"""This code is taken from by Alexandre Carlier, Martin Danelljan, Alexandre Alahi and Radu Timofte from the paper >https://arxiv.org/pdf/2007.11301.pdf> """ import torch import torch.nn as nn class FCN(nn.Module): def __init__(self, d_model, n_commands, n_args, args_dim=256): super().__init__() self.n_args = n_args self.args_dim = args_dim self.command_fcn = nn.Linear(d_model, n_commands) self.args_fcn = nn.Linear(d_model, n_args * args_dim) def forward(self, out): S, N, _ = out.shape command_logits = self.command_fcn(out) # Shape [S, N, n_commands] args_logits = self.args_fcn(out) # Shape [S, N, n_args * args_dim] args_logits = args_logits.reshape(S, N, self.n_args, self.args_dim) # Shape [S, N, n_args, args_dim] return command_logits, args_logits class HierarchFCN(nn.Module): def __init__(self, d_model, dim_z): super().__init__() self.visibility_fcn = nn.Linear(d_model, 2) self.z_fcn = nn.Linear(d_model, dim_z) def forward(self, out): G, N, _ = out.shape visibility_logits = self.visibility_fcn(out) # Shape [G, N, 2] z = self.z_fcn(out) # Shape [G, N, dim_z] return visibility_logits.unsqueeze(0), z.unsqueeze(0) class ResNet(nn.Module): def __init__(self, d_model): super().__init__() self.linear1 = nn.Sequential( nn.Linear(d_model, d_model), nn.ReLU() ) self.linear2 = nn.Sequential( nn.Linear(d_model, d_model), nn.ReLU() ) self.linear3 = nn.Sequential( nn.Linear(d_model, d_model), nn.ReLU() ) self.linear4 = nn.Sequential( nn.Linear(d_model, d_model), nn.ReLU() ) def forward(self, z): z = z + self.linear1(z) z = z + self.linear2(z) z = z + self.linear3(z) z = z + self.linear4(z) return z