import gradio as gr import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from PIL import Image from torchvision import transforms class simpleCNN(nn.Module): def __init__(self, num_classes=3): super(simpleCNN, self).__init__() self.name = "simpleCNN" self.conv1 = nn.Conv2d(3, 5, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(5, 10, 5) self.fc1 = nn.Linear(10 * 5 * 5, 32) self.fc2 = nn.Linear(32, num_classes) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 10 * 5 * 5) x = F.relu(self.fc1(x)) x = self.fc2(x) return x net = simpleCNN(num_classes=3) net.load_state_dict(torch.load("./ckpt.pth", map_location=torch.device("cpu"))) net.eval() class_labels = ["other", "car", "truck"] transform = transforms.Compose( [ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) @torch.no_grad() def predict(img): global net img = Image.fromarray(img.astype("uint8"), "RGB") img = transform(img).unsqueeze(0) pred = net(img).detach().numpy()[0] pred = np.exp(pred) / np.sum(np.exp(pred)) return {class_labels[i]: float(pred[i]) for i in range(len(class_labels))} iface = gr.Interface(fn=predict, inputs="image", outputs="label") iface.launch()