Spaces:
Running
on
A10G
Running
on
A10G
File size: 7,961 Bytes
1ee3bf0 c644570 1ee3bf0 c644570 c4e3a54 1ee3bf0 33469f8 5d133e3 1ee3bf0 36e28c1 cad6ebe a750c0e c4e3a54 a750c0e c4e3a54 a750c0e c4e3a54 a750c0e 6e5a323 3c77757 36e28c1 33469f8 3c77757 33469f8 1ee3bf0 33469f8 1ee3bf0 33469f8 1ee3bf0 33469f8 1ee3bf0 33469f8 1ee3bf0 36e28c1 33469f8 3c77757 1ee3bf0 b2c85ec 33469f8 1ee3bf0 36e28c1 33469f8 1ee3bf0 33469f8 737d099 33469f8 1ee3bf0 b2c85ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
import torch
from diffusers import AutoPipelineForInpainting, UNet2DConditionModel
import diffusers
from share_btn import community_icon_html, loading_icon_html, share_js
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to(device)
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def predict(dict, mask_image,mask_use,prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
print(dict.keys(),mask_image,mask_use)
if negative_prompt == "":
negative_prompt = None
scheduler_class_name = scheduler.split("-")[0]
add_kwargs = {}
if len(scheduler.split("-")) > 1:
add_kwargs["use_karras"] = True
if len(scheduler.split("-")) > 2:
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
scheduler = getattr(diffusers, scheduler_class_name)
pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs)
init_image = dict["image"].convert("RGB").resize((1024, 1024))
if mask_use:
mask=mask_image.convert("L").resize((1024, 1024))
else:
mask = dict["mask"].convert("RGB").resize((1024, 1024))
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
return output.images[0], gr.update(visible=True)
css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''
image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
gr.HTML(read_content("header.html"))
with gr.Row():
with gr.Column():
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="image_upload",height=400)
mask_image = gr.Image(source='upload', elem_id="mask_upload", type="pil", label="mask_upload",height=400)
mask_use=gr.Checkbox(label="Use Mask")
with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
with gr.Row():
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
btn = gr.Button("Inpaint!", elem_id="run_button")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(mobile_collapse=False, equal_height=True):
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
with gr.Row(mobile_collapse=False, equal_height=True):
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", height=400)
with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)
btn.click(fn=predict, inputs=[image,mask_image,mask_use, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container], api_name='run')
prompt.submit(fn=predict, inputs=[image,mask_image,mask_use , prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container])
share_button.click(None, [], [], _js=share_js)
gr.Examples(
examples=[
["./imgs/aaa (8).png"],
["./imgs/download (1).jpeg"],
["./imgs/0_oE0mLhfhtS_3Nfm2.png"],
["./imgs/02_HubertyBlog-1-1024x1024.jpg"],
["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"],
["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"],
["./imgs/canam-electric-motorcycles-scaled.jpg"],
["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"],
["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"],
["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"],
],
fn=predict,
inputs=[image],
cache_examples=False,
)
gr.HTML(
"""
<div class="footer">
<p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
</p>
</div>
"""
)
image_blocks.queue(max_size=25).launch() |