dvilasuero HF staff commited on
Commit
c15bd6e
β€’
1 Parent(s): 29925bb

Change records status based on user feedback

Browse files

Hi

@merve

!

This includes user feedback in the record:

- Status: Flagged as correct can be used for retraining directly, the rest need to be reviewed (status=Default)
- Metadata: We store the feedback as metadata so we can filter by "Ambiguous" for example and focus on validating those records.

Files changed (1) hide show
  1. app.py +9 -2
app.py CHANGED
@@ -19,7 +19,12 @@ examples = [
19
  ["LΓΌtfen yardΔ±m Akevler mahallesi RΓΌzgar sokak Tuncay apartmanΔ± zemin kat Antakya akrabalarΔ±m gâçük altΔ±nda #hatay #Afad"]
20
  ]
21
 
22
- def create_record(input_text):
 
 
 
 
 
23
  # Making the prediction
24
  predictions = nlp(input_text, aggregation_strategy="first")
25
 
@@ -40,6 +45,8 @@ def create_record(input_text):
40
  tokens=words,
41
  prediction=prediction,
42
  prediction_agent="deprem-ml/deprem-ner",
 
 
43
  )
44
  print(record)
45
  return record
@@ -59,7 +66,7 @@ class ArgillaLogger(FlaggingCallback):
59
  ) -> int:
60
  text = flag_data[0]
61
  inference = flag_data[1]
62
- rg.log(name=self.dataset_name, records=create_record(text))
63
 
64
 
65
 
 
19
  ["LΓΌtfen yardΔ±m Akevler mahallesi RΓΌzgar sokak Tuncay apartmanΔ± zemin kat Antakya akrabalarΔ±m gâçük altΔ±nda #hatay #Afad"]
20
  ]
21
 
22
+ def create_record(input_text, feedback):
23
+ # define the record status based on feedback
24
+ # default means it needs to be reviewed --> "Incorrect" or "Ambiguous"
25
+ # validated means it's correct and has been checked --> "Correct"
26
+ status = "Validated" if feedback == "Correct" else "Default"
27
+
28
  # Making the prediction
29
  predictions = nlp(input_text, aggregation_strategy="first")
30
 
 
45
  tokens=words,
46
  prediction=prediction,
47
  prediction_agent="deprem-ml/deprem-ner",
48
+ status=status,
49
+ metadata={"feedback": feedback}
50
  )
51
  print(record)
52
  return record
 
66
  ) -> int:
67
  text = flag_data[0]
68
  inference = flag_data[1]
69
+ rg.log(name=self.dataset_name, records=create_record(text), flag_option)
70
 
71
 
72