# Imports import os import copy import torch import glob import pandas as pd import streamlit as st import pickle from xml.dom import minidom from svgpathtools import svg2paths2 from svgpathtools import wsvg import sys sys.path.append(os.getcwd()) from src.preprocessing.deepsvg.deepsvg_svglib.svg import SVG from src.preprocessing.deepsvg.deepsvg_config import config_hierarchical_ordered from src.preprocessing.deepsvg.deepsvg_utils import train_utils from src.preprocessing.deepsvg.deepsvg_utils import utils from src.preprocessing.deepsvg.deepsvg_dataloader import svg_dataset # ---- Methods for embedding logos ---- def compute_embedding_folder(folder_path: str, model_path: str, save: str = None) -> pd.DataFrame: data_list = [] for file in os.listdir(folder_path): print('File: ' + file) try: embedding = compute_embedding(os.path.join(folder_path, file), model_path) embedding['filename'] = file data_list.append(embedding) except: print('Embedding failed') print('Concatenating') data = pd.concat(data_list) if not save == None: output = open(os.path.join(save, 'svg_embedding_5000.pkl'), 'wb') pickle.dump(data, output) output.close() return data def compute_embedding(path: str, model_path: str, save: str = None) -> pd.DataFrame: # Convert all primitives to SVG paths - TODO text paths, attributes, svg_attributes = svg2paths2(path) # In previous project, this is performed at the end wsvg(paths, attributes=attributes, svg_attributes=svg_attributes, filename=path) svg = SVG.load_svg(path) svg.normalize() # Using DeepSVG normalize instead of expanding viewbox - TODO check is this equal? svg_str = svg.to_str() # Assign animation id to every path - TODO this changes the original logo! document = minidom.parseString(svg_str) paths = document.getElementsByTagName('path') for i in range(len(paths)): paths[i].setAttribute('animation_id', str(i)) with open(path, 'wb') as svg_file: svg_file.write(document.toxml(encoding='iso-8859-1')) # Decompose SVGs decomposed_svgs = {} for i in range(len(paths)): st.write(document) doc_temp = copy.deepcopy(document) paths_temp = doc_temp.getElementsByTagName('path') current_path = paths_temp[i] # Iteratively choose path i and remove all others remove_temp = paths_temp[:i] + paths_temp[i+1:] for path in remove_temp: if not path.parentNode.nodeName == 'clipPath': path.parentNode.removeChild(path) # Check for style attributes; add in case there are none if len(current_path.getAttribute('style')) <= 0: current_path.setAttribute('stroke', 'black') current_path.setAttribute('stroke-width', '2') id = current_path.getAttribute('animation_id') decomposed_svgs[id] = doc_temp.toprettyxml(encoding='iso-8859-1') doc_temp.unlink() #print(decomposed_svgs) meta = {} for id in decomposed_svgs: svg_d_str = decomposed_svgs[id] # Load into SVG and canonicalize current_svg = SVG.from_str(svg_d_str) # Canonicalize current_svg.canonicalize() # Applies DeepSVG canonicalize; previously custom methods were used decomposed_svgs[id] = current_svg.to_str() if not os.path.exists('data'): os.mkdir('data') if not os.path.exists('data/temp_svg'): os.mkdir('data/temp_svg') with open(('data/temp_svg/path_' + str(id)) + '.svg', 'w') as svg_file: svg_file.write(decomposed_svgs[id]) # Collect metadata len_groups = [path_group.total_len() for path_group in current_svg.svg_path_groups] start_pos = [path_group.svg_paths[0].start_pos for path_group in current_svg.svg_path_groups] try: total_len = sum(len_groups) nb_groups = len(len_groups) max_len_group = max(len_groups) except: total_len = 0 nb_groups = 0 max_len_group = 0 meta[id] = { 'id': id, 'total_len': total_len, 'nb_groups': nb_groups, 'len_groups': len_groups, 'max_len_group': max_len_group, 'start_pos': start_pos } metadata = pd.DataFrame(meta.values()) #print(metadata) if not os.path.exists('data/metadata'): os.mkdir('data/metadata') metadata.to_csv('data/metadata/metadata.csv', index=False) # Load pretrained DeepSVG model device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cfg = config_hierarchical_ordered.Config() model = cfg.make_model().to(device) train_utils.load_model(model_path, model) model.eval() # Load dataset cfg.data_dir = 'data/temp_svg/' cfg.meta_filepath = 'data/metadata/metadata.csv' dataset = svg_dataset.load_dataset(cfg) svg_files = glob.glob('data/temp_svg/*.svg') #print(svg_files) svg_list = [] for svg_file in svg_files: id = svg_file.split('\\')[1].split('_')[1].split('.')[0] # Preprocessing svg = SVG.load_svg(svg_file) svg = dataset.simplify(svg) svg = dataset.preprocess(svg, augment=False) data = dataset.get(svg=svg) # Get embedding model_args = utils.batchify((data[key] for key in cfg.model_args), device) with torch.no_grad(): z = model(*model_args, encode_mode=True).cpu().numpy()[0][0][0] dict_data = { 'animation_id': id, 'embedding': z } svg_list.append(dict_data) data = pd.DataFrame.from_records(svg_list, index='animation_id')['embedding'].apply(pd.Series) data.reset_index(level=0, inplace=True) data.dropna(inplace=True) data.reset_index(drop=True, inplace=True) if not save == None: output = open(os.path.join(save, 'svg_embedding_5000.pkl'), 'wb') pickle.dump(data, output) output.close() print('Embedding computed') return data #compute_embedding_folder('data/raw_dataset', 'src/preprocessing/deepsvg/deepsvg_models/deepSVG_hierarchical_ordered.pth.tar', 'data/embedding')