Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,171 +1,14 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import time
|
| 3 |
-
import moviepy.editor as mp
|
| 4 |
-
import psutil
|
| 5 |
import gradio as gr
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 9 |
-
|
| 10 |
-
DEFAULT_MODEL_NAME = "distil-whisper/distil-large-v3"
|
| 11 |
-
BATCH_SIZE = 8
|
| 12 |
-
|
| 13 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
| 14 |
-
if device == "cpu":
|
| 15 |
-
DEFAULT_MODEL_NAME = "openai/whisper-tiny"
|
| 16 |
-
|
| 17 |
-
def load_pipeline(model_name):
|
| 18 |
-
return pipeline(
|
| 19 |
-
task="automatic-speech-recognition",
|
| 20 |
-
model=model_name,
|
| 21 |
-
chunk_length_s=30,
|
| 22 |
-
device=device,
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
pipe = load_pipeline(DEFAULT_MODEL_NAME)
|
| 26 |
-
|
| 27 |
-
@spaces.GPU
|
| 28 |
-
def transcribe(inputs, task, model_name):
|
| 29 |
-
if inputs is None:
|
| 30 |
-
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 31 |
-
|
| 32 |
-
global pipe
|
| 33 |
-
if model_name != pipe.model.name_or_path:
|
| 34 |
-
pipe = load_pipeline(model_name)
|
| 35 |
-
|
| 36 |
-
start_time = time.time() # Record the start time
|
| 37 |
-
|
| 38 |
-
# Load the audio file and calculate its duration
|
| 39 |
-
audio = mp.AudioFileClip(inputs)
|
| 40 |
-
audio_duration = audio.duration
|
| 41 |
-
|
| 42 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
| 43 |
-
end_time = time.time() # Record the end time
|
| 44 |
-
|
| 45 |
-
transcription_time = end_time - start_time # Calculate the transcription time
|
| 46 |
-
|
| 47 |
-
# Create the transcription time output with additional information
|
| 48 |
-
transcription_time_output = (
|
| 49 |
-
f"Transcription Time: {transcription_time:.2f} seconds\n"
|
| 50 |
-
f"Audio Duration: {audio_duration:.2f} seconds\n"
|
| 51 |
-
f"Model Used: {model_name}\n"
|
| 52 |
-
f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}"
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
return text, transcription_time_output
|
| 56 |
-
|
| 57 |
-
from gpustat import GPUStatCollection
|
| 58 |
-
|
| 59 |
-
def update_gpu_status():
|
| 60 |
-
if torch.cuda.is_available() == False:
|
| 61 |
-
return "No Nviadia Device"
|
| 62 |
-
try:
|
| 63 |
-
gpu_stats = GPUStatCollection.new_query()
|
| 64 |
-
for gpu in gpu_stats:
|
| 65 |
-
# Assuming you want to monitor the first GPU, index 0
|
| 66 |
-
gpu_id = gpu.index
|
| 67 |
-
gpu_name = gpu.name
|
| 68 |
-
gpu_utilization = gpu.utilization
|
| 69 |
-
memory_used = gpu.memory_used
|
| 70 |
-
memory_total = gpu.memory_total
|
| 71 |
-
memory_utilization = (memory_used / memory_total) * 100
|
| 72 |
-
gpu_status=(f"GPU {gpu_id}: {gpu_name}, Utilization: {gpu_utilization}%, Memory Used: {memory_used}MB, Memory Total: {memory_total}MB, Memory Utilization: {memory_utilization:.2f}%")
|
| 73 |
-
return gpu_status
|
| 74 |
-
|
| 75 |
-
except Exception as e:
|
| 76 |
-
print(f"Error getting GPU stats: {e}")
|
| 77 |
-
return torch_update_gpu_status()
|
| 78 |
-
|
| 79 |
-
def torch_update_gpu_status():
|
| 80 |
-
if torch.cuda.is_available():
|
| 81 |
-
gpu_info = torch.cuda.get_device_name(0)
|
| 82 |
-
gpu_memory = torch.cuda.mem_get_info(0)
|
| 83 |
-
total_memory = gpu_memory[1] / (1024 * 1024)
|
| 84 |
-
used_memory = (gpu_memory[1] - gpu_memory[0]) / (1024 * 1024)
|
| 85 |
-
|
| 86 |
-
gpu_status = f"GPU: {gpu_info}\nTotal Memory: {total_memory:.2f} MB\nUsed Memory: {used_memory:.2f} MB"
