File size: 7,316 Bytes
084ab29
 
 
 
 
 
 
 
 
 
 
 
55c9d69
 
084ab29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94a318
084ab29
 
 
 
a94a318
084ab29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16ac215
 
 
 
084ab29
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import imageio
import numpy as np

from demo.img_gen import img_gen
from demo.mesh_recon import mesh_reconstruction
from demo.relighting_gen import relighting_gen
from demo.render_hints import render_hint_images_btn_func
from demo.rm_bg import rm_bg


with gr.Blocks(title="DiLightNet Demo") as demo:
    gr.Markdown("""# DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
                ## A demo for generating images under point lights using DiLightNet. For full usage, please refer to our [GitHub repository](TBD)""")

    with gr.Row():
        # 1. Reference Image Input / Generation
        with gr.Column(variant="panel"):
            gr.Markdown("## Step 1. Input or Generate Reference Image")
            input_image = gr.Image(height=512, width=512, label="Input Image", interactive=True)
            with gr.Accordion("Generate Image", open=False):
                with gr.Group():
                    prompt = gr.Textbox(value="", label="Prompt", lines=3, placeholder="Input prompt here")
                    with gr.Row():
                        seed = gr.Number(value=42, label="Seed", interactive=True)
                        steps = gr.Number(value=20, label="Steps", interactive=True)
                        cfg = gr.Number(value=7.5, label="CFG", interactive=True)
                        down_from_768 = gr.Checkbox(label="Downsample from 768", value=True)
                with gr.Row():
                    generate_btn = gr.Button(value="Generate")
                    generate_btn.click(fn=img_gen, inputs=[prompt, seed, steps, cfg, down_from_768], outputs=[input_image])

        # 2. Background Removal
        with gr.Column(variant="panel"):
            gr.Markdown("## Step 2. Remove Background")
            with gr.Tab("Masked Image"):
                masked_image = gr.Image(height=512, width=512, label="Masked Image", interactive=True)
            with gr.Tab("Mask"):
                mask = gr.Image(height=512, width=512, label="Mask", interactive=False)
            use_sam = gr.Checkbox(label="Use SAM for Refinement", value=False)
            rm_bg_btn = gr.Button(value="Remove Background")
            rm_bg_btn.click(fn=rm_bg, inputs=[input_image, use_sam], outputs=[masked_image, mask])

        # 3. Depth Estimation & Mesh Reconstruction
        with gr.Column(variant="panel"):
            gr.Markdown("## Step 3. Depth Estimation & Mesh Reconstruction")
            mesh = gr.Model3D(label="Mesh Reconstruction", clear_color=(1.0, 1.0, 1.0, 1.0), interactive=True)
            with gr.Column():
                with gr.Accordion("Options", open=False):
                    with gr.Group():
                        remove_edges = gr.Checkbox(label="Remove Occlusion Edges", value=False)
                        fov = gr.Number(value=55., label="FOV", interactive=True)
                        mask_threshold = gr.Slider(value=25., label="Mask Threshold", minimum=0., maximum=255., step=1.)
                depth_estimation_btn = gr.Button(value="Estimate Depth")
                depth_estimation_btn.click(
                    fn=mesh_reconstruction,
                    inputs=[masked_image, mask, remove_edges, fov, mask_threshold],
                    outputs=[mesh]
                )

    gr.Markdown("## Step 4. Render Hints")
    with gr.Row():
        with gr.Column():
            hint_image = gr.Image(label="Hint Image")
        with gr.Column():
            pl_pos_x = gr.Slider(value=3., label="Point Light X", minimum=-5., maximum=5., step=0.01)
            pl_pos_y = gr.Slider(value=1., label="Point Light Y", minimum=-5., maximum=5., step=0.01)
            pl_pos_z = gr.Slider(value=3., label="Point Light Z", minimum=-5., maximum=5., step=0.01)
            power = gr.Slider(value=1000., label="Point Light Power", minimum=0., maximum=2000., step=1.)
            render_btn = gr.Button(value="Render Hints")
            res_folder_path = gr.Textbox("", visible=False)

            def render_wrapper(mesh, fov, pl_pos_x, pl_pos_y, pl_pos_z, power,
                               progress=gr.Progress(track_tqdm=True)):
                res_path = render_hint_images_btn_func(mesh, fov, [(pl_pos_x, pl_pos_y, pl_pos_z)], power)
                hint_files = [res_path + '/hint00' + mat for mat in ["_diffuse.png", "_ggx0.34.png"]]
                hints = []
                for hint_file in hint_files:
                    hint = imageio.v3.imread(hint_file)
                    hints.append(hint)
                hints = np.concatenate(hints, axis=1)
                return hints, res_path

            render_btn.click(
                fn=render_wrapper,
                inputs=[mesh, fov, pl_pos_x, pl_pos_y, pl_pos_z, power],
                outputs=[hint_image, res_folder_path]
            )

    gr.Markdown("## Step 5. Lighting Control Generation")
    with gr.Row():
        res_image = gr.Image(label="Result Image")
        with gr.Column():
            with gr.Group():
                relighting_prompt = gr.Textbox(value="", label="Lighting-Control Text Prompt", lines=3,
                                               placeholder="Input prompt here",
                                               interactive=True)
                reuse_btn = gr.Button(value="Reuse Image Generation Prompt")
                reuse_btn.click(fn=lambda x: x, inputs=[prompt], outputs=[relighting_prompt])
                with gr.Accordion("Options", open=False):
                    with gr.Row():
                        relighting_seed = gr.Number(value=3407, label="Seed", interactive=True)
                        relighting_steps = gr.Number(value=20, label="Steps", interactive=True)
                        relighting_cfg = gr.Number(value=3.0, label="CFG", interactive=True)
            with gr.Row():
                relighting_generate_btn = gr.Button(value="Generate")

            def gen_relighting_image(masked_image, mask, res_folder_path, relighting_prompt, relighting_seed,
                                     relighting_steps, relighting_cfg,
                                     progress=gr.Progress(track_tqdm=True)):
                relighting_gen(
                    masked_ref_img=masked_image,
                    mask=mask,
                    cond_path=res_folder_path,
                    frames=1,
                    prompt=relighting_prompt,
                    steps=int(relighting_steps),
                    seed=int(relighting_seed),
                    cfg=relighting_cfg
                )
                mask_for_bg = imageio.v3.imread(res_folder_path + '/hint00_diffuse.png')[..., -1:] / 255.
                res = imageio.v3.imread(res_folder_path + '/relighting00.png') / 255.
                res = res * mask_for_bg  # + bg * (1. - mask_for_bg)
                res = (res * 255).clip(0, 255).astype(np.uint8)
                return res


            relighting_generate_btn.click(fn=gen_relighting_image,
                                          inputs=[masked_image, mask, res_folder_path, relighting_prompt, relighting_seed,
                                                  relighting_steps, relighting_cfg],
                                          outputs=[res_image])


if __name__ == '__main__':
    demo.queue().launch(server_name="0.0.0.0", share=True)