysrSwsWLNDMmTPVpk0b1axZUwsXLpSzs7MWL14sSVqwYIGeeOIJzZ49W9WrV1f37t0VFRVldp3p06ere/fuGjp0qIKCgtSoUSPNnTtXn3zyia5evWrJLpcaJerteyVVWlqaatasedf9hw8fttha1Vq1aunkyZN33Pfxxx8X6uHlAAAAAAA87Ly9vdWuXTvFxsbKaDSqXbt2Kl++vGn/8ePHlZOTo8aNG5u22dvbq2HDhkpKSpIkJSUl3faG+oiICLPviYmJ+vHHH83eSm80GpWXl6cTJ04oODi4OLpXqhFKFYC/v78SEhLy3W8pa9asUU5Ozh338cwlAAAAAMCjqHfv3ho0aJAk6YMPPiiWa2RmZuqVV17R4MGDb9vHQ9XvD6FUAdjZ2alq1arWLkOSVKlSJWuXAAAAAABAidK6dWtlZ2fLYDCoVatWZvueeOIJOTg4aPv27aa/qXNycrRnzx7Ts5+Cg4P13//+1+y8Xbt2mX2vW7euDh8+XGLygdKAZ0oBAAAAAICHmq2trZKSknT48GHZ2pq/2KpMmTJ69dVXNWLECK1du1aHDx9W3759deXKFUVHR0uS+vfvr2PHjmnEiBFKTk7Wp59+qtjYWLN2Ro0apR07dmjQoEFKSEjQsWPH9PXXX5tmaKHwCKUAAAAAAMBDz93d/a5vepsxY4Y6d+6sHj16qG7dukpJSdG6detUtmxZSTeW33355ZdavXq1ateurY8++kjTpk0zayMsLEybN2/W0aNH1aRJE4WHh2v8+PEWfaRPaWMwGo1GaxcBWMLNV1IeGhMsNyfbe5+A+1Zx/EFrlwAAAAA8kq5evaoTJ06ocuXKcnJysnY5KMXyu9du/v2dkZFx16BQYqYUAAAAAAAArIBQCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOLsrF0AYGkBo3fl+/R/AAAAAABQ/JgpBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAABAiWYwGLR69eoCHx8XFyeDwaCLFy8WW014cIRSAAAAAADA6qKiotSxY8c77ktPT1ebNm2K9HoTJ05UnTp17rjvwIED6tq1q/z8/OTo6KhKlSqpffv2+t///iej0ShJSk1NlcFgMH0cHBxUtWpVTZkyxXTMzesYDAa1bt36tuvMnDlTBoNBkZGRRdq3hwVv3wMAAAAA4BFQb8QnFr3evpkvF1lbvr6+RdbWvXz99dfq0qWLWrRooWXLlqlq1aq6du2aduzYoXHjxqlJkyby9PQ0Hb9+/XrVqlVL165d07Zt29SnTx/5+fkpOjradIyfn582bdqkX375RY8//rhp+5IlS1SxYkWL9a2kYaYUAAAAAAAo0W5dvrdjxw7VqVNHTk5Oql+/vlavXi2DwaCEhASz8/bt26f69evLxcVFjRo1UnJysiQpNjZWkyZNUmJiommmU2xsrLKyshQdHa127drp22+/VcuWLVWlShUFBwcrOjpaiYmJ8vDwMLtGuXLl5Ovrq0qVKql79+5q3Lix9u/fb3ZMhQoV1LJlSy1btsysD+fOnVO7du2KdrAeIoRSAAAAAADgoXHp0iV16NBBoaGh2r9/vyZPnqxRo0bd8dixY8dq9uzZ2rt3r+zs7NS7d29JUteuXfXGG2+oVq1aSk9PV3p6urp27arvv/9e58+f18iRI+96fYPBcNd9e/fu1b59+/Tkk0/etq93796KjY01fV+yZIm6d+8uBweHAva89GH5Hh45Tcd9JltHZ2uX8UCKchosAAAAADxMPv30UxkMBi1cuFBOTk6qWbOmfv31V/Xt2/e2Y6dOnapmzZpJkkaPHq127drp6tWrcnZ2lqurq+zs7MyWBh49elSSVL16ddO2PXv2qHnz5qbvK1asUPv27U3fGzVqJBsbG2VnZysnJ0f9+vXTyy/f/jdb+/bt1b9/f23ZskX16tXT559/rm3btmnJkiUPPigPKUIpAAAAAADw0EhOTlZYWJicnJxM2xo2bHjHY8PCwkw/+/n5SZLOnj1bqOc4hYWFmZYFBgUF6fr162b7V65cqeDgYOXk5OjQoUN67bXXVLZsWc2YMcPsOHt7e/3jH//Q0qVL9fPPP6tatWpm9T2KCKUAAAAAAECpZG9vb/r55rK7vLy8ux4fFBQk6Ubw9dRTT0mSHB0dVbVq1bueExAQYNofHBys48eP66233tLEiRPNgjPpxhK+J598UocOHTItJXyU8UwpAAAAAADw0KhevboOHjyoa9eumbbt2bOn0O04ODgoNzfXbFvLli3l5eWld955577rs7W11fXr15WdnX3bvlq1aqlWrVo6dOiQXnrppfu+RmnBTCkAAAAAAFAiZGRk3PYGvXLlypl9f+mllzR27Fj169dPo0ePVlpammbNmiUp/4eQ3yowMFAnTpxQQkKCHn/8cbm5ucnV1VWLFi1S165d1a5dOw0ePFhBQUHKzMzU2rVrJd0Inf7q/PnzOnPmjK5fv66DBw8qJiZGzZs3l7u7+x2vu3HjRuXk5MjT07PAtZZWhFIAAAAAAKBEiIuLU3h4uNm26Ohos+/u7u763//+p1dffVV16tRRaGioxo8fr5deeum25XL56dy5s1atWqXmzZvr4sWLWrp0qaKiovT8889rx44deuedd/Tyyy/rjz/+kIeHh+rXr3/bQ84lqUWLFpJuhFV+fn5q27atpk6detfrlilTpsA1lnYGo9FotHYRgCVcunRJHh4eqv3aR7x9DwAAAECpdPXqVZ04cUKVK1cuVEDzsFu+fLl69eqljIwMOTs/3H/vPSzyu9du/v2dkZFx1xljEjOlAAAAAADAQ+aTTz5RlSpV9NhjjykxMVGjRo1Sly5dCKQeMoRSAAAAAADgoXLmzBmNHz9eZ86ckZ+fn1544YV8l8yhZCKUAgAAAAAAD5WRI0dq5MiR1i4DD8jG2gUAAAAAAADg0UMoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gililFsbKw8PT3veZzBYNDq1auLrY6oqCh17NixUOds375doaGhsre3L/S5hVXc/QcAAAAAACWPVUOpyMhIDR061JolmCxcuFBNmjRR2bJlVbZsWbVo0UK7d+8u8PmBgYGaM2eO2bauXbvq6NGjpu8TJ05UnTp1iqji4jVs2DDVqVNHJ06cUGxsrLXLAQAAAAAApQwzpf5/cXFx6tatmzZt2qSdO3cqICBALVu21K+//nrfbTo7O6tChQpFWKXlHD9+XH/729/0+OOPF2i2lzVlZ2dbuwQAAAAAwEOOVTyWZ7VQKioqSps3b1ZMTIwMBoMMBoNSU1N16NAhtWnTRq6urvLx8VGPHj107tw503lr167V008/LU9PT5UrV07t27fX8ePHTftTU1NlMBj0+eefq0mTJnJ2dlaDBg109OhR7dmzR/Xr15erq6vatGmj33//3XTe8uXLNWDAANWpU0c1atTQokWLlJeXpw0bNtyzL5GRkTp58qRef/11U18k8+V7sbGxmjRpkhITE03H3G0G0qlTp9SlSxd5enrKy8tLzz33nFJTUws0rrm5uRo2bJhpfEaOHCmj0Wh2TF5enqZPn67KlSvL2dlZtWvX1hdffGE2fufPn1fv3r3N6rzX7yYyMlKDBw/WyJEj5eXlJV9fX02cONHs2seOHVPTpk3l5OSkmjVr6ocffih0/28uR5w6dar8/f1VvXr1Ao0NAAAAAKDkioqKMv29bG9vr8qVK2vkyJG6evWqtUsrVn/t918/KSkpVq2puB/lI0l2xX6Fu4iJidHRo0cVEhKit99+W5Jkb2+vhg0bqk+fPnr//ff1559/atSoUerSpYs2btwoScrKytKwYcMUFhamzMxMjR8/Xs8//7wSEhJkY/P/MrYJEyZozpw5qlixonr37q2XXnpJbm5uiomJkYuLi7p06aLx48drwYIFd6zvypUrysnJkZeX1z37smrVKtWuXVv9+vVT375973hM165ddejQIa1du1br16+XJHl4eNx2XE5Ojlq1aqWIiAht3bpVdnZ2mjJlilq3bq0ff/xRDg4O+dYye/ZsxcbGasmSJQoODtbs2bP11Vdf6W9/+5vpmOnTp+vf//63PvroIwUFBWnLli36xz/+IW9vbz399NNKT09X9erV9fbbb6tr167y8PDQxYsX9be//S3f340kLVu2TMOGDVN8fLx27typqKgoNW7cWM8++6zy8vLUqVMn+fj4KD4+XhkZGbct3yxo/zds2CB3d/c7hlo3Xbt2TdeuXTN9v3TpUr5jBwAAAAClWdrboRa9XsXxBwt9TuvWrbV06VLl5ORo37596tmzpwwGg955551iqLDkuNnvv/L29r6vtrKzs++ZHZQUVgulPDw85ODgIBcXF/n6+kqSpkyZovDwcE2bNs103JIlSxQQEKCjR4+qWrVq6ty5s1k7S5Yskbe3tw4fPqyQkBDT9uHDh6tVq1aSpCFDhqhbt27asGGDGjduLEmKjo7O91lJo0aNkr+/v1q0aHHPvnh5ecnW1lZubm6mvtzK2dlZrq6usrOzu+sxkrRy5Url5eVp0aJFphlXS5culaenp+Li4tSyZct8a5kzZ47GjBmjTp06SZI++ugjrVu3zrT/2rVrmjZtmtavX6+IiAhJUpUqVbRt2zZ9/PHHatasmXx9fWUwGOTh4WGqdfbs2ff83UhSWFiYJkyYIEkKCgrS/PnztWHDBj377LNav369jhw5onXr1snf31+SNG3aNLVp06bQ/S9TpowWLVqU7z9o06dP16RJk27bvtw1Rm5OtvmOY0mX9vbMYmn3fv5HAwAAAACKiqOjo+nv0ICAALVo0UI//PCDKZQ6f/68Bg0apC1btujChQt64okn9Oabb6pbt26mNiIjIxUWFiYnJyfT3439+/c3W8lz7NgxRUdHa/fu3apSpYpiYmJuq+XgwYMaMmSIdu7cKRcXF3Xu3FnvvfeeXF1dJd2YTXTx4kU1bNhQMTExunbtmoYNG6Y333xTY8aM0eLFi+Xi4qLJkyerV69eBe73rTZv3qwRI0YoMTFRXl5e6tmzp6ZMmSI7OztTf0NCQmRnZ6d///vfCg0N1aZNm3To0CGNGDFCW7duVZkyZdSyZUu9//77Kl++vCTpiy++0KRJk5SSkiIXFxeFh4fr66+/1syZM7Vs2TJJMv1dvmnTJkVGRt7r11doJeqZUomJidq0aZNcXV1Nnxo1akiSaYnesWPH1K1bN1WpUkXu7u4KDAyUJKWlpZm1FRYWZvrZx8dHkhQaGmq27ezZs3esY8aMGVqxYoW++uorOTk5FVn/CiIxMVEpKSlyc3MzjYGXl5euXr1qtkzxTjIyMpSenq4nn3zStM3Ozk7169c3fU9JSdGVK1f07LPPmo3zJ598km/7BfndSObjLkl+fn6mcU5KSlJAQIApkJJkCsYK2//Q0NB7Jr9jxoxRRkaG6XPq1Kl8jwcAAAAAlByHDh3Sjh07zP72u3r1qurVq6dvv/1Whw4dUr9+/dSjR4/bXlS2bNkylSlTRvHx8Xr33Xf19ttvm1ba3FzF4+DgoPj4eH300UcaNWqU2flZWVlq1aqVypYtqz179ug///mP1q9fr0GDBpkdt3HjRp0+fVpbtmzRe++9pwkTJqh9+/YqW7as4uPj1b9/f73yyiv65Zdf7msMfv31V7Vt21YNGjRQYmKiFixYoMWLF2vKlCm39dfBwUHbt2/XRx99ZFrtFB4err1792rt2rX67bff1KVLF0lSenq6unXrpt69eyspKUlxcXHq1KmTjEajhg8fri5duqh169ZKT09Xenq6GjVqdF/134vVZkrdSWZmpjp06HDHaXl+fn6SpA4dOqhSpUpauHCh/P39lZeXp5CQkNsedm1vb2/6+Wayd+u2vLy8264za9YszZgxQ+vXr78tYLGEzMxM1atXT8uXL79t3/1O3bu1fUn69ttv9dhjj5ntc3R0zPe8e/1uJPMxlu4+zvldpyD9L1OmzD3bcnR0zLdPAAAAAICS5ZtvvpGrq6uuX7+ua9euycbGRvPnzzftf+yxxzR8+HDT99dee03r1q3T559/roYNG5q2P+gqnk8//VRXr17VJ598Yvr7c/78+aa/i29OfvHy8tLcuXNlY2Oj6tWr691339WVK1f05ptvSroxWWLGjBnatm2bXnzxxXv2+6Y2bdroP//5jz788EMFBARo/vz5MhgMqlGjhk6fPq1Ro0Zp/PjxpscYBQUF6d133zWdf6+VaJmZmbp+/bo6deqkSpUqSTKfyOPs7Kxr167lu9KrKFg1lHJwcFBubq7pe926dfXll18qMDDQNA3tr86fP6/k5GQtXLhQTZo0kSRt27atyOp59913NXXqVK1bt85sdlFB3NqX+z2mbt26WrlypSpUqCB3d/dC1eDh4SE/Pz/Fx8eradOmkqTr169r3759qlu3riSpZs2acnR0VFpampo1a1bgtu/1uymI4OBgnTp1Sunp6aYga9euXbdd5377DwAAAAB4uDVv3lwLFixQVlaW3n//fdnZ2Zk9xic3N1fTpk3T559/rl9//VXZ2dm6du2aXFxczNp50FU8SUlJql27ttmEiMaNGysvL0/JycmmUKpWrVpmz7f28fExe7SQra2typUrd9eVWrf2+6ab101KSlJERIRpss3NOjIzM/XLL7+oYsWKkqR69eqZtffX1U63On78uFq2bKlnnnlGoaGhatWqlVq2bKm///3vKlu2bL51FjWrLt8LDAxUfHy8UlNTde7cOQ0cOFB//PGHunXrpj179uj48eNat26devXqpdzcXJUtW1blypXTP//5T6WkpGjjxo0aNmxYkdTyzjvv6K233tKSJUsUGBioM2fO6MyZM6aZRQXpy5YtW/Trr7+avZHu1mNOnDihhIQEnTt3zuwh3Dd1795d5cuX13PPPaetW7fqxIkTiouL0+DBgws03W/IkCGaMWOGVq9erSNHjmjAgAG6ePGiab+bm5uGDx+u119/XcuWLdPx48e1f/9+zZs3z7Rm9E7u9bspiBYtWqhatWrq2bOnEhMTtXXrVo0dO7ZI+w8AAAAAeHiVKVNGVatWVe3atbVkyRLFx8dr8eLFpv0zZ85UTEyMRo0apU2bNikhIUGtWrXKd/WUVPhVPAV1p+vcz7Vv9vvm568rkgri1tVEN1c7JSQkmH2OHTumpk2bytbWVj/88IO+++471axZU/PmzVP16tV14sSJQl33QVk1lBo+fLhsbW1Vs2ZNeXt7Kzs7W9u3b1dubq5atmyp0NBQDR06VJ6enrKxsZGNjY1WrFihffv2KSQkRK+//rpmziyaBz4vWLBA2dnZ+vvf/y4/Pz/TZ9asWQU6/+2331ZqaqqeeOKJuy6z69y5s1q3bq3mzZvL29tbn3322W3HuLi4aMuWLapYsaI6deqk4OBgRUdH6+rVqwWaOfTGG2+oR48e6tmzpyIiIuTm5qbnn3/e7JjJkyfrrbfe0vTp0xUcHKzWrVvr22+/VeXKle/arr+/f76/m4KwsbHRV199pT///NP0lsWpU6cWaf8BAAAAAKWDjY2N3nzzTY0bN05//vmnJGn79u167rnn9I9//EO1a9dWlSpVdPTo0UK1+9dVPDfduoonODhYiYmJysrKMm3bvn27aZmepQQHB2vnzp0yGo1mdbi5uenxxx+/63l169bVTz/9pMDAQLOwq2rVqqYAy2AwqHHjxpo0aZIOHDggBwcHffXVV5IKttKrKFh1+V61atW0c+fO27avWrXqrue0aNFChw8fNtv2119OYGCg2XfpxpPob90WFRWlqKgo0/fU1NRCVH67p556SomJiflew9HRUV988cVt595am6+vb76zlvJjZ2enOXPmaM6cOXc9xmAwaMiQIRoyZMhdj/nr7KqbgoKC8