Spaces:
Sleeping
Sleeping
File size: 1,024 Bytes
b2874ce d6f9608 5c2979c b2874ce db3fa72 2716603 db3fa72 b2874ce db3fa72 b2874ce db3fa72 2716603 b2874ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from fastai.vision.all import *
def is_cat(x): return x[0].isupper()
learn = load_learner('model.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred, pred_idx, probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Cat or Dog Classifier"
# description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
# article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
# examples = ['siamese.jpg']
interpretation = 'default'
enable_queue = True
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3),
title=title,
# description=description, article=article, examples=examples,
interpretation=interpretation,
enable_queue=enable_queue).launch()
|