Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import sqlparse | |
# from modelscope import snapshot_download | |
# 加载模型和分词器 | |
model_name = "defog/llama-3-sqlcoder-8b" # 使用更新的模型以提高性能 | |
# model_name = snapshot_download("stevie/llama-3-sqlcoder-8b") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
use_cache=True, | |
) | |
def generate_sql(user_question, instructions, create_table_statements): | |
prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|> | |
Generate a SQL query to answer this question: `{user_question}` | |
{instructions} | |
DDL statements: | |
{create_table_statements}<|eot_id|><|start_header_id|>assistant<|end_header_id|> | |
The following SQL query best answers the question `{user_question}`: | |
```sql | |
""" | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
generated_ids = model.generate( | |
**inputs, | |
num_return_sequences=1, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.eos_token_id, | |
max_new_tokens=400, | |
do_sample=False, | |
num_beams=1, | |
) | |
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
# empty cache so that you do generate more results w/o memory crashing | |
# particularly important on Colab – memory management is much more straightforward | |
# when running on an inference service | |
return sqlparse.format(outputs[0].split("[SQL]")[-1], reindent=True) | |
question = f"What are our top 3 products by revenue in the New York region?" | |
instructions = f"""- if the question cannot be answered given the database schema, return "I do not know" | |
- recall that the current date in YYYY-MM-DD format is 2024-09-15 | |
""" | |
schema = f"""CREATE TABLE products ( | |
product_id INTEGER PRIMARY KEY, -- Unique ID for each product | |
name VARCHAR(50), -- Name of the product | |
price DECIMAL(10,2), -- Price of each unit of the product | |
quantity INTEGER -- Current quantity in stock | |
); | |
CREATE TABLE customers ( | |
customer_id INTEGER PRIMARY KEY, -- Unique ID for each customer | |
name VARCHAR(50), -- Name of the customer | |
address VARCHAR(100) -- Mailing address of the customer | |
); | |
CREATE TABLE salespeople ( | |
salesperson_id INTEGER PRIMARY KEY, -- Unique ID for each salesperson | |
name VARCHAR(50), -- Name of the salesperson | |
region VARCHAR(50) -- Geographic sales region | |
); | |
CREATE TABLE sales ( | |
sale_id INTEGER PRIMARY KEY, -- Unique ID for each sale | |
product_id INTEGER, -- ID of product sold | |
customer_id INTEGER, -- ID of customer who made purchase | |
salesperson_id INTEGER, -- ID of salesperson who made the sale | |
sale_date DATE, -- Date the sale occurred | |
quantity INTEGER -- Quantity of product sold | |
); | |
CREATE TABLE product_suppliers ( | |
supplier_id INTEGER PRIMARY KEY, -- Unique ID for each supplier | |
product_id INTEGER, -- Product ID supplied | |
supply_price DECIMAL(10,2) -- Unit price charged by supplier | |
); | |
-- sales.product_id can be joined with products.product_id | |
-- sales.customer_id can be joined with customers.customer_id | |
-- sales.salesperson_id can be joined with salespeople.salesperson_id | |
-- product_suppliers.product_id can be joined with products.product_id | |
""" | |
demo = gr.Interface( | |
fn=generate_sql, | |
title="SQLCoder-8b", | |
description="Defog's SQLCoder-8B is a state of the art-models for generating SQL queries from natural language. ", | |
inputs=[ | |
gr.Textbox(label="User Question", placeholder="Enter your question here...", value=question), | |
gr.Textbox(label="Instructions (optional)", placeholder="Enter any additional instructions here...", value=instructions), | |
gr.Textbox(label="Create Table Statements", placeholder="Enter DDL statements here...", value=schema), | |
], | |
outputs="text", | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |