"""This code is taken from by Alexandre Carlier, Martin Danelljan, Alexandre Alahi and Radu Timofte from the paper >https://arxiv.org/pdf/2007.11301.pdf> """ from src.preprocessing.deepsvg.deepsvg_difflib.tensor import SVGTensor from src.preprocessing.deepsvg.deepsvg_utils.utils import _pack_group_batch, _unpack_group_batch, _make_seq_first, _make_batch_first from .layers.transformer import * from .layers.improved_transformer import * from .layers.positional_encoding import * from .basic_blocks import FCN, HierarchFCN, ResNet from .model_config import _DefaultConfig from .model_utils import (_get_padding_mask, _get_key_padding_mask, _get_group_mask, _get_visibility_mask, _get_key_visibility_mask, _generate_square_subsequent_mask, _sample_categorical, _threshold_sample) from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence from scipy.optimize import linear_sum_assignment class SVGEmbedding(nn.Module): def __init__(self, cfg: _DefaultConfig, seq_len, rel_args=False, use_group=True, group_len=None): super().__init__() self.cfg = cfg self.command_embed = nn.Embedding(cfg.n_commands, cfg.d_model) args_dim = 2 * cfg.args_dim if rel_args else cfg.args_dim + 1 self.arg_embed = nn.Embedding(args_dim, 64) self.embed_fcn = nn.Linear(64 * cfg.n_args, cfg.d_model) self.use_group = use_group if use_group: if group_len is None: group_len = cfg.max_num_groups self.group_embed = nn.Embedding(group_len+2, cfg.d_model) self.pos_encoding = PositionalEncodingLUT(cfg.d_model, max_len=seq_len+2) self._init_embeddings() def _init_embeddings(self): nn.init.kaiming_normal_(self.command_embed.weight, mode="fan_in") nn.init.kaiming_normal_(self.arg_embed.weight, mode="fan_in") nn.init.kaiming_normal_(self.embed_fcn.weight, mode="fan_in") if self.use_group: nn.init.kaiming_normal_(self.group_embed.weight, mode="fan_in") def forward(self, commands, args, groups=None): S, GN = commands.shape src = self.command_embed(commands.long()) + \ self.embed_fcn(self.arg_embed((args + 1).long()).view(S, GN, -1)) # shift due to -1 PAD_VAL if self.use_group: src = src + self.group_embed(groups.long()) src = self.pos_encoding(src) return src class ConstEmbedding(nn.Module): def __init__(self, cfg: _DefaultConfig, seq_len): super().__init__() self.cfg = cfg self.seq_len = seq_len self.PE = PositionalEncodingLUT(cfg.d_model, max_len=seq_len) def forward(self, z): N = z.size(1) src = self.PE(z.new_zeros(self.seq_len, N, self.cfg.d_model)) return src class LabelEmbedding(nn.Module): def __init__(self, cfg: _DefaultConfig): super().__init__() self.label_embedding = nn.Embedding(cfg.n_labels, cfg.dim_label) self._init_embeddings() def _init_embeddings(self): nn.init.kaiming_normal_(self.label_embedding.weight, mode="fan_in") def forward(self, label): src = self.label_embedding(label) return src class Encoder(nn.Module): def __init__(self, cfg: _DefaultConfig): super().__init__() self.cfg = cfg seq_len = cfg.max_seq_len if cfg.encode_stages == 2 else cfg.max_total_len self.use_group = cfg.encode_stages == 1 self.embedding = SVGEmbedding(cfg, seq_len, use_group=self.use_group) if cfg.label_condition: self.label_embedding = LabelEmbedding(cfg) dim_label = cfg.dim_label if cfg.label_condition else None if cfg.model_type == "transformer": encoder_layer = TransformerEncoderLayerImproved(cfg.d_model, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label) encoder_norm = LayerNorm(cfg.d_model) self.encoder = TransformerEncoder(encoder_layer, cfg.n_layers, encoder_norm) else: # "lstm" self.encoder = nn.LSTM(cfg.d_model, cfg.d_model // 2, dropout=cfg.dropout, bidirectional=True) if cfg.encode_stages == 2: if not cfg.self_match: self.hierarchical_PE = PositionalEncodingLUT(cfg.d_model, max_len=cfg.max_num_groups) hierarchical_encoder_layer = TransformerEncoderLayerImproved(cfg.d_model, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label) hierarchical_encoder_norm = LayerNorm(cfg.d_model) self.hierarchical_encoder = TransformerEncoder(hierarchical_encoder_layer, cfg.n_layers, hierarchical_encoder_norm) def forward(self, commands, args, label=None): S, G, N = commands.shape l = self.label_embedding(label).unsqueeze(0).unsqueeze(0).repeat(1, commands.size(1), 1, 1) if self.cfg.label_condition else None if self.cfg.encode_stages == 2: visibility_mask, key_visibility_mask = _get_visibility_mask(commands, seq_dim=0), _get_key_visibility_mask(commands, seq_dim=0) commands, args, l = _pack_group_batch(commands, args, l) padding_mask, key_padding_mask = _get_padding_mask(commands, seq_dim=0), _get_key_padding_mask(commands, seq_dim=0) group_mask = _get_group_mask(commands, seq_dim=0) if self.use_group else None src = self.embedding(commands, args, group_mask) if self.cfg.model_type == "transformer": memory = self.encoder(src, mask=None, src_key_padding_mask=key_padding_mask, memory2=l) z = (memory * padding_mask).sum(dim=0, keepdim=True) / padding_mask.sum(dim=0, keepdim=True) else: # "lstm" hidden_cell = (src.new_zeros(2, N, self.cfg.d_model // 2), src.new_zeros(2, N, self.cfg.d_model // 2)) sequence_lengths = padding_mask.sum(dim=0).squeeze(-1) x = pack_padded_sequence(src, sequence_lengths, enforce_sorted=False) packed_output, _ = self.encoder(x, hidden_cell) memory, _ = pad_packed_sequence(packed_output) idx = (sequence_lengths - 1).long().view(1, -1, 1).repeat(1, 1, self.cfg.d_model) z = memory.gather(dim=0, index=idx) z = _unpack_group_batch(N, z) if self.cfg.encode_stages == 2: src = z.transpose(0, 1) src = _pack_group_batch(src) l = self.label_embedding(label).unsqueeze(0) if self.cfg.label_condition else None if not self.cfg.self_match: src = self.hierarchical_PE(src) memory = self.hierarchical_encoder(src, mask=None, src_key_padding_mask=key_visibility_mask, memory2=l) z = (memory * visibility_mask).sum(dim=0, keepdim=True) / visibility_mask.sum(dim=0, keepdim=True) z = _unpack_group_batch(N, z) return z class VAE(nn.Module): def __init__(self, cfg: _DefaultConfig): super(VAE, self).__init__() self.enc_mu_fcn = nn.Linear(cfg.d_model, cfg.dim_z) self.enc_sigma_fcn = nn.Linear(cfg.d_model, cfg.dim_z) self._init_embeddings() def _init_embeddings(self): nn.init.normal_(self.enc_mu_fcn.weight, std=0.001) nn.init.constant_(self.enc_mu_fcn.bias, 0) nn.init.normal_(self.enc_sigma_fcn.weight, std=0.001) nn.init.constant_(self.enc_sigma_fcn.bias, 0) def forward(self, z): mu, logsigma = self.enc_mu_fcn(z), self.enc_sigma_fcn(z) sigma = torch.exp(logsigma / 2.) z = mu + sigma * torch.randn_like(sigma) return z, mu, logsigma class Bottleneck(nn.Module): def __init__(self, cfg: _DefaultConfig): super(Bottleneck, self).__init__() self.bottleneck = nn.Linear(cfg.d_model, cfg.dim_z) def forward(self, z): return self.bottleneck(z) class Decoder(nn.Module): def __init__(self, cfg: _DefaultConfig): super(Decoder, self).__init__() self.cfg = cfg if cfg.label_condition: self.label_embedding = LabelEmbedding(cfg) dim_label = cfg.dim_label if cfg.label_condition else None if cfg.decode_stages == 2: self.hierarchical_embedding = ConstEmbedding(cfg, cfg.num_groups_proposal) hierarchical_decoder_layer = TransformerDecoderLayerGlobalImproved(cfg.d_model, cfg.dim_z, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label) hierarchical_decoder_norm = LayerNorm(cfg.d_model) self.hierarchical_decoder = TransformerDecoder(hierarchical_decoder_layer, cfg.n_layers_decode, hierarchical_decoder_norm) self.hierarchical_fcn = HierarchFCN(cfg.d_model, cfg.dim_z) if cfg.pred_mode == "autoregressive": self.embedding = SVGEmbedding(cfg, cfg.max_total_len, rel_args=cfg.rel_targets, use_group=True, group_len=cfg.max_total_len) square_subsequent_mask = _generate_square_subsequent_mask(self.cfg.max_total_len+1) self.register_buffer("square_subsequent_mask", square_subsequent_mask) else: # "one_shot" seq_len = cfg.max_seq_len+1 if cfg.decode_stages == 2 else cfg.max_total_len+1 self.embedding = ConstEmbedding(cfg, seq_len) if cfg.model_type == "transformer": decoder_layer = TransformerDecoderLayerGlobalImproved(cfg.d_model, cfg.dim_z, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label) decoder_norm = LayerNorm(cfg.d_model) self.decoder = TransformerDecoder(decoder_layer, cfg.n_layers_decode, decoder_norm) else: # "lstm" self.fc_hc = nn.Linear(cfg.dim_z, 2 * cfg.d_model) self.decoder = nn.LSTM(cfg.d_model, cfg.d_model, dropout=cfg.dropout) args_dim = 2 * cfg.args_dim if cfg.rel_targets else cfg.args_dim + 1 self.fcn = FCN(cfg.d_model, cfg.n_commands, cfg.n_args, args_dim) def _get_initial_state(self, z): hidden, cell = torch.split(torch.tanh(self.fc_hc(z)), self.cfg.d_model, dim=2) hidden_cell = hidden.contiguous(), cell.contiguous() return hidden_cell def forward(self, z, commands, args, label=None, hierarch_logits=None, return_hierarch=False): N = z.size(2) l = self.label_embedding(label).unsqueeze(0) if self.cfg.label_condition else None if hierarch_logits is None: z = _pack_group_batch(z) if self.cfg.decode_stages == 2: if hierarch_logits is None: src = self.hierarchical_embedding(z) out = self.hierarchical_decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None, memory2=l) hierarch_logits, z = self.hierarchical_fcn(out) if self.cfg.label_condition: l = l.unsqueeze(0).repeat(1, z.size(1), 1, 1) hierarch_logits, z, l = _pack_group_batch(hierarch_logits, z, l) if return_hierarch: return _unpack_group_batch(N, hierarch_logits, z) if self.cfg.pred_mode == "autoregressive": S = commands.size(0) commands, args = _pack_group_batch(commands, args) group_mask = _get_group_mask(commands, seq_dim=0) src = self.embedding(commands, args, group_mask) if self.cfg.model_type == "transformer": key_padding_mask = _get_key_padding_mask(commands, seq_dim=0) out = self.decoder(src, z, tgt_mask=self.square_subsequent_mask[:S, :S], tgt_key_padding_mask=key_padding_mask, memory2=l) else: # "lstm" hidden_cell = self._get_initial_state(z) out, _ = self.decoder(src, hidden_cell) else: # "one_shot" src = self.embedding(z) out = self.decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None, memory2=l) command_logits, args_logits = self.fcn(out) out_logits = (command_logits, args_logits) + ((hierarch_logits,) if self.cfg.decode_stages == 2 else ()) return _unpack_group_batch(N, *out_logits) class SVGTransformer(nn.Module): def __init__(self, cfg: _DefaultConfig): super(SVGTransformer, self).__init__() self.cfg = cfg self.args_dim = 2 * cfg.args_dim if cfg.rel_targets else cfg.args_dim + 1 if self.cfg.encode_stages > 0: self.encoder = Encoder(cfg) if cfg.use_resnet: self.resnet = ResNet(cfg.d_model) if cfg.use_vae: self.vae = VAE(cfg) else: self.bottleneck = Bottleneck(cfg) self.decoder = Decoder(cfg) self.register_buffer("cmd_args_mask", SVGTensor.CMD_ARGS_MASK) def perfect_matching(self, command_logits, args_logits, hierarch_logits, tgt_commands, tgt_args): with torch.no_grad(): N, G, S, n_args = tgt_args.shape visibility_mask = _get_visibility_mask(tgt_commands, seq_dim=-1) padding_mask = _get_padding_mask(tgt_commands, seq_dim=-1, extended=True) * visibility_mask.unsqueeze(-1) # Unsqueeze tgt_commands, tgt_args, tgt_hierarch = tgt_commands.unsqueeze(2), tgt_args.unsqueeze(2), visibility_mask.unsqueeze(2) command_logits, args_logits, hierarch_logits = command_logits.unsqueeze(1), args_logits.unsqueeze(1), hierarch_logits.unsqueeze(1).squeeze(-2) # Loss tgt_hierarch, hierarch_logits = tgt_hierarch.repeat(1, 1, self.cfg.num_groups_proposal), hierarch_logits.repeat(1, G, 1, 1) tgt_commands, command_logits = tgt_commands.repeat(1, 1, self.cfg.num_groups_proposal, 1), command_logits.repeat(1, G, 1, 1, 1) tgt_args, args_logits = tgt_args.repeat(1, 1, self.cfg.num_groups_proposal, 1, 1), args_logits.repeat(1, G, 1, 1, 1, 1) padding_mask, mask = padding_mask.unsqueeze(2).repeat(1, 1, self.cfg.num_groups_proposal, 1), self.cmd_args_mask[tgt_commands.long()] loss_args = F.cross_entropy(args_logits.reshape(-1, self.args_dim), tgt_args.reshape(-1).long() + 1, reduction="none").reshape(N, G, self.cfg.num_groups_proposal, S, n_args) # shift due to -1 PAD_VAL loss_cmd = F.cross_entropy(command_logits.reshape(-1, self.cfg.n_commands), tgt_commands.reshape(-1).long(), reduction="none").reshape(N, G, self.cfg.num_groups_proposal, S) loss_hierarch = F.cross_entropy(hierarch_logits.reshape(-1, 2), tgt_hierarch.reshape(-1).long(), reduction="none").reshape(N, G, self.cfg.num_groups_proposal) loss_args = (loss_args * mask).sum(dim=[-1, -2]) / mask.sum(dim=[-1, -2]) loss_cmd = (loss_cmd * padding_mask).sum(dim=-1) / padding_mask.sum(dim=-1) loss = 2.0 * loss_args + 1.0 * loss_cmd + 1.0 * loss_hierarch # Iterate over the batch-dimension assignment_list = [] full_set = set(range(self.cfg.num_groups_proposal)) for i in range(N): costs = loss[i] mask = visibility_mask[i] _, assign = linear_sum_assignment(costs[mask].cpu()) assign = assign.tolist() assignment_list.append(assign + list(full_set - set(assign))) assignment = torch.tensor(assignment_list, device=command_logits.device) return assignment.unsqueeze(-1).unsqueeze(-1) def forward(self, commands_enc, args_enc, commands_dec, args_dec, label=None, z=None, hierarch_logits=None, return_tgt=True, params=None, encode_mode=False, return_hierarch=False): commands_enc, args_enc = _make_seq_first(commands_enc, args_enc) # Possibly None, None commands_dec_, args_dec_ = _make_seq_first(commands_dec, args_dec) if z is None: z = self.encoder(commands_enc, args_enc, label) if self.cfg.use_resnet: z = self.resnet(z) if self.cfg.use_vae: z, mu, logsigma = self.vae(z) else: z = self.bottleneck(z) else: z = _make_seq_first(z) if encode_mode: return z if return_tgt: # Train mode commands_dec_, args_dec_ = commands_dec_[:-1], args_dec_[:-1] out_logits = self.decoder(z, commands_dec_, args_dec_, label, hierarch_logits=hierarch_logits, return_hierarch=return_hierarch) if return_hierarch: return out_logits out_logits = _make_batch_first(*out_logits) if return_tgt and self.cfg.self_match: # Assignment assert self.cfg.decode_stages == 2 # Self-matching expects two-stage decoder command_logits, args_logits, hierarch_logits = out_logits assignment = self.perfect_matching(command_logits, args_logits, hierarch_logits, commands_dec[..., 1:], args_dec[..., 1:, :]) command_logits = torch.gather(command_logits, dim=1, index=assignment.expand_as(command_logits)) args_logits = torch.gather(args_logits, dim=1, index=assignment.unsqueeze(-1).expand_as(args_logits)) hierarch_logits = torch.gather(hierarch_logits, dim=1, index=assignment.expand_as(hierarch_logits)) out_logits = (command_logits, args_logits, hierarch_logits) res = { "command_logits": out_logits[0], "args_logits": out_logits[1] } if self.cfg.decode_stages == 2: res["visibility_logits"] = out_logits[2] if return_tgt: res["tgt_commands"] = commands_dec res["tgt_args"] = args_dec if self.cfg.use_vae: res["mu"] = _make_batch_first(mu) res["logsigma"] = _make_batch_first(logsigma) return res def greedy_sample(self, commands_enc=None, args_enc=None, commands_dec=None, args_dec=None, label=None, z=None, hierarch_logits=None, concat_groups=True, temperature=0.0001): if self.cfg.pred_mode == "one_shot": res = self.forward(commands_enc, args_enc, commands_dec, args_dec, label=label, z=z, hierarch_logits=hierarch_logits, return_tgt=False) commands_y, args_y = _sample_categorical(temperature, res["command_logits"], res["args_logits"]) args_y -= 1 # shift due to -1 PAD_VAL visibility_y = _threshold_sample(res["visibility_logits"], threshold=0.7).bool().squeeze(-1) if self.cfg.decode_stages == 2 else None commands_y, args_y = self._make_valid(commands_y, args_y, visibility_y) else: if z is None: z = self.forward(commands_enc, args_enc, None, None, label=label, encode_mode=True) PAD_VAL = -1 commands_y, args_y = z.new_zeros(1, 1, 1).fill_(SVGTensor.COMMANDS_SIMPLIFIED.index("SOS")).long(), z.new_ones(1, 1, 1, self.cfg.n_args).fill_(PAD_VAL).long() for i in range(self.cfg.max_total_len): res = self.forward(None, None, commands_y, args_y, label=label, z=z, hierarch_logits=hierarch_logits, return_tgt=False) commands_new_y, args_new_y = _sample_categorical(temperature, res["command_logits"], res["args_logits"]) args_new_y -= 1 # shift due to -1 PAD_VAL _, args_new_y = self._make_valid(commands_new_y, args_new_y) commands_y, args_y = torch.cat([commands_y, commands_new_y[..., -1:]], dim=-1), torch.cat([args_y, args_new_y[..., -1:, :]], dim=-2) commands_y, args_y = commands_y[..., 1:], args_y[..., 1:, :] # Discard SOS token if self.cfg.rel_targets: args_y = self._make_absolute(commands_y, args_y) if concat_groups: N = commands_y.size(0) padding_mask_y = _get_padding_mask(commands_y, seq_dim=-1).bool() commands_y, args_y = commands_y[padding_mask_y].reshape(N, -1), args_y[padding_mask_y].reshape(N, -1, self.cfg.n_args) return commands_y, args_y def _make_valid(self, commands_y, args_y, visibility_y=None, PAD_VAL=-1): if visibility_y is not None: S = commands_y.size(-1) commands_y[~visibility_y] = commands_y.new_tensor([SVGTensor.COMMANDS_SIMPLIFIED.index("m"), *[SVGTensor.COMMANDS_SIMPLIFIED.index("EOS")] * (S - 1)]) args_y[~visibility_y] = PAD_VAL mask = self.cmd_args_mask[commands_y.long()].bool() args_y[~mask] = PAD_VAL return commands_y, args_y def _make_absolute(self, commands_y, args_y): mask = self.cmd_args_mask[commands_y.long()].bool() args_y[mask] -= self.cfg.args_dim - 1 real_commands = commands_y < SVGTensor.COMMANDS_SIMPLIFIED.index("EOS") args_real_commands = args_y[real_commands] end_pos = args_real_commands[:-1, SVGTensor.IndexArgs.END_POS].cumsum(dim=0) args_real_commands[1:, SVGTensor.IndexArgs.CONTROL1] += end_pos args_real_commands[1:, SVGTensor.IndexArgs.CONTROL2] += end_pos args_real_commands[1:, SVGTensor.IndexArgs.END_POS] += end_pos args_y[real_commands] = args_real_commands _, args_y = self._make_valid(commands_y, args_y) return args_y