v3dxMXF3bZt9erVZt+rVaumrVu3mm0rbP/ze2siAAAAAKD0eOGFFzRixAh98MEHGj58uIKCgvTFF19ox44dKlu2rN577z399ttvqlmzZoHb/OsqnpkzZ+rSpUt3XMUzYcIE9ezZUxMnTtTvv/+u1157TT169DAt3bOEAQMGaM6cOXrttdc0aNAgJScna8KECRo2bFi+E0QGDhyohQsXqlu3bho5cqS8vLyUkpKiFStWaNGiRdq7d682bNigli1bqkKFCoqPj9fvv/+u4OBgSTeylXXr1ik5OVnlypWTh4fHbTPAikKJevseAAAAAADATXZ2dho0aJDeffddZWVlady4capbt65atWqlyMhI+fr6qmPHjoVqs6CreNatW6c//vhDDRo00N///nc988wzZg9dt4THHntMa9as0e7du1W7dm31799f0dHRGjduXL7n3Wu1k7u7u7Zs2aK2bduqWrVqGjdunGbPnm162Hvfvn1VvXp11a9fX97e3tq+fXux9M9gvHWaCm6zdetWs6fw36qgz50qCnd6SNlN3333nekB8LjdpUuX5OHhoUNjguXmZGvtckqkiuMPWrsEAAAAAA/g6tWrOnHihCpXriwnJydrl4NSLL977ebf3xkZGfk+iseqy/ceFvXr11dCQoK1y5CkfOt47LHHLFcIAAAAAADAAyCUKgBnZ2dVrVrV2mVIUompAwAAAAAA4EHwTCkAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAQCljNBqtXQJKuaK4xwilAAAAAAAoJezt7SVJV65csXIlKO1u3mM377n7wdv3AAAAAAAoJWxtbeXp6amzZ89KklxcXGQwGKxcFUoTo9GoK1eu6OzZs/L09JStre19t0UoBQAAAABAKeLr6ytJpmAKKA6enp6me+1+EUoBAAAAAFCKGAwG+fn5qUKFCsrJybF2OSiF7O3tH2iG1E2EUnjkBIzeJXd3d2uXAQAAAADFytbWtkiCA6C48KBzAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWxzOl8MgwGo2SpEuXLlm5EgAAAAAASq+bf3ff/Dv8bgil8Mg4f/68JCkgIMDKlQAAAAAAUPpdvnxZHh4ed91PKIVHhpeXlyQpLS0t338ogNLi0qVLCggI0KlTp3jjJB4J3PN41HDP41HDPY9HzcN8zxuNRl2+fFn+/v75HkcohUeGjc2NR6h5eHg8dP9AAw/C3d2dex6PFO55PGq45/Go4Z7Ho+ZhvecLMhmEB50DAAAAAADA4gilAAAAAAAAYHGEUnhkODo6asKECXJ0dLR2KYBFcM/jUcM9j0cN9zweNdzzeNQ8Cve8wXiv9/MBAAAAAAAARYyZUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCqXKBx98oMDAQDk5OenJJ5/U7t278z3+P//5j2rUqCEnJyeFhoZqzZo1FqoUKBqFuecXLlyoJk2aqGzZsipbtqxatGhxz39GgJKmsP+ev2nFihUyGAzq2LFj8RYIFLHC3vMXL17UwIED5efnJ0dHR1WrVo3/f4OHSmHv+Tlz5qh69epydnZWQECAXn/9dV29etVC1QL3b8uWLerQoYP8/f1lMBi0evXqe54TFxenunXrytHRUVWrVlVsbGyx11ncCKVQaqxcuVLDhg3ThAkTtH//ftWuXVutWrXS2bNn73j8jh071K1bN0VHR+vAgQPq2LGjOnbsqEOHDlm4cuD+FPaej4uLU7du3bRp0ybt3LlTAQEBatmypX799VcLVw7cn8Le8zelpqZq+PDhatKkiYUqBYpGYe/57OxsPfvss0pNTdUXX3yh5ORkLVy4UI899piFKwfuT2Hv+U8//VSjR4/WhAkTlJSUpMWLF2vlypV68803LVw5UHhZWVmqXbu2PvjggwIdf+LECbVr107NmzdXQkKChg4dqj59+mjdunXFXGnx4u17KDWefPJJNWjQQPPnz5ck5eXlKSAgQK+99ppGjx592/Fdu3ZVVlaWvvnmG9O2p556SnXq1NFHH31ksbqB+1XYe/5Wubm5Klu2rObPn6+XX365uMsFHtj93PO5ublq2rSpevfura1bt+rixYsF+i+RQElQ2Hv+o48+0syZM3XkyBHZ29tbulzggRX2nh80aJCSkpK0YcMG07Y33nhD8fHx2rZtm8XqBh6UwWDQV199le+M7lGjRunbb781m0Tx4osv6uLFi1q7dq0FqiwezJRCqZCdna19+/apRYsWpm02NjZq0aKFdu7cecdzdu7caXa8JLVq1equxwMlyf3c87e6cuWKcnJy5OXlVVxlAkXmfu/5t99+WxUqVFB0dLQlygSKzP3c8//9738VERGhgQMHysfHRyEhIZo2bZpyc3MtVTZw3+7nnm/UqJH27dtnWuL3888/a82aNWrbtq1FagYsqbT+/Wpn7QKAonDu3Dnl5ubKx8fHbLuPj4+OHDlyx3POnDlzx+PPnDlTbHUCReV+7vlbjRo1Sv7+/rf9jxtQEt3PPb9t2zYtXrxYCQkJFqgQKFr3c8///PPP2rhxo7p37641a9YoJSVFAwYMUE5OjiZMmGCJsoH7dj/3/EsvvaRz587p6aefltFo1PXr19W/f3+W76FUutvfr5cuXdKff/4pZ2dnK1X2YJgpBQCPoBkzZmjFihX66quv5OTkZO1ygCJ3+fJl9ejRQwsXLlT58uWtXQ5gEXl5eapQoYL++c9/ql69euratavGjh3LYwlQasXFxWnatGn68MMPtX//fq1atUrffvutJk+ebO3SABQQM6VQKpQvX162trb67bffzLb/9ttv8vX1veM5vr6+hToeKEnu556/adasWZoxY4bWr1+vsLCw4iwTKDKFveePHz+u1NRUdejQwbQtLy9PkmRnZ6fk5GQ98cQTxVs08ADu59/zfn5+sre3l62trWlbcHCwzpw5o+zsbDk4OBRrzcCDuJ97/q233lKPHj3Up08fSVJoaKiysrLUr18/jR07VjY2zMFA6XG3v1/d3d0f2llSEjOlUEo4ODioXr16Zg85zMvL04YNGxQREXHHcyIiIsyOl6QffvjhrscDJcn93POS9O6772ry5Mlau3at6tevb4lSgSJR2Hu+Ro0aOnjwoBISEkyf//u//zO9sSYgIMCS5QOFdj//nm/cuLFSUlJMAawkHT16VH5+fgRSKPHu556/cuXKbcHTzVCW93mhtCm1f78agVJixYoVRkdHR2NsbKzx8OHDxn79+hk9PT2NZ86cMRqNRmOPHj2Mo0ePNh2/fft2o52dnXHWrFnGpKQk44QJE4z29vbGgwcPWqsLQKEU9p6fMWOG0cHBwfjFF18Y09PTTZ/Lly9bqwtAoRT2nr9Vz549jc8995yFqgUeXGHv+bS0NKObm5tx0KBBxuTkZOM333xjrFChgnHKlCnW6gJQKIW95ydMmGB0c3MzfvbZZ8aff/7Z+P333xufeOIJY5cuXazVBaDALl++bDxw4IDxwIEDRknG9957z3jgwAHjyZMnjUaj0Th69Ghjjx49TMf//PPPRhcXF+OIESOMSUlJxg8++MBoa2trXLt2rbW6UCRYvodSo2vXrvr99981fvx4nTlzRnXq1NHatWtND4NLS0sz+y8pjRo10qeffqpx48bpzTffVFBQkFavXq2QkBBrdQEolMLe8wsWLFB2drb+/ve/m7UzYcIETZw40ZKlA/elsPc88LAr7D0fEBCgdevW6fXXX1dYWJgee+wxDRkyRKNGjbJWF4BCKew9P27cOBkMBo0bN06//vqrvL291aFDB02dOtVaXQAKbO/evWrevLnp+7BhwyRJPXv2VGxsrNLT05WWlmbaX7lyZX377bd6/fXXFRMTo8cff1yLFi1Sq1atLF57UTIYjcxrBAAAAAAAgGXxnxMBAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAJAkRUVFqWPHjtYu445SU1NlMBiUkJBg7VIAAEARIZQCAABAiZadnW3tEgAAQDEglAIAAMBtIiMj9dprr2no0KEqW7asfHx8tHDhQmVlZalXr15yc3NT1apV9d1335nOiYuLk8Fg0LfffquwsDA5OTnpqaee0qFDh8za/vLLL1WrVi05OjoqMDBQs2fPNtsfGBioyZMn6+WXX5a7u7v69eunypUrS5LCw8NlMBgUGRkpSdqzZ4+effZZlS9fXh4eHmrWrJn2799v1p7BYNCiRYv0/PPPy8XFRUFBQfrvf/9rdsxPP/2k9u3by93dXW5ubmrSpImOHz9u2r9o0SIFBwfLyclJNWrU0IcffvjAYwwAwKOOUAoAAAB3tGzZMpUvX167d+/Wa6+9pldffVUvvPCCGjVqpP3796tly5bq0aOHrly5YnbeiBEjNHv2bO3Zs0fe3t7q0KGDcnJyJEn79u1Tly5d9OKLL+rgwYOaOHGi3nrrLcXGxpq1MWvWLNWuXVsHDhzQW2+9pd27d0uS1q9fr/T0dK1atUqSdPnyZfXs2VPbtm3Trl27FBQUpLZt2+ry5ctm7U2aNEldunTRjz/+qLZt26p79+76448/JEm//vqrmjZtKkdHR23cuFH79u1T7969df36dUnS8uXLNX78eE2dOlVJSUmaNm2a3nrrLS1btqzIxxwAgEeJwWg0Gq1dBAAAAKwvKipKFy9e1OrVqxUZGanc3Fxt3bpVkpSbmysPDw916tRJn3zyiSTpzJkz8vPz086dO/XUU08pLi5OzZs314oVK9S1a1dJ0h9//KHHH39csbGx6tKli7p3767ff/9d33//vem6I0eO1LfffquffvpJ0o2ZUuHh4frqq69Mx6Smpqpy5co6cOCA6tSpc9c+5OXlydPTU59++qnat28v6cZMqXHjxmny5MmSpKysLLm6uuq7775T69at9eabb2rFihVKTk6Wvb39bW1WrVpVkydPVrdu3UzbpkyZojVr1mjHjh33M9QAAEDMlAIAAMBdhIWFmX62tbVVuXLlFBoaatrm4+MjSTp79qzZeREREaafvby8VL16dSUlJUmSkpKS1LhxY7PjGzdurGPHjik3N9e0rX79+gWq8bffflPfvn0VFBQkDw8Pubu7KzMzU2lpaXftS5kyZeTu7m6qOyEhQU2aNLljIJWVlaXjx48rOjparq6ups+UKVPMlvcBAIDCs7N2AQAAACiZbg1pDAaD2TaDwSDpxuykolamTJkCHdezZ0+dP39eMTExqlSpkhwdHRUREXHbw9Hv1JebdTs7O9+1/czMTEnSwoUL9eSTT5rts7W1LVCNAADgzgilAAAAUKR27dqlihUrSpIuXLigo0ePKjg4WJIUHBys7du3mx2/fft2VatWLd+Qx8HBQZLMZlPdPPfDDz9U27ZtJUmnTp3SuXPnClVvWFiYli1bppycnNvCKx8fH/n7++vnn39W9+7dC9UuAADIH6EUAAAAitTbb7+tcuXKycfHR2PHjlX58uXVsWNHSdIbb7yhBg0aaPLkyeratat27typ+fPn3/NtdhUqVJCzs7PWrl2rxx9/XE5OTvLw8FBQUJD+9a9/qX79+rp06ZJGjBiR78ynOxk0aJDmzZunF198UWPGjJGHh4d27dqlhg0bqnr16po0aZIGDx4sDw8PtW7dWteuXdPevXt14cIFDRs27H6HCQCARx7PlAIAAECRmjFjhoYMGaJ69erpzJkz+t///mea6VS3bl19/vnnWrFihUJCQjR+/Hi9/fbbioqKyrdNOzs7zZ07Vx9//LH8/f313HPPSZIWL16sCxcuqG7duurRo4cGDx6sChUqFKrecuXKaePGjcrMzFSzZs1Ur149LVy40DRrqk+fPlq0aJGWLl2q0NBQNWvWTLGxsapcuXLhBwcAAJjw9j0AAAAUiZtv37tw4YI8PT2tXQ4AACjhmCkFAAAAAAAAiyOUAgAAAAAAgMWxfA8AAAAAAAAWx0wpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFjc/wc1frYXersfBQAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["#!pip install catboost"],"metadata":{"id":"uFmcyzSw4v3G","executionInfo":{"status":"ok","timestamp":1744090661302,"user_tz":-330,"elapsed":50,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}}},"execution_count":25,"outputs":[]},{"cell_type":"code","source":["#!pip install -U numpy\n","#!pip install -U catboost\n"],"metadata":{"id":"_8bEoCCr5N4u","executionInfo":{"status":"ok","timestamp":1744090661314,"user_tz":-330,"elapsed":4,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}}},"execution_count":26,"outputs":[]},{"cell_type":"code","source":["# Train and collect feature importances from CatBoost and XGBoost\n","from catboost import CatBoostClassifier\n","import xgboost as xgb\n","\n","# Train CatBoost\n","catboost_model = CatBoostClassifier(verbose=0, random_state=42)\n","catboost_model.fit(X_train_final, y_train_final)\n","catboost_importance = catboost_model.get_feature_importance()\n","\n","# Train XGBoost\n","xgb_model = xgb.XGBClassifier(use_label_encoder=False, eval_metric='mlogloss', random_state=42)\n","xgb_model.fit(X_train_final, y_train_final)\n","xgb_importance = xgb_model.feature_importances_\n","\n","# Normalize all importances for comparison\n","def normalize(arr):\n"," return arr / np.max(arr)\n","\n","importance_df = pd.DataFrame({\n"," 'Feature': feature_names,\n"," 'LightGBM': normalize(lgbm_model.feature_importances_),\n"," 'Random Forest': normalize(rf_model_final.feature_importances_),\n"," 'CatBoost': normalize(catboost_importance),\n"," 'XGBoost': normalize(xgb_importance)\n","})\n","\n","# Melt and select top 5 features by average importance\n","importance_df['avg_importance'] = importance_df.drop('Feature', axis=1).mean(axis=1)\n","top5_features = importance_df.sort_values(by='avg_importance', ascending=False).head(5)\n","\n","# Melt for seaborn plot\n","importance_melted_top5 = top5_features.drop(columns=['avg_importance']).melt(\n"," id_vars='Feature', var_name='Model', value_name='Importance'\n",")\n","\n","# Plot\n","plt.figure(figsize=(12, 6))\n","sns.barplot(data=importance_melted_top5, x='Importance', y='Feature', hue='Model')\n","plt.title(\"🔥 Top 5 Feature Importance Comparison: LightGBM vs RF vs XGBoost vs CatBoost\")\n","plt.tight_layout()\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":716},"id":"T1prZ23HxyEj","executionInfo":{"status":"ok","timestamp":1744090673632,"user_tz":-330,"elapsed":12314,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}},"outputId":"26b7276a-e728-48b5-e044-5a6d95f9e07c"},"execution_count":27,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.11/dist-packages/xgboost/core.py:158: UserWarning: [05:37:52] WARNING: /workspace/src/learner.cc:740: \n","Parameters: { \"use_label_encoder\" } are not used.