|
| 87 |
-
else:
|
| 88 |
-
gpu_status = "No GPU available"
|
| 89 |
-
return gpu_status
|
| 90 |
-
|
| 91 |
-
def update_cpu_status():
|
| 92 |
-
import datetime
|
| 93 |
-
# Get the current time
|
| 94 |
-
current_time = datetime.datetime.now().time()
|
| 95 |
-
# Convert the time to a string
|
| 96 |
-
time_str = current_time.strftime("%H:%M:%S")
|
| 97 |
-
|
| 98 |
-
cpu_percent = psutil.cpu_percent()
|
| 99 |
-
cpu_status = f"CPU Usage: {cpu_percent}% {time_str}"
|
| 100 |
-
return cpu_status
|
| 101 |
-
|
| 102 |
-
def update_status():
|
| 103 |
-
gpu_status = update_gpu_status()
|
| 104 |
-
cpu_status = update_cpu_status()
|
| 105 |
-
return gpu_status, cpu_status
|
| 106 |
-
|
| 107 |
-
def refresh_status():
|
| 108 |
-
return update_status()
|
| 109 |
|
| 110 |
-
demo = gr.Blocks()
|
| 111 |
|
| 112 |
-
|
| 113 |
-
fn=transcribe,
|
| 114 |
-
inputs=[
|
| 115 |
-
gr.Audio(type="filepath"),
|
| 116 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
| 117 |
-
gr.Textbox(
|
| 118 |
-
label="Model Name",
|
| 119 |
-
value=DEFAULT_MODEL_NAME,
|
| 120 |
-
placeholder="Enter the model name",
|
| 121 |
-
info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3",
|
| 122 |
-
),
|
| 123 |
-
],
|
| 124 |
-
outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")],
|
| 125 |
-
theme="huggingface",
|
| 126 |
-
title="Whisper Transcription",
|
| 127 |
-
description=(
|
| 128 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper"
|
| 129 |
-
" checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length."
|
| 130 |
-
),
|
| 131 |
-
allow_flagging="never",
|
| 132 |
-
)
|
| 133 |
|
| 134 |
-
file_transcribe = gr.Interface(
|
| 135 |
-
fn=transcribe,
|
| 136 |
-
inputs=[
|
| 137 |
-
gr.Audio(type="filepath", label="Audio file"),
|
| 138 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
| 139 |
-
gr.Textbox(
|
| 140 |
-
label="Model Name",
|
| 141 |
-
value=DEFAULT_MODEL_NAME,
|
| 142 |
-
placeholder="Enter the model name",
|
| 143 |
-
info="Some available models: openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v2",
|
| 144 |
-
),
|
| 145 |
-
],
|
| 146 |
-
outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")],
|
| 147 |
-
theme="huggingface",
|
| 148 |
-
title="Whisper Transcription",
|
| 149 |
-
description=(
|
| 150 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper"
|
| 151 |
-
" checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length."
|
| 152 |
-
),
|
| 153 |
-
allow_flagging="never",
|
| 154 |
-
)
|
| 155 |
-
with demo:
|
| 156 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
|
| 157 |
-
|
| 158 |
-
with gr.Row():
|
| 159 |
-
refresh_button = gr.Button("Refresh Status") # Create a refresh button
|
| 160 |
-
|
| 161 |
-
gpu_status_output = gr.Textbox(label="GPU Status", interactive=False)
|
| 162 |
-
cpu_status_output = gr.Textbox(label="CPU Status", interactive=False)
|
| 163 |
-
|
| 164 |
-
# Link the refresh button to the refresh_status function
|
| 165 |
-
refresh_button.click(refresh_status, None, [gpu_status_output, cpu_status_output])
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
|
|
|
| 169 |
|
| 170 |
-
|
| 171 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
|
|
|
| 5 |
|
| 6 |
+
graudio=gr.Audio(type="filepath",show_download_button=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
demo = gr.Interface(fake_diffusion,
|
| 10 |
+
inputs=[graudio],
|
| 11 |
+
outputs="image")
|
| 12 |
|
| 13 |
+
if __name__ == "__main__":
|
| 14 |
+
demo.launch()
|