#https://www.kaggle.com/code/kmader/segmenting-buildings-in-satellite-images from keras import models, layers from skimage.io import imread import numpy as np import cv2 t_x_shape = (300, 300, 3) GAUSSIAN_NOISE = 0.1 BASE_DEPTH = 16 BLOCK_COUNT = 1 SPATIAL_DROPOUT = 0.25 EDGE_CROP = 16 def conv_bn(x, filt, dl_rate=(1,1), preblock = False): y = layers.Convolution2D(filt, (3, 3), activation='linear', padding='same', dilation_rate=dl_rate, use_bias=False)(x) if preblock: return y y = layers.BatchNormalization()(y) return layers.Activation('elu')(y) def keras_model(): in_layer = layers.Input(t_x_shape, name = 'RGB_Input') pp_in_layer = layers.GaussianNoise(GAUSSIAN_NOISE)(in_layer) pp_in_layer = layers.BatchNormalization()(pp_in_layer) c = conv_bn(pp_in_layer, BASE_DEPTH//2) c = conv_bn(c, BASE_DEPTH//2) c = conv_bn(c, BASE_DEPTH) skip_layers = [pp_in_layer] for j in range(BLOCK_COUNT): depth_steps = int(np.log2(t_x_shape[0])-2) d = layers.concatenate(skip_layers+[conv_bn(c, BASE_DEPTH*2**j, (2**i, 2**i), preblock=True) for i in range(depth_steps)]) d = layers.SpatialDropout2D(SPATIAL_DROPOUT)(d) d = layers.BatchNormalization()(d) d = layers.Activation('elu')(d) # bottleneck d = conv_bn(d, BASE_DEPTH*2**(j+1)) skip_layers += [c] c = d d = layers.Convolution2D(1, (1, 1), activation='sigmoid', padding='same')(d) d = layers.Cropping2D((EDGE_CROP, EDGE_CROP))(d) d = layers.ZeroPadding2D((EDGE_CROP, EDGE_CROP))(d) seg_model = models.Model(inputs = [in_layer],outputs = [d]) return seg_model def load_model(weight_path): seg_model = keras_model() seg_model.load_weights(weight_path) return seg_model def preprocess_image(img_data): img_data = imread(img_data) if img_data.shape[:2] == (300, 300): img_data = img_data else: img_data = cv2.resize(img_data, (300, 300)) out_img = [] out_img += [img_data] out_img = (np.stack(out_img, 0)/255.0).astype(np.float32) return out_img def attempt_download_from_hub(repo_id, hf_token=None): # https://github.com/fcakyon/yolov5-pip/blob/main/yolov5/utils/downloads.py from huggingface_hub import hf_hub_download, list_repo_files from huggingface_hub.utils._errors import RepositoryNotFoundError from huggingface_hub.utils._validators import HFValidationError try: repo_files = list_repo_files(repo_id=repo_id, repo_type='model', token=hf_token) model_file = [f for f in repo_files if f.endswith('.h5')][0] file = hf_hub_download( repo_id=repo_id, filename=model_file, repo_type='model', token=hf_token, ) return file except (RepositoryNotFoundError, HFValidationError): return None