\n","\n"," warnings.warn(smsg, UserWarning)\n",":40: UserWarning: Glyph 128293 (\\N{FIRE}) missing from font(s) DejaVu Sans.\n"," plt.tight_layout()\n","/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128293 (\\N{FIRE}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAj1BJREFUeJzs3Xd8jff///HnyY5MIUYIQYxo7NESJLVnqzYd9h5VRSkfq0oVrU2rVls1alSHUVS0VG1qRIwKSqwiEREhuX5/+OV8HUmIiBPjcb/dzu3mXPN1XefKlZyn9/t9mQzDMAQAAAAAAABYkU1mFwAAAAAAAIAXD6EUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAwAtq/vz5MplMioiIyOxSMlRERIRMJpPmz5+f7nUnTJiQ8YUBAAALhFIA8JQJCQmRyWR66GvEiBGZVkvdunUfum7SF7uUXq+88soTqffcuXMaMWKE9u3b90S2/ziehy+6q1evtsp1Z20rV65UvXr1lD17djk4OMjHx0ctWrTQb7/9ltmlIQVJQdquXbsyu5SH/kzcunVLU6dOVZUqVZQ1a1bz9fXaa69p0aJFSkhIMC+b0j3T3d1dpUuX1rRp0yyWlf7v/ly4cOEU971+/XrzdpYtW5Yhx5teoaGhFsdla2urHDlyqFmzZgoLC0u2fLt27VL9/bF27dpMOIK7ks7pyJEjk807efKksmTJombNmiWb98cff6hFixbKkyePHBwc5OHhoZdfflmjRo3ShQsXLJa9//eug4ODChQooC5duujMmTNP7NjS6s8//9SIESN07dq1zC7FQkbexx/0t8T916adnZ18fX3VqlUrHT58OAOO5PEcPnxYI0aMeO7+owHPN7vMLgAAnkeHDh1SmTJl5ODgkOL8+Ph4hYWFqVChQsnmDRkyRJ06dTK/37lzp6ZMmaIPP/xQAQEB5uklS5bM+MJTkDdvXo0dO9Zimo+PT5rXb926terXr28xzdvbO0Nqu9+5c+c0cuRI+fn5qXTp0k9kHy+y1atXa/r06c9NMGUYhjp06KD58+erTJky6tevn3LlyqXIyEitXLlSNWrU0NatW1W5cuXMLvWJefvtt9WqVSs5OjpmdikZKn/+/Lp586bs7e2f6H4e9DNx6dIl1atXT7t371adOnU0dOhQeXl56fz589qwYYPatGmj48eP63//+5/FevfeM6OiorR69Wr17t1bp06d0vjx4y2WdXJy0vHjx7Vjxw5VrFjRYt7ChQvl5OSkuLi4jD3ox9CnTx9VqFBBt2/f1t9//61Zs2YpNDRUBw8eVK5cuSyWdXR01FdffZVsG6VKlbJWucnUqlVLbdq00dixY9W6dWsVKVLEPK9Hjx6yt7fXlClTLNYZNmyYPvroIxUsWFDt2rVTwYIFFRcXp927d2vixIlasGCBTpw4YbHOvb934+PjdfjwYc2aNUvr1q1TWFiYsmTJ8uQPNhV//vmnRo4cqXbt2snT0zPT6kjyJO7jD/tb4t5r886dOzpx4oRmzZqltWvX6vDhw4/0N1JGO3z4sEaOHKmQkBD5+fllWh3AoyCUAoAnwDAMVaxYUVu2bElx/iuvvCLDMFKcV6tWLYv3Tk5OmjJlimrVqqWQkJCMLvWhPDw89NZbb6V7/bJlyz7W+k+DuLg4OTg4yMbmxWxgfOPGDbm4uGR2GRlu4sSJmj9/vvr27avPPvtMJpPJPG/IkCH65ptvZGf3fP6plPSZ2traytbWNrPLyXAmk0lOTk6ZWsPbb7+tvXv3avny5WrSpInFvMGDB2vXrl0KDw9Ptt7998wePXro5Zdf1nfffZcslCpUqJDu3LmjRYsWWYRScXFxWrlypRo0aKDly5dn8JGlX9WqVS1aEhUtWlTdu3fX119/rYEDB1osa2dn91T+7vj888+1Zs0adevWzdwKZ/HixVq7dq2mTJliEUgsWbJEH330kVq0aKFvvvkm2X9Uff755/r888+T7SOl37sFChRQr169tHXr1mR/J7zIMuM+ntK1+corr6hhw4b65Zdf1Llz5wzdH/C8ezH/ugaA58CMGTP00ksvydHRUT4+PurZs2ey5vQhISEKDAzU7t27VblyZTk7O6tAgQKaNWvWI+3rzp07iomJycDq/8+RI0fUrFkzeXl5ycnJSeXLl9ePP/5oscyVK1fUv39/lShRQq6urnJ3d1e9evW0f/9+8zKhoaGqUKGCJKl9+/bmpvVJY8r4+fmpXbt2yfYfEhJiEfYldTNZvHixhg4dqjx58ihLliyKjo6WJG3fvl1169aVh4eHsmTJouDgYG3dujVdx57UDWnLli3q06ePvL295enpqa5duyo+Pl7Xrl3TO++8o6xZsypr1qwaOHCgRZh5b5fAzz//XPnz55ezs7OCg4N18ODBZPv77bffVLVqVbm4uMjT01Ovv/56sq4zI0aMkMlk0uHDh9WmTRtlzZpVVapUUbt27TR9+nRJsui6kGTChAmqXLmysmXLJmdnZ5UrVy7FLkMmk0m9evXSDz/8oMDAQDk6Ouqll15KsUvO2bNn1bFjR/n4+MjR0VEFChRQ9+7dFR8fb17m2rVr6tu3r3x9feXo6Ch/f3+NGzdOiYmJDzz3N2/e1NixY1WsWDFNmDDB4liSvP322xZf9P/55x81b95cXl5eypIli1555RX98ssvFuskXT9Lly7VyJEjlSdPHrm5ualZs2aKiorSrVu31LdvX+XIkUOurq5q3769bt26leI5WrhwoYoWLSonJyeVK1dOv//+u8Vyp06dUo8ePVS0aFE5OzsrW7Zsat68ebJuG0nX2ebNm9WjRw/lyJFDefPmtZh37zq7du1SnTp1lD17dvM9o0OHDhbbvHHjht5//33zeS9atKgmTJiQLGx/lM/7yJEjOn36dLLp6ZHamFLff/+9ihcvLicnJwUGBmrlypVq165dqi0KvvzySxUqVEiOjo6qUKGCdu7caZ73oJ+Jbdu2ad26derSpUuyQCpJ+fLl9eabbz70WEwmk3LmzJnqF+vWrVtryZIlFtf8Tz/9pNjYWLVo0eKh279w4YLs7OxS7JIWHh4uk8mkadOmSZJu376tkSNHqnDhwnJyclK2bNlUpUoVrV+//qH7SUnVqlUlKVlLofQKDAzUq6++mmx6YmKi8uTJYxGILV68WOXKlZObm5vc3d1VokQJTZ48+aH7yJEjh8aNG6dNmzZpwYIFunbtmt577z1VqFBBPXv2tFh22LBhyp49u+bMmZNiy2kPD480tzxNakl2/3Wwd+9e1atXT+7u7nJ1dVWNGjX0119/JVs/LfcvSZo6dapeeuklZcmSRVmzZlX58uX13XffSbr7+2HAgAGS7oZkSdd8al3FevXqJVdXV8XGxiab17p1a+XKlcvcLTUt9537Pep9PCP+lkhNap9PWs/7xYsX1bFjR+XMmVNOTk4qVaqUFixYkGy5B1238+fPV/PmzSVJr776qrn20NDQB9YOZLbn87//AOA5N2LECI0cOVI1a9ZU9+7dFR4erpkzZ2rnzp3aunWrRZeVq1evqn79+mrRooVat26tpUuXqnv37nJwcHjoH3ySdPToUbm4uCg+Pl45c+ZU586dNWzYsDR3i4mNjdXly5ctpnl4eMje3l6HDh1SUFCQ8uTJo0GDBsnFxUVLly5V48aNtXz5cr3xxhuS7v5R98MPP6h58+YqUKCALly4oC+++ELBwcHmpvIBAQEaNWqUhg0bpi5dupi/7KS369VHH30kBwcH9e/fX7du3ZKDg4N+++031atXT+XKldPw4cNlY2OjefPmqXr16vrjjz+SdZ9Jq969eytXrlwaOXKk/vrrL3355Zfy9PTUn3/+qXz58mnMmDFavXq1xo8fr8DAQL3zzjsW63/99de6fv26evbsqbi4OE2ePFnVq1fXgQMHlDNnTknShg0bVK9ePRUsWFAjRozQzZs3NXXqVAUFBWnPnj3JvpQ3b95chQsX1pgxY2QYhsqUKaNz585p/fr1+uabb5Idw+TJk/Xaa6/pzTffVHx8vBYvXqzmzZvr559/VoMGDSyW3bJli1asWKEePXrIzc1NU6ZMUdOmTXX69Glly5ZN0t3uExUrVtS1a9fUpUsXFStWTGfPntWyZcsUGxsrBwcHxcbGKjg4WGfPnlXXrl2VL18+/fnnnxo8eLAiIyM1adKkVM/5li1bdOXKFfXt2zdNLYUuXLigypUrKzY2Vn369FG2bNm0YMECvfbaa1q2bJn5Wk0yduxYOTs7a9CgQTp+/LimTp0qe3t72djY6OrVqxoxYoT++usvzZ8/XwUKFNCwYcMs1t+8ebOWLFmiPn36yNHRUTNmzFDdunW1Y8cOBQYGSrrbtffPP/9Uq1atlDdvXkVERGjmzJkKCQnR4cOHk3Xx6dGjh7y9vTVs2DDduHEjxeO8ePGiateuLW9vbw0aNEienp6KiIjQihUrzMsYhqHXXntNmzZtUseOHVW6dGmtW7dOAwYM0NmzZ5O1/EjL5y1JAQEBCg4OfmJfoH755Re1bNlSJUqU0NixY3X16lV17NhRefLkSXH57777TtevX1fXrl1lMpn06aefqkmTJvrnn39kb2+vrl27pvoz8dNPP0lSulr63HvPjI6O1po1a7R27VoNHjw4xeXbtGmjESNGKDQ0VNWrVzfXXqNGDeXIkeOh+8uZM6eCg4O1dOlSDR8+3GLekiVLZGtra/6iO2LECI0dO1adOnVSxYoVFR0drV27dmnPnj3par2TFGZkzZo1xfn3/+6wt7eXh4dHqttr2bKlRowYofPnz1t0B9yyZYvOnTunVq1aSbo7NlTr1q1Vo0YNjRs3TpIUFhamrVu36t13331o3Z06ddKCBQvUv39/rVu3TpcuXdLq1astWtMePXpUR48eVadOneTq6vrQbd4rISHBfOy3b99WWFiYhg8fLn9/fwUFBZmXO3TokKpWrSp3d3cNHDhQ9vb2+uKLLxQSEqLNmzfr5ZdflpT2+9fs2bPVp08fNWvWTO+++67i4uL0999/a/v27WrTpo2aNGmio0ePatGiRfr888+VPXt2Sal3yW/ZsqWmT5+uX375xXwNSXev8Z9++knt2rWTra1tmu47KXnU+3hG/i2R9PkkJCTon3/+0QcffKBs2bKpYcOG5mXSet5v3rypkJAQHT9+XL169VKBAgX0/fffq127drp27Zr5mnzYdVutWjX16dMn2ZAP9w79ADyVDABAhjtw4IARFBSU6vyXX37ZOHbsWJq29f333xuSjE2bNhmGYRgXL140HBwcjNq1axsJCQnm5aZNm2ZIMubOnWueFhwcbEgyJk6caJ5269Yto3Tp0kaOHDmM+Pj4B+67Q4cOxogRI4zly5cbX3/9tfHaa68ZkowWLVo8tO6TJ08aklJ8JR1LjRo1jBIlShhxcXHm9RITE43KlSsbhQsXNk+Li4uzONak7Ts6OhqjRo0yT9u5c6chyZg3b16yevLnz2+0bds22fTg4GAjODjY/H7Tpk2GJKNgwYJGbGysRV2FCxc26tSpYyQmJpqnx8bGGgUKFDBq1aqVpvMxfvx487R58+YZkpJts1KlSobJZDK6detmnnbnzh0jb968FrUmbdPZ2dn4999/zdO3b99uSDLee+8987Skz/y///4zT9u/f79hY2NjvPPOO+Zpw4cPNyQZrVu3TnYMPXv2NFL70+Hec2UYhhEfH28EBgYa1atXt5guyXBwcDCOHz9uUYckY+rUqeZp77zzjmFjY2Ps3Lkz2b6SztVHH31kuLi4GEePHrWYP2jQIMPW1tY4ffp0irUahmFMnjzZkGSsXLky1WXu1bdvX0OS8ccff5inXb9+3ShQoIDh5+dnvj6Trp/AwECLn6/WrVsbJpPJqFevnsV2K1WqZOTPn99iWtLPya5du8zTTp06ZTg5ORlvvPGGedr959wwDGPbtm2GJOPrr782T0u6zqpUqWLcuXPHYvmkeSdPnjQMwzBWrlxpSErxvCf54YcfDEnG6NGjLaY3a9bMMJlMFp9tWj/vpGXvvb5Tk1Tzg2pM+tm4915QokQJI2/evMb169fN00JDQw1JFp9B0rrZsmUzrly5Yp6+atUqQ5Lx008/mael9jPxxhtvGJKMa9euWUy/efOmcenSJfPr6tWryfab0qt79+4W9wjDuHvveumllwzDMIzy5csbHTt2NAzDMK5evWo4ODgYCxYsMF+P33//farnyjAM44svvjAkGQcOHLCYXrx4cYuf4VKlShkNGjR44LZSklTH3LlzjUuXLhnnzp0z1q5da/j7+xsmk8nYsWOHxfJt27ZN8Tw87PoIDw9P8drq0aOH4erqav6Zeffddw13d/dkPw+P4uDBg4a9vb0hyejbt2+y+UnXy6RJkyymJyYmWlwDly5dMm7fvm2en/R7+/5XQECA8c8//1hsq3HjxoaDg4Nx4sQJ87Rz584Zbm5uRrVq1czT0nr/ev31183XVGrGjx9vcc94kMTERCNPnjxG06ZNLaYvXbrUkGT8/vvvhmGk7b6Tkke9j2fE3xKpXZt58uQxdu/ebbFsWs/7pEmTDEnGt99+a14uPj7eqFSpkuHq6mpER0cbhpG26/b+vxmBZwHd9wDgGbNhwwbFx8erb9++Fv8r27lzZ7m7uydrFm5nZ6euXbua3zs4OKhr1666ePGidu/e/cB9zZkzR8OHD1eTJk309ttva9WqVercubOWLl2aYveAlHTp0kXr16+3eJUqVUpXrlzRb7/9phYtWuj69eu6fPmyLl++rP/++0916tTRsWPHdPbsWUl3BxVNOtaEhAT9999/cnV1VdGiRbVnz5401fGo2rZtK2dnZ/P7ffv26dixY2rTpo3+++8/c703btxQjRo19Pvvvz+0