Spaces:
Sleeping
Sleeping
| import os | |
| from typing import List | |
| import numpy as np | |
| import pooch | |
| from PIL import Image | |
| from PIL.Image import Image as PILImage | |
| from scipy.special import log_softmax | |
| from .base import BaseSession | |
| pallete1 = [ | |
| 0, | |
| 0, | |
| 0, | |
| 255, | |
| 255, | |
| 255, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| ] | |
| pallete2 = [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 255, | |
| 255, | |
| 255, | |
| 0, | |
| 0, | |
| 0, | |
| ] | |
| pallete3 = [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 255, | |
| 255, | |
| 255, | |
| ] | |
| class Unet2ClothSession(BaseSession): | |
| def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: | |
| ort_outs = self.inner_session.run( | |
| None, | |
| self.normalize( | |
| img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (768, 768) | |
| ), | |
| ) | |
| pred = ort_outs | |
| pred = log_softmax(pred[0], 1) | |
| pred = np.argmax(pred, axis=1, keepdims=True) | |
| pred = np.squeeze(pred, 0) | |
| pred = np.squeeze(pred, 0) | |
| mask = Image.fromarray(pred.astype("uint8"), mode="L") | |
| mask = mask.resize(img.size, Image.LANCZOS) | |
| masks = [] | |
| mask1 = mask.copy() | |
| mask1.putpalette(pallete1) | |
| mask1 = mask1.convert("RGB").convert("L") | |
| masks.append(mask1) | |
| mask2 = mask.copy() | |
| mask2.putpalette(pallete2) | |
| mask2 = mask2.convert("RGB").convert("L") | |
| masks.append(mask2) | |
| mask3 = mask.copy() | |
| mask3.putpalette(pallete3) | |
| mask3 = mask3.convert("RGB").convert("L") | |
| masks.append(mask3) | |
| return masks | |
| def download_models(cls, *args, **kwargs): | |
| fname = f"{cls.name()}.onnx" | |
| pooch.retrieve( | |
| "https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_cloth_seg.onnx", | |
| None | |
| if cls.checksum_disabled(*args, **kwargs) | |
| else "md5:2434d1f3cb744e0e49386c906e5a08bb", | |
| fname=fname, | |
| path=cls.u2net_home(*args, **kwargs), | |
| progressbar=True, | |
| ) | |
| return os.path.join(cls.u2net_home(), fname) | |
| def name(cls, *args, **kwargs): | |
| return "u2net_cloth_seg" | |