y1hqOnbsaNHt4OWXX5ZhGOrYsaN5mq2trcqXL69//vkn2fqNGze2aO1RsWJFvfzyy1q9erUkKTIyUvv27VO7du3k5eVlXq5kyZKqVauWebl7devW7ZGO4d5zdfXqVUVFRalq1aopfj41a9a0GOS/ZMmScnd3Nx9bYmKifvjhBzVq1Ejly5dPtn7Sufr+++9VtWpVZc2a1fx5XL58WTVr1lRCQkKy7m73SuqO6ebmlqbjW716tSpWrKgqVaqYp7m6uqpLly6KiIhI9tSld955x6I1YdJnen/rxJdffllnzpzRnTt3LKZXqlRJ5cqVM7/Ply+fXn/9da1bt87c3eXec3779m39999/8vf3l6enZ4rnvXPnzg9tTZA0cPHPP/+s27dvp7jM6tWrZWtrqz59+lhMf//992UYhtasWWMx/WGfdxLDMJ5YK6lz587pwIEDeueddyxarQQHB6tEiRIprtOyZUuLFjxJLSZS+hm8X9L1dX8LmVmzZsnb29v8uvd6SnLvPXP58uXq2bOnvvjiC/Xr1y/V/bVp00YrVqxQfHy8li1bJltb22St9x6kSZMmsrOz05IlS8zTDh48qMOHD6tly5bmaZ6enjp06JCOHTuW5m3fq0OHDvL29paPj4/q1q2rqKgoffPNN+buUvdycnJK9rtj4sSJD9x+kSJFVLp0aYvjSEhI0LJly9SoUSPzz4ynp6du3LiR7m6HkuTu7m7ukle7du1k81O7BqKioiyuAW9v72RPefPz8zMf85o1azRp0iRFRUWpXr16unTpkvm4fv31VzVu3FgFCxY0r5s7d261adNGW7ZsMdeQ1vuXp6en/v33X4tuqo/DZDKpefPmWr16tcUQAEuWLFGePHnM9aTlvpOSR72PZ9TfEvdem+vWrdMXX3whV1dX1a9fX0ePHjUvl9bzvnr1auXKlUutW7c2L2dvb68+ffooJiZGmzdvlpQx1y3wNCKUAoBnzKlTpyTdHSD2Xg4ODipYsKB5fhIfH59kg1QnPTEoPY8Mfv/99yXdDcfSonDhwqpZs6bFK2vWrDp+/LgMw9D//ve/ZH+gJ3UhuXjxoqS7IcXnn3+uwoULy9HRUdmzZ5e3t7f+/vtvRUVFPfIxpEWBAgUs3id9CWvbtm2yer/66ivdunUr3bXky5fP4n1S9xRfX99k069evZps/ZQeCV+kSBHz55vaNSPdbdafFK7d6/7jf5iff/5Zr7zyipycnOTl5SVvb2/NnDkzxXNy//FKd7vvJB3bpUuXFB0dbe6mlppjx45p7dq1yT6PmjVrSvq/6ycl7u7ukqTr16+n6fhOnTqV6vlLmn+vR/lMExMTk52n1D7T2NhY85fSmzdvatiwYeZxnZJ+Lq5du5bieU/LZxocHKymTZtq5MiRyp49u15//XXNmzfPYtyrU6dOycfHJ9kXwbSeC8ny87aGpJr8/f2TzUtpmpS87qSAKi11J52b+8fia9q0qfnLbGpPUL33ntmkSRNNmzZNPXr00KRJk3TgwIEU12nVqpWioqK0Zs0aLVy4UA0bNkzzF3VJyp49u2rUqKGlS5eapy1ZskR2dnYWY2KNGjVK165dU5EiRVSiRAkNGDBAf//9d5r3M2zYMK1fv14rV67UO++8o6ioqFQfIGFra5vsd8e9QW1qWrZsqa1bt5r/UyM0NFQXL160CNd69OihIkWKqF69esqbN686dOiQ4jhnD9KrVy/Z2Ngof/78ev/995OFKaldA66uruZrIGl8pvu5uLiYj7lu3bp699139eOPPyo8PFyffPKJpLv3ydjY2FTvS4mJiTpz5oyktN+/PvjgA7m6uqpixYoqXLiwevbsme4xE5O0bNlSN2/eNI8VGRMTo9WrV6t58+bm/2BIy30nJY96H8+ovyXuvTZr166tLl26aMOGDYqKirLoZpvW837q1CkVLlw42c/C/ctlxHULPI0IpQAAjyTpS/WVK1ceaztJrYr69++f7H/Dk15JXxbHjBmjfv36qVq1avr222+1bt06rV+/Xi+99FKaWyelNACqJHOrk/vd2wrl3nrHjx+far2POm5IktRar6Q03UjlqY0Z7f7jf5A//vhDr732mpycnDRjxgytXr1a69evV5s2bVKsN7XjfdRjS0xMVK1atVL9PJo2bZrqusWKFZOkVL/kP65H+Uyl9H2uvXv31scff6wWLVpo6dKl+vXXX7V+/Xply5YtxZ+LtHymJpNJy5Yt07Zt29SrVy+dPXtWHTp0ULly5dL9sIOMPGZrepy6k66v+x844OvraxHOp1WNGjUkKdXWf7lz51ZISIgmTpyo33//XW3atEnztpO0atVKR48eNbfaWbp0qWrUqGEeN0iSqlWrphMnTmju3LkKDAzUV199pbJly+qrr75K0z5KlCihmjVrqnHjxuaxdTp37mwOTzJCy5YtZRiGvv/+e/NxeHh4qG7duuZlcuTIoX379unHH380j49Wr149tW3bNk37WLFihX788Ud99NFHmjFjhsLCwpI9GTG1a8DOzs58DRQvXjzNx1WuXDl5eHg8sAXo4woICFB4eLgWL16sKlWqaPny5apSpUqyscYexSuvvCI/Pz9z4PnTTz/p5s2bFiFheu87j3ofz4i/JVKTN29eFS1a9Il+Po973QJPK0IpAHjG5M+fX5KSPUo8Pj5eJ0+eNM9Pcu7cuWStYJKal6f2xKkHSeq6ktrApmmV1N3A3t4+2f+GJ72S/qd52bJlevXVVzVnzhy1atVKtWvXVs2aNZM9bTC14Em628rh/uWl5K06UpPU/cjd3T3VetM6+HtGS6krzdGjR82fb2rXjHT3iWfZs2dP1pouJamd3+XLl8vJyUnr1q1Thw4dVK9ePXNrpfTw9vaWu7t7ik8QvFehQoUUExOT6ueRUgudJFWqVFHWrFm1aNGiVIPJe+XPnz/V85c0PyOl9plmyZLF/LO3bNkytW3bVhMnTlSzZs1Uq1YtValSJcXr/FG98sor+vjjj7Vr1y4tXLhQhw4d0uLFiyXdPdZz584la53wpM5FRkiq6fjx48nmpTQtrVL7mUga7HjhwoXp3va9krp3PugLeps2bfTHH3/I3d1d9evXf+R9NG7cWA4ODlqyZIn27duno0ePmgcGv5eXl5fat2+vRYsW6cyZMypZsmSanyB3v08++URxcXH6+OOP07V+SgoUKKCKFStqyZIlunPnjlasWKHGjRvL0dHRYjkHBwc1atRIM2bM0IkTJ9S1a1d9/fXXD70erl+/rj59+qhs2bLq1auX6tevr6ZNm2r06NE6efKkebmiRYuqcOHC+uGHH1J9sMCjSkhIMF8D3t7eypIlS6r3JRsbG/N/Ij3K/cvFxUUtW7bUvHnzdPr0aTVo0EAff/yx4uLiJD3492xqWrRoobVr1yo6OlpLliyRn5+fXnnllWTLPei+k5JHvY9nxN8SD3L/k4rTet7z58+vY8eOJQvGUvp8Hnbdprd2IDMRSgHAM6ZmzZpycHDQlClTLP7Hfs6cOYqKikr2pLM7d+7oiy++ML+Pj4/XF198IW9v7wd2hYiOjk7WdN4wDI0ePVqSVKdOncc6jhw5cigkJERffPGFIiMjk81P6qIk3W2xcH/rhO+//97cPSNJUrCS0pfyQoUK6a+//lJ8fLx52s8//5zm/6EvV66cChUqpAkTJqT4xfDeeq3thx9+sDgXO3bs0Pbt21WvXj1Jd1tRlC5d2vz48iQHDx7Ur7/+muYvsKmdX1tbW5lMJosvBREREfrhhx/SdTw2NjZq3LixfvrpJ+3atSvZ/KRroUWLFtq2bZvWrVuXbJlr164lG6fpXlmyZNEHH3ygsLAwffDBBym2fvn222+1Y8cOSVL9+vW1Y8cObdu2zTz/xo0b+vLLL+Xn5/dILR7SYtu2bRZjnJw5c0arVq1S7dq1zS14Uvq5mDp1apq+nKXm6tWrybZZunRpSTLfD+rXr6+EhARNmzbNYrnPP/9cJpPJfN09qiNHjuj06dPpWvdhfHx8FBgYqK+//tri53fz5s2P1VoutZ+JoKAg1apVS19++aVWrVqV4rqP0lIs6Wl+pUqVSnWZZs2aafjw4ZoxY4Z5rKNH4enpqTp16mjp0qVavHixHBwc1LhxY4tl/vvvP4v3rq6u8vf3f2g3q9QUKlRITZs21fz583X+/Pl0bSMlLVu21F9//aW5c+fq8uXLFq1ypOTHYWNjY+5O+bBjGTp0qCIjI/XFF1+YfxYnT54sW1tb9erVy2LZESNG6PLly+rcuXOKYyU9yjWwadMmxcTEmK8BW1tb1a5dW6tWrbLoin/hwgV99913qlKlirl7W1rvX/efFwcHBxUvXlyGYZjrf9Dv2dS0bNlSt27d0oIFC7R27Vq1aNHCYn5a7jspedT7eEb8LZGao0ePKjw83OJnNK3nvX79+jp//rzFWGh37tzR1KlT5erqquDgYElpu27TUzuQ2ewyuwAAwKPx9vbW4MGDNXLkSNWtW1evvfaawsPDNWPGDFWoUCHZI8h9fHw0btw4RUREqEiRIub/Bf/yyy8f2LJnz549at26tVq3bi1/f3/dvHlTK1eu1NatW9WlSxeVLVv2sY9l+vTpqlKlikqUKKHOnTurYMGCunDhgrZt26Z///1X+/fvl3S31cGoUaPUvn17Va5cWQcOHNDChQstBneV7n7B8fT01KxZs+Tm5iYXFxe9/PLLKlCggDp16qRly5apbt26atGihU6cOKFvv/3WYgDmB7GxsdFXX32levXq6aWXXlL79u2VJ08enT17Vps2bZK7u7v5i6O1+fv7q0qVKurevbtu3bqlSZMmKVu2bBo4cKB5mfHjx6tevXqqVKmSOnbsqJs3b2rq1Kny8PBIcyuHpBCzT58+qlOnjmxtbdWqVSs1aNBAn332merWras2bdro4sWLmj59uvz9/R9pvJl7jRkzRr/++quCg4PVpUsXBQQEKDIyUt9//722bNkiT09PDRgwQD/++KMaNmyodu3aqVy5crpx44YOHDigZcuWKSIiwqLr0f0GDBigQ4cOaeLEidq0aZOaNWumXLly6fz58/rhhx+0Y8cO/fnnn5KkQYMGadGiRapXr5769OkjLy8vLViwQCdPntTy5ctTHRcnvQIDA1WnTh316dNHjo6OmjFjhiRp5MiR5mUaNmyob775Rh4eHipevLi2bdumDRs2KFu2bOne74IFCzRjxgy98cYbKlSokK5fv67Zs2dbtL5p1KiRXn31VQ0ZMkQREREqVaqUfv31V61atUp9+/ZN88/U/QICAhQcHJzmwc7nzp2b4ngqSY9Pv9+YMWP0+uuvKygoSO3bt9fVq1c1bdo0BQYGprtrYmo/E9LdL8N169ZV48aNza0Hs2bNqvPnz2vDhg36/fffUwzw9uzZo2+//VbS3VY5Gzdu1PLly1W5cuUUB9RO8ig/y6lp2bKl3nrrLc2YMUN16tQxD0CdpHjx4goJCVG5cuXk5eWlXbt2admyZcnCmEcxYMAALV26VJMmTTKPl/S4WrRoof79+6t///7y8vJK1nKzU6dOunLliqpXr668efPq1KlTmjp1qkqXLm0exyclu3fv1vTp09WzZ0+LhzDkyZNHo0aNUr9+/bR8+XJz1+E2bdro4MGDGjt2rHbs2KFWrVqpQIECunHjhg4ePKhFixbJzc0tWVfOqKgo8zVw584dhYeHa+bMmXJ2dtagQYPMy40ePVrr169XlSpV1KNHD9nZ2emLL77QrVu39Omnn5qXS+v9q3bt2sqVK5eCgoKUM2dOhYWFadq0aWrQoIG55XLSNT9kyBC1atVK9vb2atSo0QNb25YtW1b+/v4aMmSIbt26lSwkTMt9JzWPch/PiL8lkj6TpM8nMTFRERERmjVrlhITEy26Oqb1vHfp0kVffPGF2rVrp927d8vPz0/Lli3T1q1bNWnSJPO5T8t1W7p0adna2mrcuHGKioqSo6Ojqlevrhw5cjzwPAKZymrP+QOAF8iBAweMoKCgVOe//PLLxrFjx9K0rdQe7ztt2jSjWLFihr29vZEzZ06je/fuFo8XN4z/e2T4rl27jEqVKhlOTk5G/vz5jWnTpj10v//884/RvHlzw8/Pz3BycjKyZMlilCtXzpg1a1ayR5OnJOnx5uPHj3/gcidOnDDeeecdI1euXIa9vb2RJ08eo2HDhsayZcvMy8TFxRnvv/++kTt3bsPZ2dkICgoytm3bZgQHByd7RPiqVauM4sWLG3Z2dske6Txx4kQjT548hqOjoxEUFGTs2rUr2TYe9gj1vXv3Gk2aNDGyZctmODo6Gvnz5zdatGhhbNy48ZHPR2qPth8+fLghybh06ZLF9LZt2xouLi4pbnPixImGr6+v4ejoaFStWtXYv39/sho2bNhgBAUFGc7Ozoa7u7vRqFEj4/Dhw2nat2EYxp07d4zevXsb3t7ehslkMu79M2LOnDlG4cKFDUdHR6NYsWLGvHnzzNu6lySjZ8+eybadP39+o23bthbTTp06ZbzzzjuGt7e34ejoaBQsWNDo2bOncevWLfMy169fNwYPHmz4+/sbDg4ORvbs2Y3KlSsbEyZMMOLj45PtJyXLli0zateubXh5eRl2dnZG7ty5jZYtWxqhoaEWy504ccJo1qyZ4enpaTg5ORkVK1Y0fv75Z4tlUrt+HuWzTjpH3377rfmclilTJtk94OrVq0b79u2N7NmzG66urkadOnWMI0eOJDuXqe373nlJj3ffs2eP0bp1ayNfvnyGo6OjkSNHDqNhw4bGrl27LNa7fv268d577xk+Pj6Gvb29UbhwYWP8+PHJ7g2P8nlLSvbznJKkmlN7nTlzxvyzcf8j3RcvXmwUK1bMcHR0NAIDA40ff/zRaNq0qVGsWDHzMg+6d0kyhg8fbn7/oJ8JwzCMmzdvGpMmTTIqVapkuLu7G3Z2dkauXLmMhg0bGgsXLrR4tHvSfu992dnZGQULFjQGDBhgXL9+3WLbSff3B3nY/ex+0dHRhrOzc7LH0ycZPXq0UbFiRcPT09NwdnY2ihUrZnz88ccP/Vl7WB0hISGGu7u7ce3aNcMwkt/r0iMoKMiQZHTq1CnZvKSf+Rw5chgODg5Gvnz5jK5duxqRkZGpbu/OnTtG2bJlDR8fHyMqKirF+aVLlzby5s2b7LMKDQ01mjVrZuTOnduwt7c33N3djfLlyxvDhw9Pts/g4GCLa8BkMhleXl7Ga6+9ZuzevTvZfvfs2WPUqVPHcHV1NbJkyWK8+uqrxp9//plsubTcv7744gujWrVq5t9vhQoVMgYMGJDseD/66CMjT548ho2NjcX940GGDBliSDL8/f1TPIa03HceJC338Yz4W6Jt27bJfk7d3d2NGjVqGBs2bEhWV1rOu2EYxoULF8z3cwcHB6NEiRLJ7l9pvW5nz55tFCxY0LC1tU3x70fgaWMyjKd8lEkAeAYdPHhQ3bp105YtW1Kc/8orr+jbb79N9alPGSUkJESXL19+6Ng8eDZFRESoQIECGj9+vPr375/Z5SCDmEwm9ezZM1n3ODwZpUuXlre3N49ZBwAgEzCmFAAAAJ57t2/fTjbOWGhoqPbv36+QkJDMKQoAgBccY0oBwBPy119/JRuPI0l6xy8BAKTP2bNnVbNmTb311lvy8fHRkSNHNGvWLOXKlUvdunXL7PIAAHghEUoBwBMQGBj4wCd/AQCsK2vWrCpXrpy++uorXbp0SS4uLmrQoIE++eSTxxocHgAApB9jSgEAAAAAAMDqGFMKAAAAAAAAVkcoBQAAAAAAAKtjTCk8lxITE3Xu3Dm5ubnJZDJldjkAAAAAALwwDMPQ9evX5ePjIxub1NtDEUrhuXTu3Dn5+vpmdhkAAAAAALywzpw5o7x586Y6n1AKzyU3NzdJd38A3N3dM7kaAAAAAABeHNHR0fL19TV/N08NoRSeS0ld9tzd3QmlAAAAAADIBA8bToeBzgEAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNXZZXYBwJNUbegi2To6Z3YZAAAAAACY7R7/TmaX8FSgpRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNWZDMMwMrsIIKNFR0fLw8NDBwcHyM3JNrPLAQAAAADgkeUbdiCzS0iXpO/kUVFRcnd3T3U5WkoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoPFRERIZPJpH379mV2KQAAAAAA4DlBKGVlISEh6tu3b2aX8Uh8fX0VGRmpwMDAzC4FAAAAAAA8J+wyuwA8/WxtbZUrV67MLkOGYSghIUF2dly2AAAAAAA862gpZUXt2rXT5s2bNXnyZJlMJplMJkVERGjz5s2qWLGiHB0dlTt3bg0aNEh37twxr7ds2TKVKFFCzs7OypYtm2rWrKkbN25IkkJDQ1WxYkW5uLjI09NTQUFBOnXq1APriIqKkq2trXbt2iVJSkxMlJeXl1555RXzMt9++618fX0lJe++FxoaKpPJpI0bN6p8+fLKkiWLKleurPDwcPP6I0aMUOnSpfXNN9/Iz89PHh4eatWqla5fv25eJjExUWPHjlWBAgXk7OysUqVKadmyZeb5SftZs2aNypUrJ0dHR23ZsiWdZx8AAAAAADxNCKWsaPLkyapUqZI6d+6syMhIRUZGyt7eXvXr11eFChW0f/9+zZw5U3PmzNHo0aMlSZGRkWrdurU6dOigsLAwhYaGqkmTJjIMQ3fu3FHjxo0VHBysv//+W9u2bVOXLl1kMpkeWIeHh4dKly6t0NBQSdKBAwdkMpm0d+9excTESJI2b96s4ODgB25nyJAhmjhxonbt2iU7Ozt16NDBYv6JEyf0ww8/6Oeff9bPP/+szZs365NPPjHPHzt2rL7++mvNmjVLhw4d0nvvvae33npLmzdvttjOoEGD9MknnygsLEwlS5ZM07kGAAAAAABPN/pBWZGHh4ccHByUJUsWc3e4IUOGyNfXV9OmTZPJZFKxYsV07tw5ffDBBxo2bJgiIyN1584dNWnSRPnz55cklShRQpJ05coVRUVFqWHDhipUqJAkKSAgIE21hISEKDQ0VP3791doaKhq1aqlI0eOaMuWLapbt65CQ0M1cODAB27j448/NgdXgwYNUoMGDRQXFycnJydJd1tCzZ8/X25ubpKkt99+Wxs3btTHH3+sW7duacyYMdqwYYMqVaokSSpYsKC2bNmiL774wiIQGzVqlGrVqvXAWm7duqVbt26Z30dHR6fpPAAAAAAAgMxBKJXJwsLCVKlSJYvWTUFBQYqJidG///6rUqVKqUaNGipRooTq1Kmj2rVrq1mzZsqaNau8vLzUrl071alTR7Vq1VLNmjXVokUL5c6d+6H7DQ4O1pw5c5SQkKDNmzerdu3aypUrl0JDQ1WyZEkdP35cISEhD9zGva2WkvZ58eJF5cuXT5Lk5+dnDqSSlrl48aIk6fjx44qNjU0WNsXHx6tMmTIW08qXL//Q4xk7dqxGjhyZbHoHTzfZOXOZAwAAAIC1be29NbNLwFOO7ntPOVtbW61fv15r1qxR8eLFNXXqVBUtWlQnT56UJM2bN0/btm1T5cqVtWTJEhUpUkR//fXXQ7dbrVo1Xb9+XXv27NHvv/+ukJAQc+upzZs3y8fHR4ULF37gNuzt7c3/TgrVEhMTU5yftEzS/KRugr/88ov27dtnfh0+fNhiXClJcnFxeejxDB48WFFRUebXmTNnHroOAAAAAADIPIRSVubg4KCEhATz+4CAAG3btk2GYZinbd26VW5ubsqbN6+ku2FOUFCQRo4cqb1798rBwUErV640L1+mTBkNHjxYf/75pwIDA/Xdd989tA5PT0+VLFlS06ZNk729vYoVK6Zq1app7969+vnnnx86ntTjKl68uBwdHXX69Gn5+/tbvJIGWH8Ujo6Ocnd3t3gBAAAAAICnF/2arMzPz0/bt29XRESEXF1d1aNHD02aNEm9e/dWr169FB4eruHDh6tfv36ysbHR9u3btXHjRtWuXVs5cuTQ9u3bdenSJQUEBOjkyZP68ssv9dprr8nHx0fh4eE6duyY3nnnnTTVEhISoqlTp6pZs2aSJC8vLwUEBGjJkiWaPn36kzwNcnNzU//+/fXee+8pMTFRVapUUVRUlLZu3Sp3d3e1bdv2ie4fAAAAAABkLkIpK+vfv7/atm2r4sWL6+bNmzp58qRWr16tAQMGqFSpUvLy8lLHjh01dOhQSZK7u7t+//13TZo0SdHR0cqfP78mTpyoevXq6cKFCzpy5IgWLFig//77T7lz51bPnj3VtWvXNNUSHBysSZMmWYwdFRISov379z90PKmM8NFHH8nb21tjx47VP//8I09PT5UtW1YffvjhE983AAAAAADIXCbj3n5jwHMiOjpaHh4eqjiuIgOdAwAAAEAmYKDzF1fSd/KoqKgHDq/DmFIAAAAAAACwOkKp59RLL70kV1fXFF8LFy7M7PIAAAAAAMALjn5Nz6nVq1fr9u3bKc7LmTOnlasBAAAAAACwRCj1nMqfP39mlwAAAAAAAJAquu8BAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1dpldAPAkDf/BTi52XOYAAAAAkJGCf9+c2SXgOUBLKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWZ5fZBQBPUpW1a+Tu7p7ZZQAAAAAAgPvQUgoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1dlldgHAk1Rt6CLZOjpndhkAAAAAgEe0e/w7mV0CnjBaSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOpNhGEZmFwFktOjoaHl4eOjg4AC5OdlmdjkAAAAAgCcs37ADmV0C/r+k7+RRUVFyd3dPdTlaSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5SCJCkkJER9+/bN7DIkSbNnz1bVqlWVNWtWZc2aVTVr1tSOHTsyuywAAAAAAJCBCKXw1AkNDVXr1q21adMmbdu2Tb6+vqpdu7bOnj2b2aUBAAAAAIAMQigFtWvXTps3b9bkyZNlMplkMpkUERGhgwcPql69enJ1dVXOnDn19ttv6/Lly+b11q5dqypVqsjT01PZsmVTw4YNdeLECfP8iIgImUwmLV26VFWrVpWzs7MqVKigo0ePaufOnSpfvrxcXV1Vr149Xbp0ybzewoUL1aNHD5UuXVrFihXTV199pcTERG3cuNGq5wUAAAAAADw5hFLQ5MmTValSJXXu3FmRkZGKjIyUm5ubqlevrjJlymjXrl1au3atLly4oBYtWpjXu3Hjhvr166ddu3Zp48aNsrGx0RtvvKHExESL7Q8fPlxDhw7Vnj17ZGdnpzZt2mjgwIGaPHmy/vjjDx0/flzDhg1Ltb7Y2Fjdvn1bXl5eT+wcAAAAAAAA67LL7AKQ+Tw8POTg4KAsWbIoV65ckqTRo0erTJkyGjNmjHm5uXPnytfXV0ePHlWRIkXUtGlTi+3MnTtX3t7eOnz4sAIDA83T+/fvrzp16kiS3n33XbVu3VobN25UUFCQJKljx46aP39+qvV98MEH8vHxUc2aNVNd5tatW7p165b5fXR0dNpPAAAAAAAAsDpCKaRo//792rRpk1xdXZPNO3HihIoUKaJjx45p2LBh2r59uy5fvmxuIXX69GmLUKpkyZLmf+fMmVOSVKJECYtpFy9eTLGOTz75RIsXL1ZoaKicnJxSrXfs2LEaOXJksukdPN1k58xlDgAAAODZt7X31swuAchQfFtHimJiYtSoUSONGzcu2bzcuXNLkho1aqT8+fNr9uzZ8vHxUWJiogIDAxUfH2+xvL29vfnfJpMpxWn3d/mTpAkTJuiTTz7Rhg0bLIKtlAwePFj9+vUzv4+Ojpavr28ajhQAAAAAAGQGQilIkhwcHJSQkGB+X7ZsWS1fvlx+fn6ys0t+mfz3338KDw/X7NmzVbVqVUnSli1bMqyeTz/9VB9//LHWrVun8uXLP3R5R0dHOTo6Ztj+AQAAAADAk8VA55Ak+fn5afv27YqIiNDly5fVs2dPXblyRa1bt9bOnTt14sQJrVu3Tu3bt1dCQoKyZs2qbNmy6csvv9Tx48f122+/WbRUehzjxo3T//73P82dO1d+fn46f/68zp8/r5iYmAzZPgAAAAAAyHyEUpB0dzByW1tbFS9eXN7e3oqPj9fWrVuVkJCg2rVrq0SJEurbt688PT1lY2MjGxsbLV68WLt371ZgYKDee+89jR8/PkNqmTlzpuLj49WsWTPlzp3b/JowYUKGbB8AAAAAAGQ+k2EYRmYXAWS06OhoeXh4qOK4igx0DgAAAOC5wEDneFYkfSePioqSu7t7qsvRUgoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6u8wuAHiShv9gJxc7LnMAAAAAz77N3wdndglWEfz75swuAVZCSykAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVmeX2QUAT1KVtWvk7u6e2WUAAAAAAID70FIKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNXZZXYBwJNUbegi2To6Z3YZAAAAAPDU2T3+ncwuAS84WkoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDq0h1KffPNNwoKCpKPj49OnTolSZo0aZJWrVqVYcUBAAAAAADg+ZSuUGrmzJnq16+f6tevr2vXrikhIUGS5OnpqUmTJmVkfQAAAAAAAHgOmQzDMB51peLFi2vMmDFq3Lix3NzctH//fhUsWFAHDx5USEiILl++/CRqBdIsOjpaHh4eOjg4QG5OtpldDgAAAAA8N/INO5DZJeApl/SdPCoqSu7u7qkul66WUidPnlSZMmWSTXd0dNSNGzfSs0kAAAAAAAC8QNIVShUoUED79u1LNn3t2rUKCAh43JoAAAAAAADwnLNLz0r9+vVTz549FRcXJ8MwtGPHDi1atEhjx47VV199ldE1AgAAAAAA4DmTrlCqU6dOcnZ21tChQxUbG6s2bdrIx8dHkydPVqtWrTK6RgAAAAAAADxnHjmUunPnjr777jvVqVNHb775pmJjYxUTE6McOXI8ifoAAAAAAADwHHrkMaXs7OzUrVs3xcXFSZKyZMlCIAUAAAAAAIBHkq6BzitWrKi9e/dmdC0AAAAAAAB4QaRrTKkePXro/fff17///qty5crJxcXFYn7JkiUzpDgAAAAAAAA8n9IVSiUNZt6nTx/zNJPJJMMwZDKZlJCQkDHVAQAAAAAA4LmUrlDq5MmTGV0HAAAAAAAAXiDpCqXy58+f0XUAAAAAAADgBZKuUOrrr79+4Px33nknXcUAAAAAAADgxZCuUOrdd9+1eH/79m3FxsbKwcFBWbJkIZQCAAAAAADAA9mkZ6WrV69avGJiYhQeHq4qVapo0aJFGV0jAAAAAAAAnjPpCqVSUrhwYX3yySfJWlEBAAAAAAAA98uwUEqS7OzsdO7cuYzcJKwkJCREffv2zewyJEmHDh1S06ZN5efnJ5PJpEmTJmV2SQAAAAAAIIOla0ypH3/80eK9YRiKjIzUtGnTFBQUlCGF4cUVGxurggULqnnz5nrvvfcyuxwAAAAAAPAEpKulVOPGjS1eTZo00YgRI1SyZEnNnTs3o2vEE9auXTtt3rxZkydPlslkkslkUkREhA4ePKh69erJ1dVVOXPm1Ntvv63Lly+b11u7dq2qVKkiT09PZcuWTQ0bNtSJEyfM8yMiImQymbR06VJVrVpVzs7OqlChgo4ePaqdO3eqfPnycnV1Vb169XTp0iXzehUqVND48ePVqlUrOTo6WvVcAAAAAAAA60hXKJWYmGjxSkhI0Pnz5/Xdd98pd+7cGV0jnrDJkyerUqVK6ty5syIjIxUZGSk3NzdVr15dZcqU0a5du7R27VpduHBBLVq0MK9348YN9evXT7t27dLGjRtlY2OjN954Q4mJiRbbHz58uIYOHao9e/bIzs5Obdq00cCBAzV58mT98ccfOn78uIYNG2btwwYAAAAAAJkoXd33Ro0apf79+ytLliwW02/evKnx48cTMDxjPDw85ODgoCxZsihXrlySpNGjR6tMmTIaM2aMebm5c+fK19dXR48eVZEiRdS0aVOL7cydO1fe3t46fPiwAgMDzdP79++vOnXqSJLeffddtW7dWhs3bjR39ezYsaPmz5//WMdw69Yt3bp1y/w+Ojr6sbYHAAAAAACerHSFUiNHjlS3bt2ShVKxsbEaOXIkodRzYP/+/dq0aZNcXV2TzTtx4oSKFCmiY8eOadiwYdq+fbsuX75sbiF1+vRpi1CqZMmS5n/nzJlTklSiRAmLaRcvXnyseseOHauRI0cmm97B0012zum6zAEAAAAgVVt7b83sEoBnXrq+rRuGIZPJlGz6/v375eXl9dhFIfPFxMSoUaNGGjduXLJ5SV00GzVqpPz582v27Nny8fFRYmKiAgMDFR8fb7G8vb29+d9J18390+7v8veoBg8erH79+pnfR0dHy9fX97G2CQAAAAAAnpxHCqWyZs1qHgi7SJEiFsFUQkKCYmJi1K1btwwvEk+eg4ODEhISzO/Lli2r5cuXy8/PT3Z2yS+T//77T+Hh4Zo9e7aqVq0qSdqyZYvV6r2fo6Mjg6IDAAAAAPAMeaRQatKkSTIMQx06dNDIkSPl4eFhnufg4CA/Pz9VqlQpw4vEk+fn56ft27crIiJCrq6u6tmzp2bPnq3WrVtr4MCB8vLy0vHjx7V48WJ99dVXypo1q7Jly6Yvv/xSuXPn1unTpzVo0KAMqSU+Pl6HDx82//vs2bPat2+fXF1d5e/vnyH7AAAAAAAAmeuRQqm2bdtKkgoUKKDKlStbdMHCs61///5q27atihcvrps3b+rkyZPaunWrPvjgA9WuXVu3bt1S/vz5VbduXdnY2MhkMmnx4sXq06ePAgMDVbRoUU2ZMkUhISGPXcu5c+dUpkwZ8/sJEyZowoQJCg4OVmho6GNvHwAAAAAAZD6TYRjG42wgLi4u2RhC7u7uj1UU8Liio6Pl4eGhiuMqMtA5AAAAgAzHQOdA6pK+k0dFRT0wI7JJz8ZjY2PVq1cv5ciRQy4uLsqaNavFCwAAAAAAAHiQdIVSAwYM0G+//aaZM2fK0dFRX331lUaOHCkfHx99/fXXGV0jAAAAAAAAnjPp6tf0008/6euvv1ZISIjat2+vqlWryt/fX/nz59fChQv15ptvZnSdAAAAAAAAeI6kq6XUlStXVLBgQUl3x4+6cuWKJKlKlSr6/fffM646AAAAAAAAPJfSFUoVLFhQJ0+elCQVK1ZMS5culXS3BZWnp2eGFQcAAAAAAIDnU7pCqfbt22v//v2SpEGDBmn69OlycnLSe++9pwEDBmRogQAAAAAAAHj+pGtMqffee8/875o1a+rIkSPavXu3/P39VbJkyQwrDgAAAAAAAM+ndIVS94qLi1P+/PmVP3/+jKgHAAAAAAAAL4B0dd9LSEjQRx99pDx58sjV1VX//POPJOl///uf5syZk6EFAgAAAAAA4PmTrlDq448/1vz58/Xpp5/KwcHBPD0wMFBfffVVhhUHAAAAAACA51O6Qqmvv/5aX375pd58803Z2tqap5cqVUpHjhzJsOIAAAAAAADwfEpXKHX27Fn5+/snm56YmKjbt28/dlEAAAAAAAB4vqUrlCpevLj++OOPZNOXLVumMmXKPHZRAAAAAAAAeL6l6+l7w4YNU9u2bXX27FklJiZqxYoVCg8P19dff62ff/45o2sEAAAAAADAc8ZkGIaR1oX/+ecfFShQQCaTSX/88YdGjRql/fv3KyYmRmXLltWwYcNUu3btJ1kvkCbR0dHy8PDQL5Uqy8UuXdkrAAAAALyQgn/fnNkl4BmX9J08KipK7u7uqS73SN/WCxcurMjISOXIkUNVq1aVl5eXDhw4oJw5cz52wQAAAAAAAHhxPNKYUvc3qlqzZo1u3LiRoQUBAAAAAADg+Zeugc6TPELPPwAAAAAAAMDskUIpk8kkk8mUbBoAAAAAAADwKB5pTCnDMNSuXTs5OjpKkuLi4tStWze5uLhYLLdixYqMqxAAAAAAAADPnUcKpdq2bWvx/q233srQYgAAAAAAAPBieKRQat68eU+qDgAAAAAAALxAHmugcwAAAAAAACA9CKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYnV1mFwA8SVXWrpG7u3tmlwEAAAAAAO5DSykAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVmeX2QUAT1K1oYtk6+ic2WUAAPBE7B7/TmaXAAAAkG60lAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdXaZXQDwJC10nSw3J9vMLgMAgHTJN+xAZpcAAADwxNBSCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCqXSKiIiQyWTSvn37MruUDBcaGiqTyaRr16498X09z+cRAAAAAACk7qkIpUJCQtS3b9/MLuOR+Pr6KjIyUoGBgZldygPNnz9fnp6emV1Gqp6V8wgAAAAAADKWXWYX8KyytbVVrly5MruMZx7nEQAAAACAF1Omt5Rq166dNm/erMmTJ8tkMslkMikiIkKbN29WxYoV5ejoqNy5c2vQoEG6c+eOeb1ly5apRIkScnZ2VrZs2VSzZk3duHFD0t3uZxUrVpSLi4s8PT0VFBSkU6dOPbCOqKgo2draateuXZKkxMREeXl56ZVXXjEv8+2338rX11dS8m5nSV3eNm7cqPLlyytLliyqXLmywsPD03QeRowYodKlS2vu3LnKly+fXF1d1aNHDyUkJOjTTz9Vrly5lCNHDn388ccW63322WcqUaKEXFxc5Ovrqx49eigmJsZcU/v27RUVFWU+tyNGjJAk3bp1Sx988IF8fX3l6Ogof39/zZkzx2Lbu3fvfuRjyezzCAAAAAAAng2ZHkpNnjxZlSpVUufOnRUZGanIyEjZ29urfv36qlChgvbv36+ZM2dqzpw5Gj16tCQpMjJSrVu3VocOHRQWFqbQ0FA1adJEhmHozp07aty4sYKDg/X3339r27Zt6tKli0wm0wPr8PDwUOnSpRUaGipJOnDggEwmk/bu3WsOeTZv3qzg4OAHbmfIkCGaOHGidu3aJTs7O3Xo0CHN5+LEiRNas2aN1q5dq0WLFmnOnDlq0KCB/v33X23evFnjxo3T0KFDtX37dvM6NjY2mjJlig4dOqQFCxbot99+08CBAyVJlStX1qRJk+Tu7m4+t/3795ckvfPOO1q0aJGmTJmisLAwffHFF3J1dX3sY8ms83jr1i1FR0dbvAAAAAAAwNMr07vveXh4yMHBQVmyZDF34xoyZIh8fX01bdo0mUwmFStWTOfOndMHH3ygYcOGKTIyUnfu3FGTJk2UP39+SVKJEiUkSVeuXFFUVJQaNmyoQoUKSZICAgLSVEtISIhCQ0PVv39/hYaGqlatWjpy5Ii2bNmiunXrKjQ01Bz4pObjjz82By6DBg1SgwYNFBcXJycnp4fuPzExUXPnzpWbm5uKFy+uV199VeHh4Vq9erVsbGxUtGhRjRs3Tps2bdLLL78sSRZjcfn5+Wn06NHq1q2bZsyYIQcHB3l4eMhkMll0kTt69KiWLl2q9evXq2bNmpKkggULZtixZMZ5HDt2rEaOHJlsegdPN9k5Z/plDgBA+kwNyuwKAABAJtrae2tml/BEZXpLqZSEhYWpUqVKFq2bgoKCFBMTo3///VelSpVSjRo1VKJECTVv3lyzZ8/W1atXJUleXl5q166d6tSpo0aNGmny5MmKjIxM036Dg4O1ZcsWJSQkaPPmzQoJCTEHLOfOndPx48cVEhLywG2ULFnS/O/cuXNLki5evJim/fv5+cnNzc38PmfOnCpevLhsbGwspt27vQ0bNqhGjRrKkyeP3Nzc9Pbbb+u///5TbGxsqvvZt2+fbG1tH9paKb3HkhnncfDgwYqKijK/zpw589A6AQAAAABA5nkqQ6mHsbW11fr167VmzRoVL15cU6dOVdGiRXXy5ElJ0rx587Rt2zZVrlxZS5YsUZEiRfTXX389dLvVqlXT9evXtWfPHv3+++8WYcrmzZvl4+OjwoULP3Ab9vb25n8nhWqJiYlpOq57101aP6VpSduLiIhQw4YNVbJkSS1fvly7d+/W9OnTJUnx8fGp7sfZ2fmR63mUY8mM8+jo6Ch3d3eLFwAAAAAAeHo9FaGUg4ODEhISzO8DAgK0bds2GYZhnrZ161a5ubkpb968ku4GFUFBQRo5cqT27t0rBwcHrVy50rx8mTJlNHjwYP35558KDAzUd99999A6PD09VbJkSU2bNk329vYqVqyYqlWrpr179+rnn39+aMsia9u9e7cSExM1ceJEvfLKKypSpIjOnTtnscz951a629UxMTFRmzdvfiJ1PWvnEQAAAAAAWN9TEUr5+flp+/btioiI0OXLl9WjRw+dOXNGvXv31pEjR7Rq1SoNHz5c/fr1k42NjbZv364xY8Zo165dOn36tFasWKFLly4pICBAJ0+e1ODBg7Vt2zadOnVKv/76q44dO/ZI40otXLjQHJx4eXkpICBAS5YseerCFH9/f92+fVtTp07VP//8o2+++UazZs2yWMbPz08xMTHauHGjLl++rNjYWPn5+alt27bq0KGDfvjhB508eVKhoaFaunRphtX2LJ1HAAAAAABgfU9FKNW/f3/Z2tqqePHi8vb21u3bt7V69Wrt2LFDpUqVUrdu3dSxY0cNHTpUkuTu7q7ff/9d9evXV5EiRTR06FBNnDhR9erVU5YsWXTkyBE1bdpURYoUUZcuXdSzZ0917do1TbUEBwcrISHBYsyjkJCQZNOeBqVKldJnn32mcePGKTAwUAsXLtTYsWMtlqlcubK6deumli1bytvbW59++qkkaebMmWrWrJl69OihYsWKqXPnzrpx40aG1fYsnUcAAAAAAGB9JuPePnLAcyI6OloeHh6qOK4iT98DAAAAADyTntWn7yV9J4+KinrgmM9PRUspAAAAAAAAvFheqFDqpZdekqura4qvhQsXPrf7zmjP07EAAAAAAIDM8UL1a1q9erVu376d4rycOXM+t/vOaM/TsQAAAAAAgMzxQoVS+fPnfyH3ndGep2MBAAAAAACZ44XqvgcAAAAAAICnA6EUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKzOLrMLAJ6k4T/YycWOyxwAAAAA8AzqndkFPFm0lAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWJ1dZhcAAAAAAACeAEdHmdzdJZMpsytBOsXFxWV2CSmyt7eXra3tY2+HUAoAAAAAgOeJyST7mjXk9PLLMtnbZ3Y1eAwnT57M7BJS5enpqVy5csn0GKEnoRQAAAAAAM8R+5o1lCUkRN6ennK0tRXtpJ5dLgUKZHYJyRiGodjYWF28eFGSlDt37nRvi1AKAAAAAIDnhaOjnF5+Wd6ennKnldQzz8nJKbNLSJGzs7Mk6eLFi8qRI0e6u/Ix0DkAAAAAAM8Jk7u7TPb2csyA8X6AB8mSJYsk6fbt2+neBqEUAAAAAADPi/8/vg9d9vCkPc5YUknovofnWpW1a+Tu7p7ZZQAAAACAVcTFxenkyZNyKVDgqe369awIDQ3Vq6++qqtXr8rT0zNN6/j5+alv377q27fvE63teUFLKQAAAAAA8Mxp166dTCaTunXrlmxez549ZTKZ1K5dO+sXhjQjlAIAAAAAAM8kX19fLV68WDdv3jRPi4uL03fffad8+fJlYmVIC0IpAAAAAADwTCpbtqx8fX21YsUK87QVK1YoX758KlOmjHnarVu31KdPH+XIkUNOTk6qUqWKdu7cabGt1atXq0iRInJ2dtarr76qiIiIZPvbsmWLqlatKmdnZ/n6+qpPnz66cePGEzu+5x2hFAAAAAAAeGZ16NBB8+bNM7+fO3eu2rdvb7HMwIEDtXz5ci1YsEB79uyRv7+/6tSpoytXrkiSzpw5oyZNmqhRo0bat2+fOnXqpEGDBlls48SJE6pbt66aNm2qv//+W0uWLNGWLVvUq1evJ3+QzylCKQAAAAAA8Mx66623tGXLFp06dUqnTp3S1q1b9dZbb5nn37hxQzNnztT48eNVr149FS9eXLNnz5azs7PmzJkjSZo5c6YKFSqkiRMnqmjRonrzzTeTjUc1duxYvfnmm+rbt68KFy6sypUra8qUKfr6668VFxdnzUN+bvD0PQAAAAAA8Mzy9vZWgwYNNH/+fBmGoQYNGih79uzm+SdOnNDt27cVFBRknmZvb6+KFSsqLCxMkhQWFqaXX37ZYruVKlWyeL9//379/fffWrhwoXmaYRhKTEzUyZMnFRAQ8CQO77lGKAUAAAAAAJ5pHTp0MHejmz59+hPZR0xMjLp27ao+ffokm8eg6ulDKAUAAAAAAJ5pdevWVXx8vEwmk+rUqWMxr1ChQnJwcNDWrVuVP39+SdLt27e1c+dO9e3bV5IUEBCgH3/80WK9v/76y+J92bJldfjwYfn7+z+5A3nBMKYUAAAAAAB4ptna2iosLEyHDx+Wra2txTwXFxd1795dAwYM0Nq1a3X48GF17txZsbGx6tixoySpW7duOnbsmAYMGKDw8HB99913mj9/vsV2PvjgA/3555/q1auX9u3bp2PHjmnVqlUMdP4YCKUAAAAAAMAzz93dXe7u7inO++STT9S0aVO9/fbbKlu2rI4fP65169Ypa9asku52v1u+fLl++OEHlSpVSrNmzdKYMWMstlGyZElt3rxZR48eVdWqVVWmTBkNGzZMPj4+T/zYnlcmwzCMzC4CyGjR0dHy8PBQVFRUqjclAAAAAHjexMXF6eTJkypQoICcnJwyuxw8xx50raX1OzktpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDq7DK7AOBJqjZ0kWwdnTO7DAAAAACwilxuDnq/ZiElOF2VjZ19ZpeDx1TcN3tml/BE0VIKAAAAAAA81V7K562N61anefkd27bqpXzeio6KeoJV4XERSgEAAAAAgEz3Yb9e6t3pnRTnhe46qKohNTJ0f9M/+1RN6oakOC/s4N96v0cnBZd7SaX986hmpTLq0a6NNq1fJ8MwJElnz5zWS/m8za9ShXxUt2oFzZoy0bxM0n5eyuetLm+3SLafubOm6aV83mrX4vUMPbZnBd33AAAAAAB4Abw9Je0tjTLCN33qZ9i2vHPkzLBtPcxvv65Rvx6dVKlKNY35fJry5S+g+Ph47du9Q1MmjFW5iq/I3cPDvPyc75arUJGiuh0frz07t2vYwPfknSOnmrZ6y6L+Hdu26nzkOeXK7WOevnLpd8qdJ6/Vju1pQ0spAAAAAADwVLu/+97eXTvUpG6IyhTOqxYNamrjutV6KZ+3wg4dsFjv8IH9atGgpsoVyac336ivkyeOS5JWfr9IMyaNV/jhQ+aWTiu/X6TY2Bv634C+Cq5eSzPnL1JQtVflm99PhQoXUdNWb2nlulC5ubtb7MMja1Z558gpn7y+avhGM5UpX1GHD/5tsYxX9uyqXDVEq5YttjiGq1euqFr1Whl9up4ZhFIAAAAAAOCZEXP9unp2eEtFihbX979sVO/+g/TZ2FEpLjt5/BgN+N9ILfl5vWxtbTW0fx9JUr1GjdWuSw/5Fymm0F0HFbrroOo1aqw/fw/VtatX1KFbr1T3bzKZUp13cP8+HT6wXyVLl0s2r0nLNvrh+/8LpVYu/U4NGjeVvf2LOyA9oRQAAAAAAHhm/PLDcplMJo0c95n8ixRV1Vdrqn3Xniku++6AD1XhlSD5FymqTj36aN/unboVFycnJ2dlyeIiWztbeefIKe8cOeXk5KyIf05IkvwK+pu3cWD/XpUvlt/8Ct3wq8U+3nqjgcoXy69ShXzUslEt1Wn4ul5v1jJZLcE1autGTIx2bf9TsbE3tPbnVWrSsk0GnplnD2NKAQAAAACAZ8bJf46rSEBxOTo5maeVKF02xWWLBBQ3/ztpXKr//rssn0cYx6loseJavnaTJKl+tZeVkHDHYv6E6bNVsHBh3bl9R8fDw/Tx8MFy9/BQv8HDLJazt7dXwzeaaeXSRTpz+pT8ChRS0YCX0lzH84hQCgAAAAAAPJfs7O7pGvf/u90ZiYmpLp+/QEFJUsQ/x1WqbHlJkoOjo/L7FUx1nVw+Pub5hQoX0elTEZo28RP1fG+gRXAmSU1atFGr1+voWPgRvfGCt5KS6L4HAAAAAACeIQUK+uvYkTDF37plnnZw/95H3o69g70SEywDqsrVQuThmVVzZk5Nd322tra6c+eObt++nWyef9Fi8i9STMfDj6jB603TvY/nBS2lAAAAAADAU+H69ehkT9DzzOpl8b5B46aaPH6Mhg/qp0493lXkuX81/8sZkh48CPn9fPLm079nTins0AHlyu0jFxdXubi4atSnn+v9np3VvV1rvdm+s/L7FVRs7A1tCf1NkmRjY2uxnairV3Xp4gUlJCTo2JHD+nbul6pYuYpc3dxS3O/cxSt05/YduXt4pLnW5xWhFAAAAAAAeCrs3LZVzepVt5jWtNWbFu9d3dw0fe63GjVkoJrWe1VFigao27v9NbB3Vzk6WnaXe5Da9Rpqw5qf1aHlG4qOjtLoiVP0RvPWqlm3gRauWK05M6fow/d6KeraVbm6ueulkqU0YdqXCqlZ22I7HdvcbfFka3t30PSqr9bUuwM/THW/WbK4pLnG553JMAwjs4sAMlp0dLQ8PDxUqvcs2To6Z3Y5AAAAAGAVudwc9H7NQsqRO69s7h1P6Tn388plGtK/j7YfOiEnp+fnO2Bx3+yZXUKq4uLidPLkSRUoUEBO942dlfSdPCoqSu7u7qlug5ZSAAAAAADgmbJq2RLlzZdfOXPlVnjYIX02dpTqNnz9uQqkXgSEUgAAAAAA4Jly+dJFTftsnC5fuijvHDlVu8FrD+wyh6cToRQAAAAAAHimdOzeWx27987sMvCYbDK7AAAAAAAAALx4CKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdA53jubbQdbLcnGwzuwwAAAAgVfmGHcjsEvAciYuL08mTJ1Ugd1Y5OTlldjnAA9FSCgAAAAAAAFZHKAUAAAAAAF54JpNJP/zwQ2aX8UIhlAIAAAAAAJmuXbt2MplMMplMsre3V4ECBTRw4EDFxcVldmlP1L3Hfe/r+PHjmVpT48aNn/h+GFMKAAAAAIAXwOlRJay6v/SMl1a3bl3NmzdPt2/f1u7du9W2bVuZTCaNGzfuCVT49Eg67nt5e3una1vx8fFycHDIiLKeOFpKAQAAAACAp4Kjo6Ny5colX19fNW7cWDVr1tT69evN8//77z+1bt1aefLkUZYsWVSiRAktWrTIYhshISHq06ePBg4cKC8vL+XKlUsjRoywWObYsWOqVq2anJycVLx4cYt9JDlw4ICqV68uZ2dnZcuWTV26dFFMTIx5flJrojFjxihnzpzy9PTUqFGjdOfOHQ0YMEBeXl7KmzdvsrDpQcd978vW9u5DuzZv3qyKFSvK0dFRuXPn1qBBg3Tnzh2L4+3Vq5f69u2r7Nmzq06dOpKkgwcPql69enJ1dVXOnDn19ttv6/Lly+b1li1bphIlSpiPr2bNmrpx44ZGjBihBQsWaNWqVeZWW6GhoQ89hvQglAIAAAAAAE+dgwcP6s8//7Ro9RMXF6dy5crpl19+0cGDB9WlSxe9/fbb2rFjh8W6CxYskIuLi7Zv365PP/1Uo0aNMgdPiYmJatKkiRwcHLR9+3bNmjVLH3zwgcX6N27cUJ06dZQ1a1bt3LlT33//vTZs2KBevXpZLPfbb7/p3Llz+v333/XZZ59p+PDhatiwobJmzart27erW7du6tq1q/799990nYOzZ8+qfv36qlChgvbv36+ZM2dqzpw5Gj16dLLjdXBw0NatWzVr1ixdu3ZN1atXV5kyZbRr1y6tXbtWFy5cUIsWLSRJkZGRat26tTp06KCwsDCFhoaqSZMmMgxD/fv3V4sWLVS3bl1FRkYqMjJSlStXTlf9D0P3PQAAAAAA8FT4+eef5erqqjt37ujWrVuysbHRtGnTzPPz5Mmj/v37m9/37t1b69at09KlS1WxYkXz9JIlS2r48OGSpMKFC2vatGnauHGjatWqpQ0bNujIkSNat26dfHx8JEljxoxRvXr1zOt/9913iouL09dffy0XFxdJ0rRp09SoUSONGzdOOXPmlCR5eXlpypQpsrGxUdGiRfXpp58qNjZWH374oSRp8ODB+uSTT7Rlyxa1atXqocedpF69evr+++81Y8YM+fr6atq0aTKZTCpWrJjOnTunDz74QMOGDZONjY35GD/99FPz+qNHj1aZMmU0ZswY87S5c+fK19dXR48eVUxMjO7cuaMmTZoof/78kqQSJf6ve6ezs7Nu3bqlXLlyPfgDe0yEUgAAAAAA4Knw6quvaubMmbpx44Y+//xz2dnZqWnTpub5CQkJGjNmjJYuXaqzZ88qPj5et27dUpYsWSy2U7JkSYv3uXPn1sWLFyVJYWFh8vX1NQdSklSpUiWL5cPCwlSqVClzICVJQUFBSkxMVHh4uDmUeumll8zBkCTlzJlTgYGB5ve2trbKli2bed8PO+4kSfsNCwtTpUqVZDKZLOqIiYnRv//+q3z58kmSypUrZ7G9/fv3a9OmTRZBV5ITJ06odu3aqlGjhkqUKKE6deqodu3aatasmbJmzfrAOjMaoRQAAAAAAHgquLi4yN/fX9Ldlj2lSpXSnDlz1LFjR0nS+PHjNXnyZE2aNEklSpSQi4uL+vbtq/j4eIvt2NvbW7w3mUxKTEzM8HpT2k969n3vcafHveGZJMXExJhbdd0vd+7csrW11fr16/Xnn3/q119/1dSpUzVkyBBt375dBQoUSHcdj4oxpQAAAAAAwFPHxsZGH374oYYOHaqbN29KkrZu3arXX39db731lkqVKqWCBQvq6NGjj7TdgIAAnTlzRpGRkeZpf/31V7Jl9u/frxs3bpinbd261dxNz1oCAgK0bds2GYZhUYebm5vy5s2b6nply5bVoUOH5OfnJ39/f4tXUoBlMpkUFBSkkSNHau/evXJwcNDKlSslSQ4ODkpISHiyBydCKQAAAAAA8JRq3ry5bG1tNX36dEl3x05KauETFhamrl276sKFC4+0zZo1a6pIkSJq27at9u/frz/++ENDhgyxWObNN9+Uk5OT2rZtq4MHD2rTpk3q3bu33n77bXPXPWvo0aOHzpw5o969e+vIkSNatWqVhg8frn79+ll0G7xfz549deXKFbVu3Vo7d+7UiRMntG7dOrVv314JCQnavn27xowZo127dun06dNasWKFLl26pICAAEmSn5+f/v77b4WHh+vy5cu6ffv2Ezk+QikAAAAAAPBUsrOzU69evfTpp5/qxo0bGjp0qMqWLas6deooJCREuXLlUuPGjR9pmzY2Nlq5cqVu3rypihUrqlOnTvr4448tlsmSJYvWrVunK1euqEKFCmrWrJlq1KhhMei6NeTJk0erV6/Wjh07VKpUKXXr1k0dO3bU0KFDH7iej4+Ptm7dqoSEBNWuXVslSpRQ37595enpKRsbG7m7u+v3339X/fr1VaRIEQ0dOlQTJ040D/beuXNnFS1aVOXLl5e3t7e2bt36RI7PZNzbBgx4TkRHR8vDw0MHBwfIzck2s8sBAAAAUpVv2IHMLgHPkbi4OJ08eVIFChSQk5NTZpeD59iDrrWk7+RRUVFyd3dPdRu0lAIAAAAAAIDVZWooFRISor59+1p9v35+fpo0aZLV95vEZDLphx9+sPp+IyIiZDKZtG/fPqvvGwAAAAAA4F60lHqIzAqQcFe7du0euX8wAAAAAAB4+hFKAQAAAAAAwOoyPZRKTEzUwIED5eXlpVy5cmnEiBHmedeuXVOnTp3k7e0td3d3Va9eXfv37zfPP3HihF5//XXlzJlTrq6uqlChgjZs2GCx/YsXL6pRo0ZydnZWgQIFtHDhwjTX5ufnJ0l64403ZDKZzO8laebMmSpUqJAcHBxUtGhRffPNN4903JcvX9Ybb7yhLFmyqHDhwvrxxx8t5h88eFD16tWTq6urcubMqbfffluXL182z1+7dq2qVKkiT09PZcuWTQ0bNtSJEycstrFjxw6VKVNGTk5OKl++vPbu3ftINR46dEgNGzaUu7u73NzcVLVqVfM+EhMTNWrUKOXNm1eOjo4qXbq01q5da143NDRUJpNJ165dM0/bt2+fTCaTIiIiJEnz58+Xp6en1q1bp4CAALm6uqpu3bqKjIyUJI0YMUILFizQqlWrZDKZZDKZFBoa+kjHAAAAAAAAnk6ZHkotWLBALi4u2r59uz799FONGjVK69evlyQ1b95cFy9e1Jo1a7R7926VLVtWNWrU0JUrVyRJMTExql+/vjZu3Ki9e/eqbt26atSokU6fPm3efrt27XTmzBlt2rRJy5Yt04wZM3Tx4sU01bZz505J0rx58xQZGWl+v3LlSr377rt6//33dfDgQXXt2lXt27fXpk2b0nzcI0eOVIsWLfT333+rfv36evPNN83Hde3aNVWvXl1lypTRrl27tHbtWl24cEEtWrQwr3/jxg3169dPu3bt0saNG2VjY6M33nhDiYmJ5nPTsGFDFS9eXLt379aIESPUv3//NNd39uxZVatWTY6Ojvrtt9+0e/dudejQQXfu3JEkTZ48WRMnTtSECRP0999/q06dOnrttdd07NixNO9DkmJjYzVhwgR98803+v3333X69Glznf3791eLFi3MQVVkZKQqV66c4nZu3bql6OhoixcAAAAAAHh6mQzDMDJr5yEhIUpISNAff/xhnlaxYkVVr15dDRs2VIMGDXTx4kU5Ojqa5/v7+2vgwIHq0qVLitsMDAxUt27d1KtXLx09elRFixbVjh07VKFCBUnSkSNHFBAQoM8//zxNg6ybTCatXLnSYlyjoKAgvfTSS/ryyy/N01q0aKEbN27ol19+SdM2hw4dqo8++kjS3YDJ1dVVa9asUd26dTV69Gj98ccfWrdunXmdf//9V76+vgoPD1eRIkWSbfPy5cvy9vbWgQMHFBgYqC+//FIffvih/v33X/OjGWfNmqXu3btr7969Kl269ANr/PDDD7V48WKFh4fL3t4+2fw8efKoZ8+e+vDDD83TKlasqAoVKmj69OkKDQ3Vq6++qqtXr8rT01PS3ZZSZcqU0cmTJ+Xn56f58+erffv2On78uAoVKiRJmjFjhkaNGqXz589LuhsqXrt27aHjeo0YMUIjR45MNr3iuIqyc7Z74LoAADzvtvbemtklAACsJC4uTidPnlSBAgXM3wWBJ+FB11p0dLQ8PDwUFRUld3f3VLeR6S2lSpYsafE+d+7cunjxovbv36+YmBhly5ZNrq6u5tfJkyfNXchiYmLUv39/BQQEyNPTU66urgoLCzO3lAoLC5OdnZ3KlStn3n6xYsXMIUl6hYWFKSgoyGJaUFCQwsLC0ryNe4/bxcVF7u7u5hZc+/fv16ZNmyyOu1ixYpJkPvZjx46pdevWKliwoNzd3c1dC+899pIlS1pcGJUqVUpzffv27VPVqlVTDKSio6N17ty5xz4HkpQlSxZzICX93+f/qAYPHqyoqCjz68yZM4+8DQAAAAAAYD2Z3oTk/tDDZDIpMTFRMTExyp07d4pjCCWFSv3799f69es1YcIE+fv7y9nZWc2aNVN8fLwVKn88qR23dDdsa9SokcaNG5dsvdy5c0uSGjVqpPz582v27Nny8fFRYmKiAgMDM+zYnZ2dH2t9G5u7eee9DfFu376dbLmUzkN6Gu85OjpatKgDAAAAAABPt0xvKZWasmXL6vz587Kzs5O/v7/FK3v27JKkrVu3ql27dnrjjTdUokQJ5cqVyzyItnS3VdSdO3e0e/du87Tw8HCLwbcfxt7eXgkJCRbTAgICtHWrZTP4rVu3qnjx4o9+oCkoW7asDh06JD8/v2TH7uLiov/++0/h4eEaOnSoatSooYCAAF29ejVZjX///bfi4uLM0/76668011CyZEn98ccfKQZJ7u7u8vHxeeA58Pb2liTzoOXS3dZXj8rBwSHZ+QcAAAAAAM++pzaUqlmzpipVqqTGjRvr119/VUREhP78808NGTJEu3btkiQVLlxYK1as0L59+7R//361adPG3NpIkooWLaq6deuqa9eu2r59u3bv3q1OnTo9UisgPz8/bdy4UefPnzcHPwMGDND8+fM1c+ZMHTt2TJ999plWrFjxSAOJP0jPnj115coVtW7dWjt37tSJEye0bt06tW/fXgkJCcqaNauyZcumL7/8UsePH9dvv/2mfv36WWyjTZs2MplM6ty5sw4fPqzVq1drwoQJaa6hV69eio6OVqtWrbRr1y4dO3ZM33zzjcLDw83nYNy4cVqyZInCw8M1aNAg7du3T++++66ku2N/+fr6asSIETp27Jh++eUXTZw48ZHPhZ+fn/7++2+Fh4fr8uXLKYZkAAAAAIDnx/nz59W7d28VLFhQjo6O8vX1VaNGjbRx48Y0rZ/0pPf7hYSEmJ/sbjKZlDNnTjVv3lynTp3K4CNIXUREhEwmU7oabTyPMr37XmpMJpNWr16tIUOGqH379rp06ZJy5cqlatWqKWfOnJKkzz77TB06dFDlypWVPXt2ffDBB8meujZv3jx16tRJwcHBypkzp0aPHq3//e9/aa5j4sSJ6tevn2bPnq08efIoIiJCjRs31uTJkzVhwgS9++67KlCggObNm6eQkJAMOfakVkgffPCBateurVu3bil//vyqW7eubGxsZDKZtHjxYvXp00eBgYEqWrSopkyZYrF/V1dX/fTTT+rWrZvKlCmj4sWLa9y4cWratGmaasiWLZt+++03DRgwQMHBwbK1tVXp0qXN40j16dNHUVFRev/993Xx4kUVL15cP/74owoXLizpbguzRYsWqXv37ipZsqQqVKig0aNHq3nz5o90Ljp37qzQ0FCVL19eMTEx2rRpU4adZwAAAAB4kQRNDXr4QhkoPQ/aiIiIUFBQkDw9PTV+/HiVKFFCt2/f1rp169SzZ08dOXLksWrq3LmzRo0aJcMwdOrUKfXt21dvvfWWxQPYYD2Z+vQ94ElJGumfp+8BAMDT9wDgRfKgJ6I9C6FU/fr1zb1lXFxcLOZdu3ZNnp6e+uyzzzRv3jz9888/8vLyUqNGjfTpp5/K1dXV/CT4ew0fPlwjRoxQSEiISpcurUmTJpnnffvtt+ratatu3LhhnrZ582YNGDBA+/fvl5eXl9q2bavRo0fLzu7ud8tbt25pwIABWrx4saKjo1W+fHl9/vnnqlChgiTp6tWr6tWrl3799VfFxMQob968+vDDD9W+fXuZTCaL2oKDg1McS/tZ8Fw8fQ8AAAAAAODKlStau3atevbsmSyQkv7voWc2NjaaMmWKDh06pAULFui3337TwIEDJUmVK1fWpEmT5O7ursjISEVGRqY61M6VK1e0dOlSvfzyy+ZpZ8+eVf369VWhQgXt379fM2fO1Jw5czR69GjzMgMHDtTy5cu1YMEC7dmzR/7+/qpTp46uXLkiSfrf//6nw4cPa82aNQoLC9PMmTPNY2Pv2LFDkrRhwwZFRkZqxYoVj3/inmEvdCi1cOFCubq6pvh66aWXnpptPgndunVLtc5u3bpldnkAAAAAgBfM8ePHZRiGihUr9sDl+vbtq1dffVV+fn6qXr26Ro8eraVLl0q6+7AsDw8PmUwm5cqVS7ly5ZKrq6t53RkzZsjV1VUuLi7Kli2bwsPDNXfuXIv5vr6+mjZtmooVK6bGjRtr5MiRmjhxohITE3Xjxg3NnDlT48ePV7169VS8eHHNnj1bzs7OmjNnjiTp9OnTKlOmjMqXLy8/Pz/VrFlTjRo1kvR/DwXLli2bcuXKJS8vrww9h8+aF7pf02uvvWaRiN7L3t7+qdnmkzBq1KhU0+IHNa0DAAAAAOBJSOvoQhs2bNDYsWN15MgRRUdH686dO4qLi1NsbKyyZMnywHXffPNNDRkyRJJ04cIFjRkzRrVr19bu3bvl5uamsLAwVapUyaKbXVBQkGJiYvTvv//q2rVrun37tnm8Zenud/2KFSsqLCxMktS9e3c1bdpUe/bsUe3atdW4cWNVrlz5UU/HC+GFDqXc3Nzk5ub21G/zSciRI4dy5MiR2WUAAAAAACBJKly4sEwm0wMHM4+IiFDDhg3VvXt3ffzxx/Ly8tKWLVvUsWNHxcfHPzSU8vDwkL+/v6S7T42fM2eOcufOrSVLlqhTp04Zchz16tXTqVOntHr1aq1fv141atRQz549NWHChAzZ/vPkhe6+BwAAAAAAng5eXl6qU6eOpk+fbjHweJJr165p9+7dSkxM1MSJE/XKK6+oSJEiOnfunMVyDg4OSkhISNM+bW1tJUk3b96UJAUEBGjbtm0Wrba2bt0qNzc35c2bV4UKFZKDg4O2bv2/Qdxv376tnTt3qnjx4uZp3t7eatu2rb799ltNmjRJX375pbk2SWmu73lHKAUAAAAAAJ4K06dPV0JCgipWrKjly5fr2LFjCgsL05QpU1SpUiX5+/vr9u3bmjp1qv755x998803mjVrlsU2/Pz8FBMTo40bN+ry5cuKjY01z4uNjdX58+d1/vx57d+/X927d5eTk5Nq164tSerRo4fOnDmj3r1768iRI1q1apWGDx+ufv36ycbGRi4uLurevbsGDBigtWvX6vDhw+rcubNiY2PVsWNHSdKwYcO0atUqHT9+XIcOHdLPP/+sgIAASXd7LTk7O2vt2rW6cOGCoqKirHRmn06EUgAAAAAA4KlQsGBB7dmzR6+++qref/99BQYGqlatWtq4caNmzpypUqVK6bPPPtO4ceMUGBiohQsXauzYsRbbqFy5srp166aWLVvK29tbn376qXne7NmzlTt3buXOnVuvvvqqLl++rNWrV6to0aKSpDx58mj16tXasWOHSpUqpW7duqljx44a+v/au/Ponu78j+Ovr282IZstgpSUiBSxhJIYW4dqDcOY2sYJGdt0EbWOPUHUSRUzOijFiM5B2qll1BJdDK0IiuRQTWOJNB0nsRWJhJEm9/eH4zu/tGgTyf1K8nyc8z0nufdzP9/3veed8H3nfT939mzbHDExMfr973+vsLAwtW3bVufOndPevXvl5eUl6V431IwZMxQUFKQuXbrIarUqLi5OkuTg4KC3335bq1evVr169dSvX7+yvqRPNIvxS1cSA8qR7OxseXh46Nk3n5VD1Uq9dBoAAEqISPj5QQCACuHOnTu6cOGC/Pz85OLiYu9wUIE9Ktfufya/efPmIx+mRqcUAAAAAAAATEdRCgAAAAAAAKajKAUAAAAAAADTUZQCAAAAAACA6ShKAQAAAAAAwHQ8lgwVWtR2B1VzIM0Bs3T9/IC9QwAAAABQTtApBQAAAAAAANNRlAIAAAAAAIDpKEoBAAAAAADAdBSlAAAAAAAAYDqKUgAAAAAAwK4KCgoUGhqqAQMGFNl+8+ZN+fr6atasWbZtW7Zs0XPPPScvLy9VrVpVAQEBGjlypJKSkmxjYmNjZbFYbK/q1asrODhYW7duNe2cJKlbt26aMGGCqe9ZnvBYMgAAAAAAKoEDXbqa+n7FeTKz1WpVbGysWrdurY0bN2rYsGGSpIiICNWoUUNRUVGSpGnTpmnJkiUaP3685s2bp4YNG+rKlSvas2ePZsyYofj4eNuc7u7uSk1NlSTl5ORo/fr1GjRokE6fPq2AgIBSPFOUFJ1SAAAAAADA7po2baqYmBhFREQoMzNT//rXvxQXF6f33ntPTk5OOnz4sBYtWqSlS5dq6dKl6ty5s5566ikFBwdr9uzZ2rNnT5H5LBaL6tatq7p168rf318LFixQlSpVdPLkSduY69eva/jw4fLy8pKrq6tefPFFnT17tsg8W7ZsUfPmzeXs7KxGjRppyZIlRfavXLlS/v7+cnFxkbe3t1566SVJUnh4uA4cOKBly5bZOrbS09PL5uKVUxSlAAAAAADAEyEiIkKtWrVSWFiYxo4dq8jISLVq1UqStHnzZlWvXl2vvvrqA4+1WCwPnbegoEAbNmyQJLVt29a2PTw8XMeOHdOOHTuUmJgowzDUu3dv5efnS5KOHz+uQYMGaciQITp16pTmzp2rOXPmKDY2VpJ07NgxjR8/XvPnz1dqaqri4+PVpUsXSdKyZcsUEhKiMWPGKDMzU5mZmfL19X3sa1SRcPseAAAAAAB4IlgsFr3zzjsKDAxUy5YtNX36dNu+M2fO6Omnn5aDw/9KGUuXLlVkZKTt+4sXL8rDw0PSvfWoqlevLkm6ffu2HB0d9e6776px48aSpLNnz2rHjh1KSEhQaGioJGnjxo3y9fXV9u3bNXDgQC1dulS//vWvNWfOHEn3urm+/vprvfXWWwoPD1dGRoaqVaumPn36yM3NTQ0bNlSbNm0kSR4eHnJycpKrq6vq1q1bhlet/KJTCgAAAAAAPDH+/ve/y9XVVRcuXNB//vOfR44dOXKkkpOTtXr1auXm5sowDNs+Nzc3JScnKzk5WUlJSVq4cKFefvllffTRR5KklJQUOTg4qEOHDrZjatasqYCAAKWkpNjGdOrUqch7durUSWfPnlVBQYF69uyphg0b6umnn1ZYWJg2btyovLy80roUFR5FKQAAAAAA8EQ4dOiQ/vKXv2jnzp169tlnNWrUKFuhyd/fX2lpabZb6yTJ09NTTZo0Uf369X8yV5UqVdSkSRM1adJEQUFBmjRpkrp166Y333yz1OJ1c3PTiRMntHnzZvn4+NhuN7xx40apvUdFRlEKAAAAAADYXV5ensLDw/XKK6+oe/fuWrdunY4ePapVq1ZJkoYOHapbt25p5cqVJX4Pq9Wq27dvS5ICAwP1ww8/6MiRI7b9165dU2pqqp555hnbmISEhCJzJCQkqGnTprJarZIkBwcH9ejRQ4sWLdLJkyeVnp6uffv2SZKcnJxUUFBQ4ngrOtaUAgAAAAAAdjdjxgwZhqGYmBhJUqNGjbR48WJNmTJFL774okJCQjR58mRNnjxZ3377rQYMGCBfX19lZmZq3bp1slgsqlLlf703hmEoKytL0r01pT755BPt3bvXtgaVv7+/+vXrpzFjxmj16tVyc3PT9OnTVb9+ffXr10+SNHnyZLVv317R0dEaPHiwEhMTtXz5clthbOfOnUpLS1OXLl3k5eWl3bt3q7CwUAEBAbZzOHLkiNLT01W9enXVqFGjSIyVHVcCAAAAAADY1YEDB7RixQqtX79erq6utu1/+tOfFBoaaruNb/Hixdq0aZOSkpLUp08f+fv7a+DAgSosLFRiYqLc3d1tx2ZnZ8vHx0c+Pj4KDAzUkiVLNH/+fM2aNcs2Zv369QoODlafPn0UEhIiwzC0e/duOTo6Srr3pL4PPvhAcXFxatGihSIjIzV//nyFh4dLunf74NatW/Xcc88pMDBQq1at0ubNm9W8eXNJ0pQpU2S1WvXMM8+odu3aysjIMOFqlh8W4/+vAgZUENnZ2fLw8NCukFBVc6AhEDBL188P2DsEAACASu3OnTu6cOGC/Pz85OLiYu9wUIE9Ktfufya/efNmkULhj9EpBQAAAAAAANNRlAIAAAAAAIDpKEoBAAAAAADAdBSlAAAAAAAAYDqKUgAAAAAAADAdjyVDhfar+D2PXOkfAAAAACoiwzDsHQIquNLIMTqlAAAAAACoIBwdHSVJeXl5do4EFd39HLufcyVBpxQAAAAAABWE1WqVp6enLl++LElydXWVxWKxc1SoSAzDUF5eni5fvixPT09ZrdYSz0VRCgAAAACACqRu3bqSZCtMAWXB09PTlmslRVEKAAAAAIAKxGKxyMfHR3Xq1FF+fr69w0EF5Ojo+FgdUvdRlAIAAAAAoAKyWq2lUjgAygoLnQMAAAAAAMB0FKUAAAAAAABgOopSAAAAAAAAMB1rSqFCMgxDkpSdnW3nSAAAAAAAqFzufxa//9n8YShKoUK6du2aJMnX19fOkQAAAAAAUDnl5OTIw8PjofspSqFCqlGjhiQpIyPjkT8AQEWSnZ0tX19ffffdd3J3d7d3OIApyHtURuQ9KiPyHpVRec57wzCUk5OjevXqPXIcRSlUSFWq3FsuzcPDo9z98AKPy93dnbxHpUPeozIi71EZkfeojMpr3v+SBhEWOgcAAAAAAIDpKEoBAAAAAADAdBSlUCE5OzsrKipKzs7O9g4FMA15j8qIvEdlRN6jMiLvURlVhry3GD/3fD4AAAAAAACglNEpBQAAAAAAANNRlAIAAAAAAIDpKEoBAAAAAADAdBSlUG6tWLFCjRo1kouLizp06KCjR48+cvw///lPNWvWTC4uLmrZsqV2795tUqRA6SlO3q9Zs0adO3eWl5eXvLy81KNHj5/9OQGeRMX9fX9fXFycLBaL+vfvX7YBAmWguHl/48YNvfbaa/Lx8ZGzs7OaNm3K/3VQrhQ35//6178qICBAVatWla+vryZOnKg7d+6YFC3w+D7//HP17dtX9erVk8Vi0fbt23/2mP3796tt27ZydnZWkyZNFBsbW+ZxljWKUiiX3n//fU2aNElRUVE6ceKEWrVqpV69euny5csPHH/o0CENHTpUo0aNUlJSkvr376/+/fvrq6++MjlyoOSKm/f79+/X0KFD9e9//1uJiYny9fXV888/r4sXL5ocOVByxc37+9LT0zVlyhR17tzZpEiB0lPcvL9796569uyp9PR0ffjhh0pNTdWaNWtUv359kyMHSqa4Ob9p0yZNnz5dUVFRSklJ0bp16/T+++9r5syZJkcOlFxubq5atWqlFStW/KLxFy5c0G9+8xt1795dycnJmjBhgkaPHq29e/eWcaRli6fvoVzq0KGD2rdvr+XLl0uSCgsL5evrq4iICE2fPv0n4wcPHqzc3Fzt3LnTtq1jx45q3bq1Vq1aZVrcwOMobt7/WEFBgby8vLR8+XINHz68rMMFSkVJ8r6goEBdunTRyJEj9cUXX+jGjRu/6K+PwJOiuHm/atUqvfXWW/rmm2/k6OhodrjAYytuzo8bN04pKSn67LPPbNsmT56sI0eO6ODBg6bFDZQWi8Wibdu2PbK7e9q0adq1a1eRxoohQ4boxo0bio+PNyHKskGnFMqdu3fv6vjx4+rRo4dtW5UqVdSjRw8lJiY+8JjExMQi4yWpV69eDx0PPGlKkvc/lpeXp/z8fNWoUaOswgRKVUnzfv78+apTp45GjRplRphAqSpJ3u/YsUMhISF67bXX5O3trRYtWmjhwoUqKCgwK2ygxEqS86GhoTp+/LjtFr+0tDTt3r1bvXv3NiVmwB4q6mdaB3sHABTX1atXVVBQIG9v7yLbvb299c033zzwmKysrAeOz8rKKrM4gdJUkrz/sWnTpqlevXo/+ccMeFKVJO8PHjyodevWKTk52YQIgdJXkrxPS0vTvn37NGzYMO3evVvnzp3Tq6++qvz8fEVFRZkRNlBiJcn5P/zhD7p69ap+9atfyTAM/fDDD3r55Ze5fQ8V2sM+02ZnZ+v27duqWrWqnSJ7PHRKAUAlEBMTo7i4OG3btk0uLi72DgcoEzk5OQoLC9OaNWtUq1Yte4cDmKawsFB16tTRu+++q+DgYA0ePFizZs1iiQJUWPv379fChQu1cuVKnThxQlu3btWuXbsUHR1t79AAFBOdUih3atWqJavVqkuXLhXZfunSJdWtW/eBx9StW7dY44EnTUny/r7FixcrJiZGn376qYKCgsoyTKBUFTfvz58/r/T0dPXt29e2rbCwUJLk4OCg1NRUNW7cuGyDBh5TSX7f+/j4yNHRUVar1bYtMDBQWVlZunv3rpycnMo0ZuBxlCTn58yZo7CwMI0ePVqS1LJlS+Xm5mrs2LGaNWuWqlSh9wIVz8M+07q7u5fbLimJTimUQ05OTgoODi6ysGFhYaE+++wzhYSEPPCYkJCQIuMl6ZNPPnnoeOBJU5K8l6RFixYpOjpa8fHxateunRmhAqWmuHnfrFkznTp1SsnJybbXb3/7W9tTanx9fc0MHyiRkvy+79Spk86dO2crwkrSmTNn5OPjQ0EKT7yS5HxeXt5PCk/3i7I8xwsVVYX9TGsA5VBcXJzh7OxsxMbGGl9//bUxduxYw9PT08jKyjIMwzDCwsKM6dOn28YnJCQYDg4OxuLFi42UlBQjKirKcHR0NE6dOmWvUwCKrbh5HxMTYzg5ORkffvihkZmZaXvl5OTY6xSAYitu3v/YiBEjjH79+pkULVA6ipv3GRkZhpubmzFu3DgjNTXV2Llzp1GnTh1jwYIF9joFoFiKm/NRUVGGm5ubsXnzZiMtLc34+OOPjcaNGxuDBg2y1ykAxZaTk2MkJSUZSUlJhiRj6dKlRlJSkvHtt98ahmEY06dPN8LCwmzj09LSDFdXV2Pq1KlGSkqKsWLFCsNqtRrx8fH2OoVSwe17KJcGDx6sK1euKDIyUllZWWrdurXi4+NtC79lZGQU+etJaGioNm3apNmzZ2vmzJny9/fX9u3b1aJFC3udAlBsxc37d955R3fv3tVLL71UZJ6oqCjNnTvXzNCBEitu3gMVQXHz3tfXV3v37tXEiRMVFBSk+vXr6/XXX9e0adPsdQpAsRQ352fPni2LxaLZs2fr4sWLql27tvr27as33njDXqcAFNuxY8fUvXt32/eTJk2SJI0YMUKxsbHKzMxURkaGbb+fn5927dqliRMnatmyZWrQoIHWrl2rXr16mR57abIYBv2NAAAAAAAAMBd/WgQAAAAAAIDpKEoBAAAAAADAdBSlAAAAAAAAYDqKUgAAAAAAADAdRSkAAAAAAACYjqIUAAAAAAAATEdRCgAAAAAAAKajKAUAAAAAAADTUZQCAAAAAACA6ShKAQAAVGLh4eHq37+/vcN4oPT0dFksFiUnJ9s7FAAAUAYoSgEAAOCJc/fuXXuHAAAAyhhFKQAAAEiSunXrpoiICE2YMEFeXl7y9vbWmjVrlJubqz/+8Y9yc3NTkyZNtGfPHtsx+/fvl8Vi0a5duxQUFCQXFxd17NhRX331VZG5t2zZoubNm8vZ2VmNGjXSkiVLiuxv1KiRoqOjNXz4cLm7u2vs2LHy8/OTJLVp00YWi0XdunWTJH355Zfq2bOnatWqJQ8PD3Xt2lUnTpwoMp/FYtHatWv1u9/9Tq6urvL399eOHTuKjDl9+rT69Okjd3d3ubm5qXPnzjp//rxt/9q1axUYGCgXFxc1a9ZMK1eufOxrDAAA/oeiFAAAAGw2bNigWrVq6ejRo4qIiNArr7yigQMHKjQ0VCdOnNDzzz+vsLAw5eXlFTlu6tSpWrJkib788kvVrl1bffv2VX5+viTp+PHjGjRokIYMGaJTp05p7ty5mjNnjmJjY4vMsXjxYrVq1UpJSUmaM2eOjh49Kkn69NNPlZmZqa1bt0qScnJyNGLECB08eFCHDx+Wv7+/evfurZycnCLzzZs3T4MGDdLJkyfVu3dvDRs2TN9//70k6eLFi+rSpYucnZ21b98+HT9+XCNHjtQPP/wgSdq4caMiIyP1xhtvKCUlRQsXLtScOXO0YcOGUr/mAABUVhbDMAx7BwEAAAD7CA8P140bN7R9+3Z169ZNBQUF+uKLLyRJBQUF8vDw0IABA/Tee+9JkrKysuTj46PExER17NhR+/fvV/fu3RUXF6fBgwdLkr7//ns1aNBAsbGxGjRokIYNG6YrV67o448/tr3vn//8Z+3atUunT5+WdK9Tqk2bNtq2bZttTHp6uvz8/JSUlKTWrVs/9BwKCwvl6empTZs2qU+fPpLudUrNnj1b0dHRkqTc3FxVr15de/bs0QsvvKCZM2cqLi5OqampcnR0/MmcTZo0UXR0tIYOHWrbtmDBAu3evVuHDh0qyaUGAAA/QqcUAAAAbIKCgmxfW61W1axZUy1btrRt8/b2liRdvny5yHEhISG2r2vUqKGAgAClpKRIklJSUtSpU6ci4zt16qSzZ8+qoKDAtq1du3a/KMZLly5pzJgx8vf3l4eHh9zd3XXr1i1lZGQ89FyqVasmd3d3W9zJycnq3LnzAwtSubm5On/+vEaNGqXq1avbXgsWLChyex8AAHg8DvYOAAAAAE+OHxdpLBZLkW0Wi0XSve6k0latWrVfNG7EiBG6du2ali1bpoYNG8rZ2VkhISE/WRz9QedyP+6qVas+dP5bt25JktasWaMOHToU2We1Wn9RjAAA4OdRlAIAAMBjO3z4sJ566ilJ0vXr13XmzBkFBgZKkgIDA5WQkFBkfEJCgpo2bfrIIo+Tk5MkFemmun/sypUr1bt3b0nSd999p6tXrxYr3qCgIG3YsEH5+fk/KV55e3urXr16SktL07Bhw4o1LwAA+OUoSgEAAOCxzZ8/XzVr1pS3t7dmzZqlWrVqqX///pKkyZMnq3379oqOjtbgwYOVmJio5cuX/+zT7OrUqaOqVasqPj5eDRo0kIuLizw8POTv769//OMfateunbKzszV16tRHdj49yLhx4/S3v/1NQ4YM0YwZM+Th4aHDhw/r2WefVUBAgObNm6fx48fLw8NDL7zwgv773//q2LFjun79uiZNmlTSywQAAP4f1pQCAADAY4uJidHrr7+u4OBgZWVl6aOPPrJ1OrVt21YffPCB4uLi1KJFC0VGRmr+/PkKDw9/5JwODg56++23tXr1atWrV0/9+vWTJK1bt07Xr19X27ZtFRYWpvHjx6tOnTrFirdmzZrat2+fbt26pa5duyo4OFhr1qyxdU2NHj1aa9eu1fr169WyZUt17dpVsbGx8vPzK/7FAQAAD8TT9wAAAFBi95++d/36dXl6eto7HAAAUI7QKQUAAAAAAADTUZQCAAAAAACA6bh9DwAAAAAAAKajUwoAAAAAAACmoygFAAAAAAAA01GUAgAAAAAAgOkoSgEAAAAAAMB0FKUAAAAAAABgOopSAAAAAAAAMB1FKQAAAAAAAJiOohQAAAAAAABMR1EKAAAAAAAApvs/gzi/mSHEmaUAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["!mv /content/catboost_info /content/drive/MyDrive/Colab\\ Notebooks/IPLPrediction/"],"metadata":{"id":"5iXJtEiu9LVV","executionInfo":{"status":"ok","timestamp":1744091529670,"user_tz":-330,"elapsed":262,"user":{"displayName":"Dinesh Kumar","userId":"18299454607260962281"}}},"execution_count":28,"outputs":[]}]}